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Problem Set 5 Solutions

Due: March 22, 2006


µ 

λe −λxdx =
1 

1
21. We are given that F (µ) = 

⇒ 
20 

= 
1


2


µ 
−λxλe −λxdx = e 1 − −λµ e

µ 
0 =− |⇒

0 

1 
λµ = ln ⇒ −	

2 
ln 2 

= ⇒ µ 
λ 

2. First we can draw a tree with the the following branches: 
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Then, using the PDFs given in the question we can determine two probabilities that are clearly 
relevant for this question and give branch labels for the tree: 
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1 
P Y ≤ = fY (y) dy = 

4 4 

1	
∫ 

3 
P W ≤ = fW (w) dw = 

4 4 

Finally, Bayes’s Rule gives 
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3.	 (a) We know that the total length of the edge for red interval is two times that for black inteval. 
Since the ball is equally likely to fall in any position of the edge, probability of falling in a 
red interval is 2 

3 . 

(b) Conditioned on the ball having fallen in a black interval, the ball is equally likely to fall 
anywhere in the interval. Thus, the PDF is 

15 πr 

= πr 
z ∈ 0, 15 f

Z|black interval(z)
0 ,

, 

otherwise 

(c) Since the ball is equally likely to fall on any point of the edge, we can see it is twice as likely 
πr 2πr for z ∈	 0, πr than z ∈ 15 , 15 . Therefore, intuitively, let 15 

	 πr 
 2h	 , z ∈

[ 0, 15  
πr 2πr fZ(z) = h , z ∈ 15 , 15 

 
 

0 ,	 otherwise 

Using the fact that 
∫ ∞ 

fZ(z) = 1, −∞ 

πr πr 5 
(2h)( ) + (h)( ) = 1 h = 

15 15
⇒ 

πr 

 10 0, πr 
 
 πr 

, z ∈
[ 15 

] 
5 πr 2πr fZ(z) = 
πr 

, z ∈ 15 , 15 
 
 

0 , otherwise 

(d) The total gains (or losses), T , equals to the sum of all Xi, i.e. T = X1 +X2 + +Xn, Since · · · 
all the Xi’s are independent of each other, and they have the same Gaussian distribution, 
the sum will also be a Gaussian with 

E[T ] = E[X1] + E[X2] + + E[Xn] = 0· · · 

var(T ) = var(X1) + var(X2) + + var(Xn) = nσ2 · · ·

Therefore, the standard deviation for T is 

√
nσ.


(e) 

P(|T | > 2
√

nσ) = P(T > 2
√

nσ) + P(T < −2
√

nσ) 

= 2P(T > 2
√

nσ) 

2
√

nσ − E[T ] 
= 2 1 − Φ 

σT 

= 2(1 − Φ(2)) ≃ 0.0454. 

4. (a)	 Y = g(X) = sin(πX). Because g(x) is a monotonic function for −1 < x < 1, we can define 2 

an inverse function h(y) = 2 arcsin y and use the PDF formula given in lecture: 
π 

∣ dh(y) ∣ 
fY (y)	 = fX(h(y)) ∣ ∣ for − 1 < y < 1 

∣ dy 
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∣ 2 ∣2 arcsin y 
= fX ∣

√ 
∣ 

1 − y2 
∣π ∣ π 

1 2 
= 

22 
·
π 
√ 

1 − y

1 

1 − y2π 

The final answer is: 
 
 0 y < −1 
 

< 1fY (y) = 
π
√

1

1 

−y2 
−1 ≤ y 

 
 

0 1 ≤ y 

(b) Y = sin(2πX). In rearranging the equation, we find X = arcsin Y . This is a many-to-2π 

one mapping of X to Y . That is, given a value of Y , it is not possible to pinpoint the 
−3corresponding value of X. For example, if Y = 1, X could have been 1 or . This means 4 4 

we cannot use the formula used in part (a). 

The CDF is still the means to achieving the PDF, but we take a graphical approach instead. 
First, let’s consider the extreme cases. By virtue of the sin X function, the value of Y varies 
from -1 to 1. It is obvious that no value of the random variable Y can be less than -1, so 

= 0. Also, every value of Y is less than 1, so FY (y ≥ 1) = 1. FY (y ≤ −1)


For −1 ≤ y ≤ 0, consider the following diagram:


y = sin(2*pi*x) for −1 < x < 1 
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π πThe value b indicates the conventional response of arcsin y which is between [− 2 , 2 ]. In 
other words, by rearranging the original equation: 

b = arcsin y 
2π 

1 
4−4 ≤ b ≤ 1 

So, we now have FY (y) = P((a ≤ d)), where the event on the right X ≤ b) ∪ (c ≤ X ≤
is the shaded region in the above PDF of X. By symmetry, and mutual exclusivity, this 
shaded region can be expressed as four times the more darkly shaded region of the PDF. 

FY (y − 1 ≤ y ≤ 0) = P((a ≤ X ≤ b) ∪ (c ≤ X ≤ d)) 

1 
= 4P −

4 
≤ X ≤ b 

1 
= 4(0.5) b − −

4 
arcsin y 1 

= + . 
π 2 

For 0 ≤ y ≤ 1, consider the following diagram: 

y = sin(2*pi*x) for −1 < x < 1 

f(
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By an analogous argument to the previous case, we find that FY (y 0 ≤ y ≤ 1) is represented |
by the shaded region from −1 to d, a to b, and c to 1. Once again, however, this is exactly 
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four times the more darkly shaded region from −1 to b. So, the expression for the CDF is 2 
the same as in the case −1 ≤ y ≤ 0. 

arcsin y 1 
FY (y 0 ≤ y ≤ 1) = +|

π 2 

To summarize: 
 
 0 
 

arcsin y 1 

y ≤ −1 

FY (y) = 
π 

+ 2 −1 ≤ y < 1 
 
 1 1 ≤ y 

1Now use the identity d arcsin y = √
1−y

and differentiate with respect to y:
dy 2 

 
 0 y < −1 
 

fy(y) = 
d

FY (y) = 
π
√

1

1 

−y2 
−1 ≤ y < 1 

dy  
 

0 1 ≤ y 

5. Analytical Results 

(a) No encoding: 

ˆ ˆP(error) = P(M = 1,M = 0) + P(M = 1,M = 0) 

= P(Y = 1,X = 0) + P(Y = 0,X = 1) 

= P(Y = 1 X = 0)P(X = 0) + P(Y = 0 X = 1)P(X = 1) | |
= e(1 − p) + ep 

(b) Repetition encoding: 

i. Similar to the previous case, the errors can be attributed to the conditions M̂ = 1,M = 
ˆ0 and M = 0,M = 1. Assuming we encode each bit by repeating it n = 2m + 1,m = 

0, 1.. times, we get 

ˆ ˆP(error) = P(M = 1,M = 0) + P(M = 1,M = 0) 

= P(Y1 + Y2 . . . Yn ≥ m + 1 M = 0)(1 − p) + P(Y1 + Y2 . . . Yn ≤ m M = 1)p| |
= P(atleast (m + 1) errors M = 0)(1 − p) + P(atleast (m + 1) errors M = 0)p 

n 
∑ n k= e (1 − e)(n−k) 

k 
k=m+1 

Note: It can be seen that the probability of error is independent of the a 

priori probabilities p and (1 − p). The error varies only as a function of e, n 

ii. The variation of the error probability as a function of n is shown in Figure 1 

iii. Even though, the error is independent of p, in degenerate cases such as p = 1, p = 0, 
the majority decoding does not give us any advantage. It is easier to always output 
M̂ = 1,M =̂ 0 respectively. 

Simulations The matlab code for simulating the communication channel is attached with 
the solutions. Figure 2 shows the close agreement between the analytical results (indicated 
by ◦) and the simulated error rates (indicated by ∗). 
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Figure 1: Analytical Results 
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Figure 2: Simulation results 

(c) Repetition code with maximum a posteriori (MAP) rule: 

i. Using Baye’s rule to compute the posterior probabilities, we get 

P(Y1 = n = yn M = 0)P(M = 0)
P(M = 0 Y1 = n = yn) = 

y1, · · · , Y| y1, · · · , Y
P(Y1 = 

|
n = yn)y1, · · · , Y

= e N1 (1 − e)N0 (1 − p) 

P(Y1 = n = yn M = 1)P(M = 1)
Similarly,P(M = 1 Y1 = n = yn) = 

y1, · · · , Y| y1, · · · , Y
P(Y1 = 

|
n = yn)y1, · · · , Y

= e N0 (1 − e)N1 (p) 

Since, the denominators are the same, the MAP decision rule reduces to 

ˆ
n) = 

0 If e N1 (1 − e)N0 (1 − p) ≥ e N0 (1 − e)N1 (p)
M(y1, · · · , y 1 Otherwise. 
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ii. When, p = 0.5, the decision rule reduces to 

ˆ
n) = 

0 If eN1 (1 − e)N0 ≥ eN0 (1 − e)N1 

M(y1, · · · , y 1 Otherwise. 

The test expression can be rewritten as (1 − e)N0−N1 eN0−N1 If we assume that ≥
e ≤ 0.5, then (1 − e) ≥ e. Therefore,we can re-write the test as, 

ˆ
n) = 

0 If N0 > N1
M(y1, · · · , y 1 Otherwise. 

iii. In this case, we see that the decision rule and hence the probability of error depends 
oupon the a-priori probabilities p and 1−p. In particular, if we consider the degenerate 
cases again p = 0, p = 1, we see from the rule that we always decide in favor of 
ˆ ˆM = 0,M = 1 irrespective of the recieved bits. This is in contrast to the majority 

decoding, that still has to count the number of 1s in the output. 

iv. Here we resort to a more intuitive proof of the statement that also illustrates the concept 
of ’risk’ in decision making (A mathematically rigorous proof may be found in 6.011 
and 6.432). Consider the case when we have no received data and make the decision 
based entirely on prior probabilities P(M = 0) = 1 − p and P(M = 1) = p. If we 
decide M̂ = 1, then we have the 1−p probability of being wrong. Similarily if we chose 
M = 0, we have a probability p of being wrong. We choose ˆˆ M to minimize the risk of 
being wrong or maximize the probability of being right. Thus we choose 

M̂ = arg max P(X = M) 
M=(0,1) 

When we are given the data Y , we have to deal with the a-posteriori probabilities 
P(M = 1 Y ),P(M = 0 Y ) instead of a-priori probabilities P(M = 0),P(M = 1) and | |
the argument remains unchanged. Thus, to minimize probability or being wrong, or 
maximize the probability of being right,we choose 

M̂ = arg max P(X = M Y ) 
M=(0,1) 

|

G1† . Note that we can rewrite E[X1 | Sn = sn, Sn+1 = sn+1, . . .] as follows: 

E[X1 Sn = sn, Sn+1 = sn+1, . . .]|
= E[X1 Sn = sn,Xn+1 = sn+1 − sn,Xn+2 = sn+2 − sn+1, . . .]|
= E[X1 Sn = sn],|

where the last equality holds due to the fact that the Xi’s are independent. 

We also note that

E[X1 + + Xn Sn = sn] = E[Sn Sn = sn] = sn
· · · | |

It follows from the linearity of expectations that 

E[X1 + + Xn Sn = sn] = E[X1 Sn = sn] + + E[Xn Sn = sn]· · · | | · · · |
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Because the Xi’s are identically distributed, we have the following relationship: 

E[Xi Sn = sn] = E[Xj Sn = sn], for any 1 ≤ i ≤ n, 1 ≤ j ≤ n. | |

Therefore, 

sn
E[X1 + + Xn Sn = sn] = nE[X1 Sn = sn] = sn E[X1 Sn = sn] = .· · · | | ⇒ |

n 

†Required for 6.431; optional for 6.041 Page 8 of 8 


