
Design Lab 11 6.01 – Fall 2011

Robots in Hallways 

Goals: Design Lab 11 lays the groundwork for estimating the location of a robot as 
it moves down a hallway starting from an uncertain location. You will: 
• Explore observation models and transition models 
• Simulate bayesian state estimation for robot moving in a hallway 
• Prepare for building a real-world system for robot position localization 

Resources: This lab should be done individually. 
Do athrun 6.01 getFiles. The relevant file (in ~/Desktop/6.01/designLab11) is 
• designLab11Work.py: code for simulating state estimation on colored hallways 

1 Introduction 
When we have a system with internal state that we cannot observe directly, then we can consider 
the problem of state estimation, which is trying to understand something about the internal hidden 
state of the system based on observations we can make that are related to its state. Examples of 
such systems include: 

A copy machine, where the hidden state is condition of its internal machinery, the actions we • 
can take are to make copies, and the observations are the quality of the copies. 
A robot moving through a hallway, where the hidden state is the location of the robot, the • 
actions we can take are to move to the east and west, and the observations are colors (which 
may not always accurately reflect the true underlying colors of the walls). 
A person playing a video game, where the hidden state is which monster the person is trying • 
to kill, there are no explicit actions, and the observations are the moves the person is making. 

State estimation is the process of taking in a sequence of inputs we have given to the system (we 
sometimes call them actions) and observations we have made of the system, and computing a 
probability distribution over the hidden states of the system. In the next couple of labs, we’ll use 
basic state estimation to build a system that estimates the robot’s pose, based on noisy sonar and 
odometry readings. 

To do probabilistic state estimation we need a model with three components: 
An initial distribution: a probability distribution over the states of the system that tells us the • 
probability that any state is the initial one.

An observation model: a conditional probability distribution that tells us the probability of
• 
seeing each of the possible observations, given the state.

A transition model: a conditional probability distribution that tells us the probability of being
• 
in each state at time t + 1, given a state at time t and an action at time t 

Some of the software and design labs contain the command athrun 6.01 getFiles. Please disregard this instruction;
the same files are available on the 6.01 OCW Scholar site as a .zip file, labeled Code for [Design or Software Lab number].
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We’ll start by building up some familiarity with observation and transition models, then we’ll 
build your intuition for the application of these ideas in a simple simulated world, then we’ll move 
on to modeling the real robots in more detail, in preparation for design lab 13. 

2 Hallway World 
We are going to work with an abstract simulation of a robot moving up and down a one-
dimensional hallway made up of a fixed number of colored rooms. 

The robot starts out knowing how many rooms there are, but not knowing what room it is in. • 

The robot knows a probability distribution over what observations (colors) it will make in each • 
room.

The robot can attempt to move in each direction in the hallway; it will not always move com
• 
pletely reliably. If it is up against the left end of the hallway and tries to move to the left, it will 
stay in the leftmost room; similarly for moving right when it is in the rightmost room. 

The goal of the robot is to determine what room it is in. We will approach this problem using state 
estimation. 

Step 1.	 Start idle with -n, and load the file designLab11Work.py and run it. (We will not be using Soar. 
This is a stand-alone piece of software). Now, type 

p = makePerfect()

p.run(10)


At this point, p is an instance of a little application that both simulates the robot moving in the 
world and shows the estimated belief state. 

Each square corresponds to a room in the world. Each room has a “true” color, which determines 
the distribution over the observations that the robot will make in that room. The room’s true color 
is shown in the outer rim of each square. 

The robot’s belief state is a probability distribution over which room it is in. In the window, the 
current belief state is displayed in the colors of the inner squares in each block, with brighter red 
values closer to zero and brighter blue values closer to one. The color black is assigned to the 
probability associated with the uniform distribution (in this case 0.2). The probability assigned to 
each room is also printed in each square. 

In fact, p is a combination of a stochastic state machine that simulates the behavior of the robot-
world system and a state machine that does state estimation, based on the robot’s actions and ob
servations, to compute a new belief state on each time step. 

The way this complex machine works is the following:

When p is initialized, at the beginning of each call to p.run:
• 

1.	 The state estimator initializes the belief state to the starting belief state which, in this case, is 
the uniform distribution over the rooms. 

2.	 The simulator selects an initial starting location for the robot at random from the starting 
distribution. Note that the state estimator does not know this true location; it is just used inside 
the simulation. It is also not displayed in any way in the window or the printed output. 

On every step of p:• 

2




Design Lab 11	 6.01 Fall 2011 

1.	 The simulator generates an observation, drawing from the distribution of observations that is 
associated with the room that the robot is currently really located in. This observation is a 
color name, like ’white’ or ’green’. 

2.	 The simulator prompts the user for an action that the robot should take. The action must be 
an integer between -4 and 4, inclusive. 

3.	 The simulated robot moves a number of rooms that depends on the specified action; but if 
the robot’s motion model is noisy (we will discuss what that means in detail, later), then it 
won’t necessarily be the exact number of rooms commanded. In addition, it will not move 
past either end of the hallway. An action of 0 will cause the robot to try to stay in its current 
location. 

4.	 The state estimator does an observation update of its belief state, based on its old belief state 
and the observation. The update depends on the observation model, which specifies the 
probability distribution over observations for each state. This belief state is printed out. 

5.	 The state estimator does a transition update of its belief state, based on the belief state that 
resulted from the observation update and the specified action. The update depends on 
the transition model, which specifies the probability distribution over next states, given the 
previous state and action. 

6.	 The squares are redrawn with colors and numbers that reflect the probabilities in the new 
belief state. 

If you enter quit as an action, the whole machine terminates. It will stop after 10 steps unless • 
you call run with a larger numeric argument. 

If you want to run the machine again, it’s best to create a new instance; it’s okay if you call run 
again on the old instance, but the initial belief display will be incorrect until it does one update. 

Check Yourself 1.	 Move the robot around in the perfect simulator. Be sure you understand 
what the colors representing the belief state mean and that the numbers 
being printed out in the Python shell make sense. Feel free to ask a staff 
member for clarification. 

Step 2.	 The world you just created has perfect motion and perfect sensing. You can create and run one 
with noisy motion and sensing as follows: 

n = makeNoisy()

n.run(20)


Check Yourself 2.	 Move the robot around in the noisy simulator. Be sure you understand 
what the colors mean, and have a basic idea of what might be going on. 
Feel free to ask a staff member for clarification. 

2.1 The observation model 
Section 7.6 of the readings may help with understanding the next sections. 
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The observation model is a conditional probability distribution specifying what color the robot 
sees given what room it is in: P(Ot = ot|St = st). In our case ot ranges over 

(’black’, ’white’, ’red’, ’green’, ’blue’, ’purple’, ’orange’, ’darkGreen’, 
’gold’, ’chocolate’, ’PapayaWhip’, ’MidnightBlue’, ’HotPink’, ’chartreuse’) 

and st ranges over all the possible rooms the robot could be in.


If there are m possible observations and n possible locations, then it will, in general, require m n
· 
numbers to specify the observation model. In this problem, we make an assumption that makes the 
model much more compact: the robot’s observation only depends on the actual color of the room it’s 
in. That is, all rooms that are actually white have the same distribution over possible observations 
and all rooms that are actually green have the same distribution over possible observations (which 
will generally be different from the observation distribution for rooms that are actually white). 
Given this assumption, we only need to specify P(observedColor | actualColor), and then we can 
find the probability of observing each color in any room, as long as we know the actual color of 
that room: 

P(Ot = observedColor | St = st) = P(Ot = observedColor | ActualColor = actualColor(st)) 

The conditional probability distribution 

P(Ot = observedColor | ActualColor) 

which specifies a distribution on the observed color given the actual color of the robot’s room, is 
called the observation noise distribution. We can specify an observation noise distribution in Python 
as a procedure that takes an actual color as input and returns a distribution on observed colors. 
Here is a very simple example that always observes the true color. 

def perfectObsNoiseModel(actualColor): 
return dist.DDist({actualColor: 1.0}) 

Now, given an observation noise distribution obsNoise, such as perfectObsNoiseModel, we can 
construct the entire observation model (a conditional probability distribution on observed colors 
given robot location) as shown below: 

def makeObservationModel(hallwayColors, obsNoise): 
return lambda loc: obsNoise(hallwayColors[loc]) 

Here, hallwayColors is a list specifying the true color of each location in the hallway, loc is 
an integer representing the location of the robot, and obsNoise is a conditional distribution of 
observed color given actual color. This procedure returns a conditional probability distribution, 
which is a procedure that takes a location as input and returns a distribution over observed colors. 

The example world we have been using is specified with 

standardHallway = [’white’, ’white’, ’green’, ’white’, ’white’] 

Given these procedures, we can specify the observation model for perfect observations with: 

perfectObsModel = makeObservationModel(standardHallway, perfectObsNoiseModel) 
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Step 3.


Wk.11.1.1 Do this tutor problem on defining observation models. 

Check Yourself 3. Just to be sure you understand the observation models, consider a world 
with two rooms: room R0 is actually green and room R1 is actually white. 
• With a perfect sensor, what is the probability distribution over observa

tions for each room? 

green white

Pr(obs | R0) Pr(obs | R1)

green white

• With whiteEqGreenObsDist, what is the probability distribution over 
observations for each room? 

green white

Pr(obs | R0) Pr(obs | R1)

green white

• With whiteVsGreenObsDist, what is the probability distribution over 
observations for each room? 

green white

Pr(obs | R0) Pr(obs | R1)

green white

Step 4.	 Now consider a bigger test world, called testHallway. The rooms on each end have true color 
’chocolate’. The others are either green or white. 

Try out your whiteEqGreenObsDist and whiteVsGreenObsDist and see what happens to 
the belief state. Paste your definitions of those procedures from the tutor into your design
Lab11Work.py file. Use the perfect motion models, as shown below. Be sure that you use 
something like whiteEqGreenObsDist as the third argument below. (The variables ac
tions, standardDynamics, and perfectTransNoiseModel are already defined for you in 
designLab11Work.py). 

w = makeSim(testHallway, actions,

<your observedColor given actualColor model>,

standardDynamics, perfectTransNoiseModel)


w.run(50) 
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2.2 The state-transition model 
The state-transition model is a conditional probability distribution over the state at time t + 1, 
given the state at time t and the selected action a. That is, P(St+1 = st+1|St = st, At = at). The 
next state of the system depends both on where it was before and the action that was taken. If you 
were to write this model out as a matrix, it would be very big: if n is the number of states of the 
world and m is the number of actions, then it would have size mn2. 

Often, the transition model can be described more sparsely or systematically. In this particular 
world, the robot can try to move some number of rooms to the right or left, or to stay in its current 
location. We’ll assume that the kinds of errors the robot makes when it tries to move in a given 
direction don’t depend on where the robot actually is (except if it is at the edge of the world), and 
we’ll further assume that the transition probabilities to most states are zero (there’s no chance of 
the robot teleporting to the other end of the hallway, for example). This will allow us to describe 
the transition model more compactly. 

We will start on defining the transition model by first defining a dynamics procedure, such as 
standardDynamics below. The dynamics is a procedure which returns the nominal new loca
tion resulting from taking action act in location loc, in a hallway with hallwayLength loca
tions. This will be useful in other problems. The possible actions that the robot can take are: 
−4, . . . , −1, 0, 1, . . . , 4. So, we can just add the robot’s action to its current location to get its nom
inal new location, except we have to be sure it doesn’t move off of the edges of the world, so we 
use util.clip to keep the value from going below 0 or above hallwayLength - 1. 

def standardDynamics(loc, act, hallwayLength):

return util.clip(loc + act, 0, hallwayLength-1)


Next, we define a noise model, which is independent of location. It returns a distribution over the 
possible resulting locations given the nominal location that results from an action under the given 
dynamics. The simplest noise model assumes that transitions are perfect, so that the resulting 
location will be the nominal location. 

def perfectTransNoiseModel(nominalLoc, hallwayLength):

return dist.DDist({nominalLoc : 1.0})


Ultimately, we need to make a full transition model, which is a conditional probability distribution 
of the form Pr(St+1 | St, At). Because it is conditioned on two variables, we will represent it using 
nested procedures (representing conditional distributions). So, we’ll think of it as something like 
Pr(St+1 | St | At), or, as a procedure that takes an at and returns a procedure that takes an st 

and returns a distribution over St+1. 

Here is the basic form of the transition model that takes two procedures, a dynamics procedure 
and a noise model, and an integer indicating the length of the hallway. 

def makeTransitionModel(dynamics, noiseDist, hallwayLength):

return lambda act: lambda loc: noiseDist(dynamics(loc, act, hallwayLength),


hallwayLength)


A perfect transition model for our standard hallway under the standard dynamics is constructed 
as follows: 

perfectTransModel = makeTransitionModel(standardDynamics, perfectTransNoiseModel, 5) 

6




Design Lab 11	 6.01 Fall 2011


Step 5.


Wk.11.1.2 Do this tutor problem on defining transition models. 

Step 6.	 Now consider a test world that has only white rooms, and has noisy transitions and observations. 
We will initialize the state estimator with an initial belief state that assigns probability 1 to location 
7 (and, of course, probability 0 to all other locations). The variable sterile specifies a hallway 
made up of 16 white rooms. You can create this world and state estimator with: 

w = makeNoisyKnownInitLoc(7, sterile)

w.run(50)


Experiment with selecting action 0 several times in a row. What happens? What happens when 
you drive the robot around? 

Checkoff 1. How do whiteEqGreenObsDist and whiteVsGreenObsDist observation 
models (from Check Yourself 3) compare to: 
• A perfect sensor model 
• A sensor that always reads ’black’ no matter what room it is in 

Demonstrate the world with noisy dynamics from Step 6 to a staff member 
and explain why it does what it does. 

3 State estimation in the hallway world 
Be sure you have read sections 7.5–7.7 of the readings very carefully. 

We will build intuition of state estimation by doing some numerical examples of state estimation 
by hand. These are types of problems that we will expect you to be able to do in quizzes and 
exams. 

Step 7. 

Wk.11.1.4 Do this problem on state estimation in the hallway world. 

Step 8. 

Wk.11.1.5 Do this problem on state estimation in the hallway world. 

4 Preparing to localize 
In design lab 13, we will build a system that will allow a robot to ’localize’ itself: that is, estimate 
its position in the world, given a map of the obstacles in the world and the ability to make local 
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sonar readings. These problems build up important concepts and components of the localization 
system. 

Step 9. 

Wk.11.1.6 Understanding sonar geometry. 

Step 10. 

Wk.11.1.7 Computing the ideal sonar readings for a pose of the robot. 
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