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Problem Set 3: Solutions 

Due: March 1, 2006 

1. The problem did not explicitly state that two cars cannot share a parking space, but it was 
expected that you would assume this when doing the required counting. 

The figure below depicts the full outcome space for the case of N = 5. The 8 outcomes in 
the box (out of the total of 20 outcomes) are those for which Mary and Tom are parked 
adjacently. 
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Tom 

Extending this idea to a parking lot with N spaces, the desired probability is given by 

number of outcomes with adjacent parking 
P(parked adjacently) = 

total number of outcomes 
2(N − 1) 

= 
N2 − N 
2 

= . 
N 

2.	 (a) There are nine equally-likely ordered pairs (i, j), i ∈ {1, 2, 3}, j ∈ {1, 2, 3}. By looking 
at the five possible sums and their frequencies, we obtain 

⎧ 

⎪ 

1/9, k = 1; 
⎪ 

⎪ 

⎪ 

⎪ 

⎪ 

2/9, k = 2; 
⎪ 

pX (k) = 
⎨ 

⎪ 

⎪ 

3/9, 
2/9, 

k = 3; 
k = 4; 

⎪ 

⎪ 

⎪ 

⎪ 
1/9, k = 5; 

⎪ 

⎩ 

0, otherwise. 

(b) The fair price is E[5X] because then the net expected result is E[5X − a] = 0. 

1 2 3 2 1 
E[5X]	 = · 5 + · 10 + · 15 + · 20 + · 25 = 15 

9 9 9 9 9 
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(c) The possible values for X are changed, but the probabilities are unchanged: 

⎧ 

⎪ 

1/9, k = 1; 
⎪ 

⎪ 

⎪ 

⎪ 

⎪ 

2/9, k = 4; 
⎪ 

pX (k) = 
⎨ 

⎪ 

⎪ 

3/9, 
2/9, 

k = 9; 
k = 16; 

⎪ 

⎪ 

⎪ 

⎪ 
1/9, k = 25; 

⎪ 

⎩ 

0, otherwise. 

1 2 3 2 1 155 
E[5X] = 

9 
· 5 + 

9 
· 20 + 

9 
· 45 + 

9 
· 80 + 

9 
· 125 = 

3 

3. Denote the die rolls by W and Z. The sixteen equally-likely (W,Z) ordered pairs are depicted 
below, where the label in each cell is the (X,Y ) pair. 

W = 1 
W = 2 
W = 3 
W = 4 

Z = 1 Z = 2 Z = 3 Z = 4 

(0,1) (1,1) (2,1) (3,1) 
(1,1) (1,2) (2,2) (3,2) 
(2,1) (2,2) (2,3) (3,3) 
(3,1) (3,2) (3,3) (3,4) 

(a) From the table, we can read off the PMFs 

⎧ ⎧ 

⎪ 
1/16, k = 0; 

⎪ 
7/16, k = 1; 

⎪ ⎪ 

⎪ ⎪ 

⎪ ⎪ 

⎪ 3/16, k = 1; ⎪ 5/16, k = 2; 
⎨ ⎨ 

pX (k) = 5/16, k = 2; and pY (k) = 3/16, k = 3; 
⎪ ⎪ 

⎪ ⎪ 

⎪ 7/16, k = 3; ⎪ 1/16, k = 4; 
⎪ ⎪ 

⎪ ⎪ 

⎩ ⎩

0, otherwise; 0, otherwise, 

and thus compute the expectations 

1 3 5 7 17 
E[X] = · 0 + · 1 + · 2 + · 3 = 

16 16 16 16 8


and

7 5 3 1 15 

E[Y ] = · 1 + · 2 + · 3 + · 4 = . 
16 16 16 16 8 

1We get by linearity of the expectation that E[X − Y ] = E[X] − E[Y ] = 
4 
. 

(b) Using the PMFs in part (a), we can compute 

1 3 5 7 43 
E[X2] = · 02 + · 12 + · 22 + · 32 = 

16 16 16 16 8


and

7 5 3 1 

E[Y 2] = · 12 + · 22 + · 32 + · 42 = 30. 
16 16 16 16 

55 1695 Thus, var(X) = E[X2] − (E[X])2 = 
64 

and var(Y ) = E[Y 2] − (E[Y ])2 = .
64 
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Since X and Y are not independent, the variance of X and Y is not any simple combi­
nation of previous results. Instead, let Z = X − Y and find the PMF of Z as 

⎧ 

⎪ 
4/16, k = −1; 

⎪ 

⎪ 

⎪ 

⎪ 6/16, k = 0;
⎨ 

pZ (k) = 4/16, k = 1; 
⎪ 

⎪ 

⎪ 2/16, k = 2;
⎪ 

⎪ 

⎩ 

0,	 otherwise. 

Now 
4 6 4 2 

E[Z2] = · (−1)2 + · 02 + · 12 + · 22 = 1,
16 16 16 16 

15 and var(Z) = E[Z2] − (E[Z])2 = 1 − (1/4)2 = 
16 

. (E[Z] was computed in part (a) and 
can also be double-checked with the PMF above.) 

We will use the formula

var(Y ) = E[Y 2] − (E[Y ])2


for the variance of a random variable Y . Let Y = (X − ˆ). Thenx

x x)2] = var(X − ˆ) + (E[X − ˆ])2 = var(X) + (E[X] − ˆe(ˆ) = E[(X − ˆ x x	 x)2 , 

where the last equality follows from the fact that shifting a random variable by a constant (in 
x) does not change its variance. Since the first term is not dependent on ˆthis case ˆ x and the 

second is always nonnegative, we see that this expression is minimized when E[X] − x̂ = 0. 
This is equivalent to the desired result of x̂ = E[X]. 

4..5	 (a) From the joint PMF, there are six (x, y) coordinate pairs with nonzero probabilities of 
occurring. These pairs are (1, 1), (1, 3), (2, 1), (2, 3), (4, 1), and (4, 3). The probability 
of a pair is proportional to the product of the x and y coordinate of the pair. Because 
the probability of the entire sample space must equal 1, we have: 

(1 · 1)c + (1 · 3)c + (2 · 1)c + (2 · 3)c + (4 · 1)c + (4 · 3)c = 1. 

1Solving for c, we get c = 
28 

(b) There are three sample points for which Y < X. 

2 · 1 4 · 1 4 · 3 
18P(Y < X) = P({(2, 1)}) + P({(4, 1)}) + P({(4, 3)}) = + + = 
2828 28 28 

(c) There are two sample points for which Y > X. 

1 · 3 2 · 3 
9P(Y > X) = P({(1, 3)}) + P({(2, 3)}) = + = 
2828 28 

(d) There is only one sample point for which Y = X. 

1 · 1 
1P(Y = X) = P({(1, 1)}) = = 
2828 
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Notice that, using the above two parts: 

18 9 1 
P(Y < X) + P(Y > X) + P(Y = X) = + + = 1 

28 28 28 

as expected. 

(e) There are three sample points for which y = 3. 

3 6 12 
21 P(Y = 3) = P({(1, 3)}) + P({(2, 3)}) + P({(4, 3)}) = + + = 
28 28 28 28 

(f) In general, for two discrete random variables X and Y for which a joint PMF is defined, 
we have 

∞	 ∞ 

pX (x) = pX,Y (x, y) and pY (y) = pX,Y (x, y). 
y=−∞ x=−∞ 

In this problem the number of possible (X,Y ) pairs is quite small, so we can determine 
the marginal PMFs by enumeration. For example, 

8 
pX (2) = P({(2, 1)}) + P({(2, 3)}) = . 

28 

Overall, we get: 
⎧ ⎧ 

⎪ 4/28, x = 1; ⎪ 1/7, x = 1; 
⎪	 ⎪ 

⎪	 ⎪ 

⎨	 ⎨8/28, x = 2; 2/7, x = 2; 
pX (x) =	 = 

⎪ 16/28, x = 4; ⎪ 4/7, x = 4; 
⎪	 ⎪ 

⎪	 ⎪ 

⎩	 ⎩0, otherwise 0, otherwise 

and	
⎧ ⎧


⎪ 7/28, y = 1; ⎪ 1/4, y = 1;

⎨	 ⎨ 

pY (y) = 21/28, y = 3; = 3/4, y = 3; 
⎪	 ⎪ 

⎩ 0, otherwise ⎩ 0, otherwise. 

(g) In general, the expected value of any discrete random variable X is given by 

∞ 

E[X] = xpX (x). 
x=−∞ 

For this problem,

1 2 4


E[X] = 1 · + 2 · + 4 · = 3 
7 7 7


and

1 3 

5E[Y ] = 1 · + 3 · = 
24 4 

(h) The variance of a random variable X can be computed as E[X2]−E[X]2 or as E[(X − E[X])2]. 
Here we use the second approach. 

1 2 4 
10 var(X) = (1 − 3)2 · + (2 − 3)2 · + (4 − 3)2 · = 
77 7 7 

�2 1 
�2 35 5	 9 1 

5var(Y ) = 1 − + 3 − = + = 
82 4 2 4 16 16 
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G1† . Starting with the hint, we have 
E[(αX + Y )2] ≥ 0, 

which can be expanded to 

α2E[X2] + 2αE[XY ] + E[Y 2] ≥ 0. 

The lack of real solutions α to 

α2E[X2] + 2αE[XY ] + E[Y 2] = β 

for any β < 0 implies that the discriminant of the above quadratic, (2E[XY ])2 −4E[X2]E[Y 2], 
must be nonpositive. Rearranging 

(2E[XY ])2 − 4E[X2]E[Y 2] ≤ 0


gives the desired result.


†Required for 6.431; optional for 6.041 Page 5 of 5 


