
Software Lab 4	 6.01 – Fall 2011

Signal Class

Goals:
The overall goal is to implement a family of Python classes which

demonstrate PCAP principles with signals. We will:
1.	 Explore creation and representation of simple signals, represented

as subclasses of a Signal class.
2.	 Build complex signals from primitive ones, using a universal set of

elementary methods for transforming signals.

1	 Setup

Using your own laptop

Be sure you have the 6.01 software libraries ins talled.•

Download and unzip swLab04.zip into a convenient folder (e.g., ~/Desktop/6.01/swLab04).•

To use the plotting features of today’s software, you must invoke idle using the -n switch:
On a lab laptop, MacOS, or Linux: type the following command in a terminal window:

> idle -n

On Windows: download and unzip the idle-n.bat file (see the 6.01 Software page). Then,

start idle by running idle-n.bat.

2	 Introduction
The software lab for this week explores the world of signals, represented in Python as a class
named Signal. We seek to understand this representation, and appreciate how arbitrary sig
nals may be constructed from primitive signals, using a universal set of elementary operations for
transforming signals.

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].

1

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sig.Signal-class.html

Software Lab 4 6.01 Fall 2011

2.1 The Signal class

Objective: Explore the python Signal representation of abstract signals, by creating
simple signals and plotting them.

Resources:

• Section 5.2 of the course notes.

• On the 6.01 OCW Scholar site, go to the Software and Tools section, and

click on 6.01 Software Documentation. Navigate to the documentation for the

sig module.

• swLabs04WorkA.py: template for working with the Signal class.

The Signal class provides methods for representing a signal, for graphically depicting a signal, and
for combining signals to produce new signals.
Any signal can be thought of as being an infinite sequence of sample values. Thus, in the Signal
class, a signal is represented as a function which can be called with any time index; it returns the
value of the signal at that index. Specifically, Signal assumes that every instance has a method
called sample, which takes time index, n, and returns the value of the signal at time n. Thus,
subclasses of Signal may be constructed, each with the sample method implemented to produce
different signals, as appropriate.
The simplest signal we could imagine having is one with a constant value. Here is its class defini
tion:

class ConstantSignal(Signal):
def __init__(self, c):

self.c = c
def sample(self, n):

return self.c

The UnitSample signal has value 1 at time 0 and value 0 at all other times:

class UnitSampleSignal(Signal):
def sample(self, n):

if n == 0:
return 1

else:
return 0

Somewhat more interesting is a sinusoidal signal; we implement this with a CosineSignal class,
whose constructor takes a frequency omega and a phase phase:

class CosineSignal(Signal):
def __init__(self, omega = 1, phase = 0):

self.omega = omega
self.phase = phase

def sample(self, n):
return math.cos(self.omega * n + self.phase)

2

http://ocw.mit.edu/ans7870/6/6.01sc/documentation/index.html
http://ocw.mit.edu/ans7870/6/6.01sc/documentation/sig-module.html

Software Lab 4 6.01 Fall 2011

A method plot(self, start=0, end=100, newWindow=’...’, color=’blue’) is also de
fined for all signals. It plots the signal from start to end, which should be integers. If newWindow
is specified, it is a string usef for the title of the new window for this plot; if color is specified, it as
a string specifying the color of the new curve to be added to the plot. The parameters start, end,
newWindow and color all have reasonable default arguments, so you can just specify the ones you
need.

Plotting will only work from idle if you start it with the -n flag. Currently, the first signal plotted
in a new window sets its size; plot the signal with the largest range first.

2.2 Explore simple Signals

Step 1.
Open the file swLabs04WorkA.py in Idle. It imports our implementation of the module sig,•
which defines all of the classes and methods described in this handout. So, you can use those
classes and methods in calls that you make in this file. For instance, to make a unit sample
signal, you can do:

s = UnitSampleSignal()

Add a Python command in that file that will make a plot of the unit sample signal. If s is a •
signal, then
s.plot(-5, 5)
will plot that signal in a new window, with samples from time steps -5 to 5.

Choose Run Module in Idle (under the Run menu in the window with the swLab04WorkA.py
•
file). You should see the plot. Be sure it makes sense to you.

Now make a cosine signal and plot it, in the same way. Try different values of omega and
•
phase.

3 PCAP with Signals

Objective:
• Combine and transform primitive signals to produce more complex

ones
• Implement step signal, and scale, sum, and delay classes for transform

ing signals

Resources:
• swLabs04WorkA.py: template for working with the Signal class.
• swLab04SignalDefinitions.py: template for new class definitions

for combining signals
• swLab04WorkB.py: template for code to test your new class definitions

3

Software Lab 4 6.01 Fall 2011

Five subclasses of are described below, which provide a primitive “step” signal, and classes Signal
for summing two signals, scaling a signal, and delaying a signal. You will start by exploring how
these work, using our implementation of the subclasses. Then we will ask you to implement your
own version of them.

StepSignal(): has value 0 at any time index less than 0 and value 1 otherwise. •

SummedSignal(s1, s2): takes two signals, s1 and s2, at initialization time and creates a •
new signal that is the sum of those signals. Note that this class should be lazy: when the signal
is created, no addition should happen; values only need to be added when a sample of the
summed signal is requested.
ScaledSignal(s, c): takes a signal s and a constant c at initialization time and creates a •
new signal whose sample values are the sample values of the original signal multiplied by c.
R(s): takes a signal s at initialization time and creates a new Signal whose samples are de•
layed by one time step; that is, the value at time n of the new signal should be the value at time
n − 1 of the old signal.
Rn(s, n): takes a signal s at initialization time and creates a new Signal whose samples are •
delayed by n steps.

Polynomials in R

We have built up an algebra of signals, which is very general. We can add, scale, and delay signals.
One way to express combinations of these operations on a signal is to describe them in terms of a
polynomial in R. So, we will implement a procedure to construct a new signal by operating on it
with a combination of sums, scales, and delays described by a polynomial in R.

So, if X is a signal, then we can describe a delayed version of X as RX, and a version of X that has
been delayed by two time steps as RRX. That same signal, scaled by 7, would be 7RRX or 7R2X. If
we added 7R2X to X, then we’d have 7R2X + X, which we can think of as the signal X transformed
by a polynomial with coefficients [7, 0, 1]. So, we could define a procedure

polyR(s, p): takes an instance of the Signal class (or one of its subclasses), s, and an instance •
of the Polynomial class, p, and returns a new signal that is s transformed by a polynomial in
R.

3.1 From primitive to complex Signals

First, we will use an existing implementation of the signal constructors to build complex signals
from primitive ones, in order for you to develop an intuition about how they work.

Detailed guidance:

Step 2. Do tutor problem Wk.4.1.1, using the following steps:
Edit the file swLab04WorkA.py in Idle to construct new instances of signals by making com•
binations (e.g., sums, scalings, and delays) of instances of the basic UnitSampleSignal and
StepSignal classes, as specified in the tutor problem. You can use any of the classes or pro
cedures in the sig module. You should not write any new Python classes for this problem!!
Plot them to be sure they’re right. •

Remember that the polyR procedure takes as a second argument an instance of the Polyno•
mial class. You can create new instances of this class via poly.Polynomial(c) where c is a
list of coefficients.

4

Software Lab 4	 6.01 Fall 2011

Wk.4.1.1 Do this tutor problem on constructing signals.

3.2 Combining Signals – under the hood

Now, we will implement the classes we just used to make complex signals out of simple ones. Our
implementations should have the same behavior as what you experienced in the section above.

Detailed guidance:

Step 3.	 The remaining problems ask you to implement each of the new subclasses of Signal, as described
above. Each one only needs to supply an appropriate sample method, and possibly an __init__
method. We have provided you with a file, swLab04SignalDefinitions.py, that you can use to
debug your implementations before entering them in the Tutor. You should enter your new class
definitions at the end of swLab04SignalDefinitions.py. You can test them by putting your
test cases in swLab04WorkB.py, which imports swLab04SignalDefinitions.py, and using Run
Module on swLab04WorkB.py in Idle.

You can only use the methods and classes that are defined in swLab04SignalDefinitions.py;
you will extend that file to be a complete implementation of the sig module.

It is very important that, for testing, you use swLab04WorkB.py which imports your class defi
nitions, rather than swLab04WorkA.py, which imports our class definitions.

Check Yourself 1. Whenever you define a new signal class, make an instance or two and plot
them to be sure you’re getting something reasonable.

Wk.4.1 Do tutor problems Wk.4.1.2 through Wk.4.1.4

Check Yourself 2. We have defined usamp to be an instance of the UnitSample class. What
does the signal polyR(usamp, poly.Polynomial([3, 5, -1, 0, 0,
3, -2]) look like?
Do you see how you could use polyR to construct any signal (with finitely
many non-zero values) out of the unit sample?

Step 4.	 Implement the procedure polyR(s, p), which takes an instance of the Signal class (or one of
its subclasses), s, and an instance of the Polynomial class, p, and returns a new signal that is s
transformed by a polynomial in R. So, for example, if p is an instance of the Polynomial class,
with p.coeffs = [3, 2, 10], then the result of polyR(s, p) is a signal

3RRs + 2Rs + 10s

In your implementation, you can use any of the previously implemented signal constructors, in
cluding Rn. Note that you don’t need to define a class to do this: just writing a single procedure will

5

http:swLab04SignalDefinitions.py
http:swLab04SignalDefinitions.py
http:swLab04WorkB.py
http:swLab04SignalDefinitions.py
http:swLab04WorkA.py

Software Lab 4 6.01 Fall 2011

suffice. Depending on how you choose to write your code, you may find it helpful to remember
that any list, such as test, can be reversed by calling test.reverse()

Wk.4.1.5 Do tutor problem Wk.4.1.5, on the polyR procedure.

6

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

