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Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.013 Electromagnetics and Applications 
 
Problem Set #9                  Issued: 11/9/05 
Fall Term 2005         Due:  11/23/05 
Suggested Reading Assignment: Chapters 4 and 8. 
Quiz 2 will be on Thursday, November 17 at 10-11 a.m. It will cover material through P. S. #8,
with a focus on sinusoidal steady state and transient waves on transmission lines; parallel plate,
rectangular, and dielectric waveguides. Quiz 2 is a closed book exam. Quiz 2 Formula Sheets
(as attached to this problem set) will be provided. No individually prepared formula sheets will be
allowed. 
 
Problem 9.1 
 
A coaxial cylinder inductor is dipped into a magnetizable fluid with permeability μ  and mass 
density mρ .  A current I  flows down the center conductor and returns up the outer cylinder. 
The total height of the cylindrical inductor is s+l  where l is the inductor height above the 
outside fluid level and is the inductor length below the outside fluid level. s

 
a) Calculate B and H  in the annulus between cylinders in the free space and magnetic fluid 

regions. Neglect fringing field effects. 
 
b) Calculate the self-inductance of the coaxial inductor as a function of the magnetic fluid 

height h above the outside fluid level. 
 

c) What is the magnetic force on the magnetic fluid? 
 

d) How high does the fluid rise within the cylinder against the gravitational acceleration 
downwards of ? 

h
g
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Adapted from Problem 6.37 in Electromagnetic Field Theory: A Problem Solving Approach, by Markus Zahn, 1987.  
Used with permission.



Problem 9.2 
The figure below shows a diagrammatic cross section of a two-phase, salient-pole machine.  The 
windings in an actual machine are distributed in many slots 

along the periphery of the stator, rather than as shown.  The rotor is made of magnetically soft 
iron which has no permanent magnetism.  The electrical terminal relations are given by 
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1 0 1 2( cos 2 ) sin 2L M i M iθ θ= + + 2 1 0 2sin 2 ( cos 2 ),  M i L M iλ λ θ θ+ −  =
 

(a) Determine the torque of electrical origin 1 2( , , )eT i i θ . 
 

(b) Assume that the machine is excited by sources such that 1 2cos , sins si I t i I tω ω= = , and 
the rotor has the constant angular velocity mω  such that mtθ ω γ= + .  Evaluate the 
instantaneous torque . Under what conditions is it constant? 
 

eT

(c) The rotor is subjected to a mechanical torque (acting on it in the θ+ -direction): 
, where  is a constant.  The time-varying part of the torque perturbs the 

steady rotation of (b) so that 
0 ( )T T T t′= + 0T

0 ( )mt tθ ω γ γ ′= + + .  Assume that the rotor has a moment of 
inertia J but there is no damping. Find the possible equilibrium angles 0γ  between the 
rotor and the stator magnetic field.  Then write a differential equation for ( )tγ ′ , with 

 as a driving function. 
 

( )T t′

(d) Consider small perturbations of the rotation ( )tγ ′ , so that the equation of motion found in 
(c) can be linearized.  Find the response to an impulse of torque 0 0( ) ( )T t I u t′ = , assuming 
that before the impulse in torque the rotation velocity is constant. 
 

(e) Which of the equilibrium phase angles 0γ  found in (c) is stable? 

Problem 5.11 from Electromechanical Dynamics, by Herbert H. Woodson and James R. Melcher, 1968. Used with permission.



Problem 9.3 
 

 
 
Electrostatic voltmeters are often constructed as shown in the figure above. N pairs of pie-shaped 
plates form the stator and rotor of a variable capacitor (the figure shows six pairs of rotor plates 
and six pairs of stator plates). The rotor plates are attached to a conducting shaft that is free to 
rotate through an angle θ . In the electrostatic voltmeter a pointer is attached to this shaft so that 
the deflection θ  is indicated on a calibrated scale (not shown). 
 

a) Determine ( ,q v )θ , where q is the charge on the stator and v  is the voltage applied 
between the rotor and the stator. The device is constructed so that fringing fields can be 
ignored and the area of the plates is large compared with the cross section of the shaft. In 
addition, it is operated in a region of θ  in which the plates overlap but not completely. 

 
b) Find the torque of electrical origin on the rotor. 

 
c) The shaft is attached to a torsional spring with torque-angle relationship  

 
T Kθ= −  

 
What is the static angular deflection θ  as a function of voltage? 
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Adapted from Problem 3.13 in Electromechanical Dynamics, by Herbert H. Woodson and James R. Melcher, 1968.



 
Problem 9.4 
 

 
 

A magnetic circuit, including a movable plunger of mass , is shown in the above figure. 
The circuit is excited by an N-turn coil with current  and consists of a perfectly permeable 
yoke and plunger 

m
i

μ →∞  with a variable air gap ( )x t  and a fixed non-magnetic gap d . The 
system, with the cross section shown, has a width w  into the paper.  
 
a) Find the terminal relation for the flux ( ),i xλ linked by the electrical terminal pair. Ignore 

fringing in the nonmagnetic gaps. Note that the coil links the flux through the magnetic 
material times. N

 
b) Find the energy  stored in the electromechanical coupling. This should be done 

by making use of part (a). 
( ,mW λ )x

)
 

c) Use the energy function to compute the force of electrical origin ( ,mW xλ ef  acting on 
the plunger. 

 
d) Write an electrical (circuit) equation of motion involving and xλ as the only dependent 

variables and ( )I t  as a driving function. 
 

e) Write the mechanical equation of motion for the mass. This differential equation should 
have and xλ as the only dependent variables, hence taken with the result of (d) should 
constitute a mathematical formulation appropriate for analyzing the system dynamics. 
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Adapted from Problem 3.4 in Electromechanical Dynamics, by Herbert H. Woodson and James R. Melcher, 1968.
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