
6.035

Project 2

Semantic Analysis

Jason Ansel

MIT - CSAIL

First Project Wrap-up

●	 Any questions/comments/concerns about
the first project?

●	 Implementation grade (automated tests;
75%) will be posted by end of week

●	 Design/doc/write-up grade (subjective;
25%) will be posted in 1-2 weeks

Groups

● You should be forming them
– See my email

● Later today
– Project 2 will be posted

– Groups will be created on athena
● (for those that emailed me)

*Athena is MIT's UNIX-based computing environment. OCW does not provide access to it.

Group Meetings
●	 Short meeting with me (the TA) and your

group
●	 Email me to schedule it
●	 We will go over your proposed IR design
●	 Catch problems with design early on

Project 2

● 60% Projects

– 5% P1

– 7.5% P2 (you are here)

– 10% P3

– 7.5% P4

– 30% P5

● 30% Quizzes
● 10% Mini-Quizzes (each lecture, 5 so far)

Project Phase 2 Summary

●	 Create a type system for decaf.

–	 Attributed grammar
●	 Convert concrete syntax of your grammar to high-

level IR.
–	 Abstract syntax tree plus symbol table(s)
–	 much simpler than lecture discussion

●	 Semantics Analysis (includes type checking):
–	 Traverse AST to perform semantic checks
–	 Build and query symbol table during traversal

●	 Pretty print AST and symbol table during traversal
when in debug mode.
–	 You decide format

Possible Project Flow

● Create a testing infrastructure!
– JUnit or create your own

● Write type system
● Create a high-level representation of the program

– Convert the concrete syntax to abstract syntax
– Employ parser actions to construct high-level IR during parse

● Run semantic checking on high IR
– Visitor(s) on IR or recursive function on IR
– Manipulate symbol table(s) during pass(es)
– Report errors to user

Semantic Checks

●	 Flow of control checks
– Ex: cannot exit from meth without returning a

value of correct type (if meth returns a value)

●	 Uniqueness check

–	 Ex: identifier cannot be defined twice in same
scope

●	 Type checks
– Ex: each expression has correct type for use

●	 Your write-up should include a list of all the
checks you implemented.

SYMBOL TABLES AND
SCOPING

Symbol Tables

●	 A symbol table maps identifiers to types and locations.
●	 For this phase we will build/use the symbol table while

performing semantic checking.
●	 Terminology: symbol table part of environment that

contains bindings.
–	 Your environment could include multiple symbol tables for multiple

name spaces (see Tiger Book for example)
●	 Implementation decisions entirely at your discretion.

–	 Write-up should include complete description of your

implementation.

Symbol Tables

●	 Functionality:
–	 Newer bindings have precedence over older

bindings.
–	 Need a mechanism to undo a set of bindings:

●	 Used when popping out of a scope
●	 Many possible choices:

–	 How many symbol tables?
–	 Hashing?
–	 Functional vs. Imperative

●	 Destructive updates (imperative)
●	 Immutable, persistent (functional)

Bindings

● The symbol table is filled with bindings.
● Ex:

– Id -> Type (for value variables)
– Id -> Signature (for methods)
– Id -> Type (for type variables)

● What do you need for decaf?

Scoping

● Scope Rules: Associate name with declaration.

● A new scope is created upon entering a block.

What does a new scope mean?

●	 Variable definitions of current scope shadow definitions

of outer scope.
●	 Upon entering a scope, must remember state of symbol

table.

What do we do in a scope?

●	 Add binding to symbol table as we visit variable/method

definitions.
●	 Look-up variables in the symbol table as we visit

statements and expressions.

What happens when we

exit a scope?

● Upon exiting a scope, must restore the symbol table to its
state prior to the point when the scope was entered.

ABSTRACT TYPE SYSTEMS

Type System

●	 Your write-up should include a Type
System for Decaf on abstract syntax.

●	 A type system is used to define the typing
rules of a programming language.
–	 A collection of rules for assigning types to

various parts of the program.
–	 The type system will be implemented in your

compiler.

Type System

●	 A type system is sound if it allows us to
statically determine if a program has a
type error.

●	 A language is strongly typed if we can
create a sound type system for it.

Attribute Grammars

●	 Grammar with productions and associated
actions (just like ANTLR)

●	 Every non-terminal has an attribute.
●	 The attribute calculated for the starting

production is the attribute calculated for
the “parse.”

Attribute Grammar Example

Calculate the Val attribute.

Productions Attribute Rules

S -> E ‘;’

E -> E1 PLUS E2

S.Val = E.val

E.Val = E1.Val + E2.Val

E -> L

L -> DIGIT

E.Val = L.Val

L.Val = digit

Attribute Annotated Parse Tree

3 + 2 + 5; S.Val = 10

S

10
E

10

E + E

;

E + E L
55

3 2

L L 5

3 2

Attribute Grammar as a

Type System

● Every non-terminal has an attribute, type.
● If the attribute computed for the program is

not error, then the program type checks.

Type System Example

expr -> e1 PLUS e2

{ expr.type := if e1.type = int and e2.type = int

then int

else error }

int_lit -> INT_LITERAL

{int_lit.type := int }

Type System Example Con’t

program -> … var_decls methods …

{ program.type := if vardecls.type != error and

methods.type != error

then void

else error }

…

var_decl ->type ids

{ foreach id in ids {put(id, type);}

var_decl.type := void }

…

stmt -> if e then block

{ stmt.type := if e.type = boolean

then block.type

else error :}

Type System Example Con’t

expr -> id (expr1, expr2, … , exprN)

{ sig = lookup(id);

expr.type := if sig.type = method and

sig.numArgs = N and

expr1.type = sig.arg1.type and

expr2.type = sig.arg2.type …

then sig.returnType

else error }

Type System Examples Con’t
stmt -> RETURN expr `;’

{ sig = getEnclosingSig();

expr.type := if sig.returnType != void and

sig.returnType = expr.type

then void

else error

}

Where getEnclosingSig() returns the type signature
of the enclosing method.

W le
an

Type System Example Con’t

block -> { begin_scope(); }

‘{’ var_decls stmts ‘}’

{

block.type := if var_decls.type = error or

stmts.type = error

then error

else void

end_scope();

}

here begin_scope() marks the current state of the symbol tab
d end_scope() restores the symbol table to the last mark.

ABSTRACT SYNTAX TREES

Abstract Syntax Tree

●	 Concrete Syntax (Parse) Tree
–	 The parse tree produced by your Antlr

grammar
–	 Redundant and useless information

(punctuation, etc.)

●	 Abstract Syntax (Parse) Tree

–	 Clean up parse tree
–	 Conveys structure of the program
–	 Represented as data structures in compiler

Choices For Nodes of Parse

Tree

●	 Homogeneous nodes
–	 All nodes of the same type
–	 General node with child pointer and siblings pointers
–	 Distinguish nodes by internal “type” variable
–	 Big case statement when walking tree (Antlr can do)

●	 Heterogeneous nodes
–	 Multiple types of nodes with different information and

structure
–	 Use Visitors to walk tree, each node defines how to

visit it

Constructing AST

1. Build your own AST (heterogeneous

nodes)

− From ANTLR’s parse of your grammar

− Constructed with semantic actions.

1. Use ANTLR’s AST (homogeneous nodes)

– Based on grammar
– Can massage tree structure
– Can use TreeWalker to walk tree

BUILD YOUR OWN
HETEROGENEOUS AST

Abstract Syntax Representation

●	 Separate class for most non-terminals (kinds) with a

sensible class hierarchy:
–	 IR: (line number, column)

• Decl(…)

– VarDecl(…)

» FieldDecl(…)

» LocalDecl(…)

– MethodDecl

• VarDecls(List<vardecl>)

• Statement(…)

– For (Expr initExpr, Expr endExpr, Block block)

– If (Expr expr, Block trueBlock, Block falseBlock)

– Block (VarDecls varDecls, Statements stmts)

• Expr(…)

– BinaryExpr: (Expr expr1, Expr expr2, int operator)

– MethodCallExpr: (Method method, ?? args)

Antlr Actions

● Code that is run during the parse.

rule { /* before */ } :

A { /* during */ } B |

C D { /* after */ } ;

Typical Antlr Actions

rule returns [type varName]

{ /* initialize vars */ } :

t:TOK b=rule_b {

/* set return value,

can use b to refer to

rule_b’s return value,

t to refer to token */

} ;

Antlr Action Example

class IRif extends IRStmt {

IRif(Token t) { ... }

void setTest(IRExpr e) { ... }

void setStmt(IRStmt S) { ... }

}

stmt returns [IRStmt n] :

IF p=expr THEN t=stmt

{ n = new IRif(IF);

n.setTest(p); n.setStmt(t);} ;

Semantics Analysis on

Hetero AST

●	 Use the visitor pattern as a contract for
classes that walk the AST.

●	 Manipulate/access symbol table as you
walk.

●	 Multiple visitors to implement semantic
analysis.

USE ANTLR TO BUILD

HOMOGENEOUS AST

buildAST=true

class DecafParser extends Parser;

options { buildAST=true; }

●	 With this option, Antlr will create a flat AST
for all matched rules.

●	 But you have control over how it creates

the AST and what nodes is creates.

●	 Antlr TreeWalkers are grammar that
specify how to walk the tree.

Antlr Tree Construction Example

expr : mexpr (’+’ mexpr)* ;

mexpr : INT (’*’ INT)* ;

Run on “4+5*6” will give all siblings:

4 -> + -> 5 -> * -> 6

Tree Construction Control

●	 After a token, ˆ makes the node a root of a
subtree for the current rule, then we
continue to add sibling to the subtree.

●	 After a token, ! prevents an AST node from
being built.

Antlr Tree Construction Example

expr : mexpr (’+’^ mexpr)* ;

mexpr : atom (’*’^ atom)* ;

atom : INT ;

Run on “4+5*6” will give: +

*4

5 6

LISP-like Tree Syntax

● #(parent child1 child2 …)

A

B C

● EX: #(A B C)

● EX: #(A (#B C D) E)

A

EB

C D

Another Example

args:

"("! (arg (","! arg)*)? ")"!

{ #args = #([ARGS], args); } ;

ARGS

arg arg arg

What to do?

uminus: (MINUS)* expr;

Tree Parsers

●	 Parse a tree as a stream of nodes in two
dimensions.

●	 We can specify the rules for matching a
tree
–	 The valid structure of a tree

●	 We can specify actions that happen while
walking the tree

Example

expr : mexpr (“+”^ mexpr)* ;

mexpr : atom (“*”^ atom)* ;

atom: INT;

class CalcTreeWalker extends TreeParser;

expr returns [int r]

{

int a,b;

r=0;

}

: #(“+” a=expr b=expr) {r = a+b;}

| #(“*” a=expr b=expr) {r = a*b;}

| i:INT

{r = Integer.parseInt(i.getText());}

;

Cons of ANTLR AST

Construction

●	 Will take you some time to understand
Antlr’s AST construction syntax/semantics.
–	 Expect obscure errors

●	 Might be difficult to write a TreeWalker for
your AST
–	 TreeWalkers are good for small grammars

with few node types.

MIT OpenCourseWare
http://ocw.mit.edu

6.035 Computer Language Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

