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6.01: Introduction to EECS I 

Discrete Probability and State Estimation 

April 12, 2011 

6.01: Overview and Perspective 

The intellectual themes in 6.01 are recurring themes in EECS: 

• design of complex systems 

• modeling and controlling physical systems 

• augmenting physical systems with computation 

• building systems that are robust to uncertainty 

Intellectual themes are developed in context of a mobile robot. 

Goal is to convey a distinct perspective about engineering. 

Midterm Examination #2 

Time: Tonight, April 12, 7:30 pm to 9:30 pm 

Location: Walker Memorial (if last name starts with A-M) 

10-250 (if last name starts with N-Z) 

Coverage: Everything up to and including Design Lab 9. 

You may refer to any printed materials that you bring to exam.


You may use a calculator.


You may not use a computer, phone, or music player.


No software lab or design lab this week. Instead, there are extensive


tutor problems (week 10). Extra office hours Thursday and Friday,


9:30am-12:30pm and 2pm-5pm. 

Module 1: Software Engineering 

Focus on abstraction and modularity. 

Topics: procedures, data structures, objects, state machines 

Lab Exercises: implementing robot controllers as state machines 

BrainSensorInput Action 

Abstraction and Modularity: Combinators 

Cascade: make new SM by cascading two SM’s 

Parallel: make new SM by running two SM’s in parallel 

Select: combine two inputs to get one output 

Themes: PCAP 

Primitives – Combination – Abstraction – Patterns 

Module 2: Signals and Systems Module 3: Circuits 

Focus on discrete-time feedback and control.


Topics: difference equations, system functions, controllers.


Lab exercises: robotic steering


straight ahead? 

steer right 

steer right 

steer right 

straight ahead? 

steer left 

steer left 

Focus on resistive networks and op amps.


Topics: KVL, KCL, Op-Amps, Thevenin equivalents.


Lab Exercises: build robot “head”:


• motor servo controller (rotating “neck”) 

• phototransistor (robot “eyes”) 

• integrate to make a light tracking system 

Themes: design and analysis of physical systems 
Themes: modeling complex systems, analyzing behaviors 
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Probability Theory Module 4: Probability and Planning 

Modeling uncertainty and making robust plans. 

Topics: Bayes’ theorem, search strategies 

Lab exercises: 

• Mapping: drive robot around unknown space and make map. 
• Localization: give robot map and ask it to find where it is. 
• Planning: plot a route to a goal in a maze 

Themes: Robust design in the face of uncertainty 

Let’s Make a Deal 

The game: 

•	 There are four lego bricks in a bag. 

•	 The lego bricks are either white or red. 

•	 You get to pull one lego brick out of the bag. 
$20 if the brick is red •	 I give you 
$0 otherwise 

How much would you pay to play this game? 

Axioms of Probability 

Probability theory derives from three axioms: 

• non-negativity: Pr(A) ≥ 0 for all events A 

• scaling: Pr(U) = 1  

• additivity: if A ∩ B is empty, Pr(A ∪ B) =Pr(A)+Pr(B) 

From these three, it is easy to prove many other relations. 

Example: Pr(A ∪ B) =Pr(A)+Pr(B)−Pr(A ∩ B) 

U 

A B 

We will begin with a brief introduction to probability theory. 

Probability theory provides a framework for 

•	 reasoning about uncertainty 

− making precise statements about uncertain situations 

− drawing reliable inferences from unreliable observations 

•	 designing systems that are robust and fault-tolerant 

Events 

Probabilities are assigned to events, which are possible outcomes of 

an experiment. 

Example: flip three coins in succession — possible events: 

•	 head, head, head 

• head, tail, head 

• one head and two tails 

•	 first toss was a head 

There are eight atomic (finest grain) events: 

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT. 

Atomic events are mutually exclusive (only one can happen). 

Set of all atomic events is collectively exhaustive (cover all cases). 

Set of all possible atomic events is called the sample space U . 

Check Yourself 

Experiment: roll a fair six-sided die. 

Find probability that result is odd and greater than 3. 

1. 1/6 

2. 2/6 

3. 3/6 

4. 4/6 

5. 0 
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Conditional Probability 

Bayes’ rule specifies the probability that one event (A) occurs given 

that a different event (B) is known to have occurred. 

Pr(A ∩ B)Pr(A | B) =  Pr(B) 

Conditioning (on B) restricts the sample space (which was U) to  B. 

B 

A∩B 
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Check Yourself 

What is the conditional probability of getting a die roll 

greater than 3, given that it is odd? 

1. 1/2 

2. 1/3 

3. 1/4 

4. 1/5 

5. none of the above 

Conditional Probability Conditional Probability 

Conditioning can increase or decrease the probability of an event. Conditioning can increase or decrease the probability of an event. 

Pr(A ∩ B) Pr(A ∩ B)Pr(A | B) =  Pr(A | B) =Pr(B) Pr(B) 

Conditioning can decrease the probability of an event. Conditioning can increase the probability of an event. 

B B 

A ∩ B 

Random variables Random variables 

A random variable is the probabilistic analog of a (deterministic) 

variable. 

While the value of a deterministic variable is a number, the value of 

a random variable is drawn from a distribution. 

Example: Let X represent the result of the toss of a die. 

Then X can take on one of six possible values from a distribution: 

event probability 

X = 1  1/6 

X = 2  1/6 

X = 3  1/6 

X = 4  1/6 

X = 5  1/6 

X = 6  1/6 

Using random variables can simplify our notation.


Pr(X = 3)  replaces Pr(result of toss is three)


This is especially useful when the sample space is multi-dimensional.
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Joint Probabability Distributions 

Probability laws for multi-dimensional sample spaces are given by 

joint probability distributions. 

Let V represent the toss of the first die and W represent the toss of 

the second die. 

• Pr(V,W) represents the joint probability distribution. 

• Pr(v, w) represents the Pr(V = v and W = w). 

Lecture 10 April 12, 2011 

Reducing Dimensionality 

The dimensionality of a joint probability distribution can be reduced 

in two very different ways: 

Marginalizing refers to collapsing one or more dimensions by sum

ming over all possible outcomes along those dimensions. 

— sum along the collapsed dimension(s) 

Conditioning refers to collapsing dimensions by accounting for new 

information that restricts outcomes. 

— apply Bayes’ rule 

Reducing Dimensionality 

Example: prevalence and testing for AIDS. 

Consider the effectiveness of a test for AIDS. 

We divide the population along two dimensions: 

– patients with or without AIDS 

– patients for with the TEST is positive or negative 

We organize data as a joint probability distribution: 

AIDS 

TEST true false 

positive 0.003648 0.022915 

negative 0.000052 0.973385 

How effective is the test? 

What is the probability that a subject has AIDS given the 

TEST is positive? 

AIDS 

TEST true false 

positive 0.003648 0.022915 

negative 0.000052 0.973385 

1. > 90% 

2. between 50 and 90% 

3. < 50% 

4. cannot tell from this data 

How effective is the test? 

What is the probability that the test is positive given that 

the subject has AIDS? 

AIDS 

TEST true false 

positive 0.003648 0.022915 

negative 0.000052 0.973385 

1. > 90% 

2. between 50 and 90% 

3. < 50% 

4. cannot tell from this data 

How effective is the test? 

Q: Why are previous conditional probabilities so different? 

A: Because marginal probability of having AIDS is small. 

AIDS 

TEST true false 

positive 0.003648 0.022915 

negative 0.000052 0.973385 

0.003700 0.996300 
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DDist class 

Probability distributions are represented as instances of the DDist 

(discrete distribution) class. 

class DDist: 

def __init__(self, dictionary): 

self.d = dictionary 

def prob(self, elt): 

if elt in self.d: 

return self.d[elt] 

else: 

return 0 

Instances are created from Python dictionaries that associate 

atomic events (keys) with probabilities (values). 

Conditional Distributions 

Conditional distributions are represented as procedures. 

def TESTgivenAIDS(AIDS): 

if AIDS == ’true’: 

return dist.DDist({’positive’:0.985946,’negative’:0.014054}) 

else: 

return dist.DDist({’positive’:0.023000,’negative’:0.977000}) 

>>> TESTgivenAIDS(’true’) 

DDist(’positive’:0.985946,’negative’:0.014054) 

>>> TESTgivenAIDS(’true’).prob(’negative’) 

0.014054 

Applying Probability to Robot Navigation 

Where am I? 

– based on my current velocity 

– based on noisy sensors 

distance 
sn 
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DDist Example 

Example: discrete distribution for toss of a fair coin 

>>> import lib601.dist as dist


>>> toss = dist.DDist(’head’:0.5, ’tail’:0.5)


>>> toss.prob(’head’)


0.5 

>>> toss.prob(’tail’) 

0.5 

>>> toss.prob(’H’) 

0 

Notice that undefined events return probability 0. 

Joint Probability Distributions 

Joint probability distributions are represented as discrete distribu

tions with keys that are tuples. 

Example: prevalence and testing of AIDS 

AIDS 

TEST true false 

positive 0.003648 0.022915 

negative 0.000052 0.973385 

0.003700 0.996300 

>>> AIDS = dist.DDist(’true’:0.0037, ’false’:0.9963) 

>>> AIDSandTEST = dist.JDist(AIDS,TESTgivenAIDS) 

DDist((false,negative): 0.973385, 

(true,positive): 0.003648,


(true, negative): 0.000052,


(false,positive): 0.022915)


Hidden Markov Models 

System with a state that changes over time, probabilistically. 

• Discrete time steps 0, 1, . . . , t  
• Random variables for states at each time: S0, S1, S2, . . .  
• Random variables for observations: O0, O1, O2, . . .  

State at time t determines the probability distribution: 

• over the observation at time t 

• over the state at time t+ 1  

• Initial state distribution: 

Pr(S0 = s) 

• State transition model: 

Pr(St+1 = s | St = r) 

• Observation model: 

Pr(Ot = o | St = s) 

Inference problem: given sequence of observations o0, . . . , ot, find 

Pr(St+1 = s | O0 = o0, . . . , Ot = ot) 

5




� 

6.01: Introduction to EECS I Lecture 10 April 12, 2011


Transition Model Observation Model 

Based on my velocity and where I think I am, my next location will Based on the sonars, I am at ... 
be ... 

distance 
sn 

State Transition Model: probability of next state given current state 

probability 

position 
sn sn+1 sn+2 sn+3 

Hidden Markov Models 

System with a state that changes over time, probabilistically. 

• Discrete time steps 0, 1, . . . , t  
• Random variables for states at each time: S0, S1, S2, . . .  
• Random variables for observations: O0, O1, O2, . . .  

State at time t determines the probability distribution: 

• over the observation at time t 

• over the state at time t+ 1  

• Initial state distribution: 

Pr(S0 = s) 

• State transition model: 

Pr(St+1 = s | St = r) 

• Observation model: 

Pr(Ot = o | St = s) 

Inference problem: given sequence of observations o0, . . . , ot, find 

Pr(St+1 = s | O0 = o0, . . . , Ot = ot) 

What About the Bet? 

Which legos could be in the bag? 

• 4 white 

• 3 white + 1 red 

• 2 white + 2 red 

• 1 white + 3 red 

• 4 red 

How likely are these?


Assume equally likely (for lack of a better assumption)


s = #  of red 0 1 2 3 4 

Pr(S = s) 1/5 1/5 1/5 1/5 1/5 

E($|S = s) $0.00 $5.00 $10.00 $15.00 $20.00 

E($,S = s) $0.00 $1.00 $2.00 $3.00 $4.00 

E($) $10.00 

distance 
sn 

Observation Model: probability of sonar reading given current state 

probability 

position 

What About the Bet? 

Let’s Make a Deal: 

• There are four lego bricks in a bag. 

• The lego bricks are either white or red. 

• You get to pull one lego brick out of the bag. 
$20 if the brick is red • I give you 
$0 otherwise 

How much would you pay to play this game? 

Thinking About Additional Information Quantitatively 

Assume that a red lego is pulled from the bag and then returned. 

How much money should you now expect to make? 

We need to update the state probabilities. 

s = #  of red 0 1 2 3 4 

Pr(S = s) 1/5 1/5 1/5 1/5 1/5 

Pr(O0 = red|S = s) 0/4 1/4 2/4 3/4 4/4 

Pr(O0 = red, S  = s) 0/20 1/20 2/20 3/20 4/20 

Pr(S = s|O0 = red) 0/10 1/10 2/10 3/10 4/10 

E($|S = s) $0.00 $5.00 $10.00 $15.00 $20.00 

E($,S = s|O0 = red) $0.00 $0.50 $2.00 $4.50 $8.00 

E($|O0 = red) $15.00 

These are examples of precise statements about uncertain situations. 
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Thinking About Additional Information Quantitatively 

Assume that a white lego is pulled from the bag and then returned. 

How much money should you now expect to make? 

We need to update the state probabilities. 

s = #  of red 0 1 2 3 4 

Pr(S = s) 1/5 1/5 1/5 1/5 1/5 

Pr(O0 = white|S = s) 4/4 3/4 2/4 1/4 0/4 

Pr(O0 = white, S  = s) 4/20 3/20 2/20 1/20 0/20 

Pr(S = s|O0 = white) 4/10 3/10 2/10 1/10 0/10 

E($|S = s) $0.00 $5.00 $10.00 $15.00 $20.00 

E($,S = s|O0 = white) $0.00 $1.50 $2.00 $1.50 $0.00 

E($|O0 = white) $5.00 

These are examples of precise statements about uncertain situations. 
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