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1. X is the mixture of two exponential random variables with parameters 1 and 3, which are
selected with probability 1/3 and 2/3, respectively. Hence, the PDF of X is

fX(x) =

{

1
3 · e−x + 2

3 · 3e−3x for x ≥ 0,
0 otherwise.

2. X is a mixture of two exponential random variables, one with parameter λ and one with
parameter µ. We select the exponential with parameter λ with probability p, so the transform
is MX(s) = p λ

λ−s
+ (1 − p) µ

µ−s
. Note that the transform only exists for s < min{λ, µ}.

3. (a) The definition of the transform is

MZ(s) = E[esZ ]

Therefore, we know the following must be true:

MZ(0) = E[e0Z ] = E[1] = 1.

So in our case
MZ(0) =

a

8
= 1

and
a = 8.

(b) We approach this problem by first finding the PDF of Z using partial fraction expansion:

MZ(s) =
8 − 3s

s2 − 6s + 8
=

A

s − 4
+

B

s − 2

A = (s − 4)MZ(s)

∣

∣

∣

∣

s=4
=

8 − 3s

s − 2

∣

∣

∣

∣

s=4
= −2

B = (s − 2)MZ(s)

∣

∣

∣

∣

s=2
=

8 − 3s

s − 4

∣

∣

∣

∣

s=2
= −1.

Thus,

MZ(s) =
−2

s − 4
+

−1

s − 2
=

1

2

(

4

4 − s
+

2

2 − s

)

and

fZ(z) =

{

1
2

(

4e−4z + 2e−2z
)

for z ≥ 0,
0 otherwise.

From this we get

P(Z ≥ 0.5) =
∫ ∞
0.5

1
2(4e−4z + 2e−2z)dz = e−2

2 + e−1

2 .

(c) E[Z] =
∫ ∞
0

z
2(4e−4z + 2e−2z)dz = 1

2(
∫ ∞
0 4ze−4zdz +

∫ ∞
0 2ze−2zdz) = 1

2(1
4 + 1

2) = 3
8

(d) E[Z] = d
ds

MZ(s)

∣

∣

∣

∣

s=0
= d

ds
( 2
4−s

+ 1
2−s

)

∣

∣

∣

∣

s=0
= 2

(4−s)2
+ 1

(2−s)2

∣

∣

∣

∣

s=0
= 3

8
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(e) var(Z) = E[Z2] − (E[Z])2

E[Z2] =
∫ ∞
0

z2

2 (4e−4z + 2e−2z)dz = 1
2(

∫ ∞
0 4z2e−4zdz +

∫ ∞
0 2z2e−2zdz) = 1

2( 2
42 + 2

22 ) = 5
16

var(Z) = 5
16 − (3

8)
2

= 11
64

(f) E[Z2] = d2

ds2 MZ(s)

∣

∣

∣

∣

s=0
= d2

ds2 ( 2
4−s

+ 1
2−s

)

∣

∣

∣

∣

s=0
= 4

(4−s)3
+ 2

(2−s)3

∣

∣

∣

∣

s=0
= 5

16

var(Z) = E[Z2] − (E[Z])2 = 5
16 − (3

8)
2

= 11
64

4. (a) Since it is impossible to get a run of n heads with fewer than n tosses, it is clear that
pT (k) = 0 for k < n. In addition, the probability of getting n heads in n tosses is qn so
pT (n) = qn. Lastly, for k ≥ n + 1, we have T = k if there is no run of n heads in the
first k − n − 1 tosses, followed by a tail, followed by a run of n heads, so

pT (k) = P(T > k − n − 1)(1 − q)qn =





∞
∑

i=k−n

pT (i)



 (1 − q)qn.

(b) We use the PMF we obtained in the previous part to compute the moment generating
function. Thus,

MT (s) = E[esT ] =
∑∞

k=−∞ pT (k)esk

= qnesn + (1 − q)qn
∑∞

k=n+1

∑∞
i=k−n pT (i)esk.

We observe that the set of pairs {(i, k) | k ≥ n + 1, i ≥ k−n} is equal to the set of pairs
{(i, k) | i ≥ 1, n + 1 ≤ k ≤ i + n}, so by reversing the order of the summations, we have

MT (s) = qnesn + (1 − q)qn
∑∞

i=1

∑i+n
k=n+1 pT (i)esk

= qnesn
(

1 + (1 − q)
∑∞

i=1

∑i
k=1 pT (i)esk

)

= qnesn
(

1 + (1 − q)
∑∞

i=1 pT (i) es−es(i+1)

1−es

)

= qnesn
(

1 + (1−q)es

1−es

∑∞
i=1 pT (i)(1 − esi)

)

.

Now, since
∑∞

i=1 pT (i) = 1 and, by definition,
∑∞

i=1 pT (i)esi = MT (s), it follows that

MT (s) = qnesn

(

1 +
(1 − q)es

1 − es
(1 − MT (s))

)

.

Rearrangement yields

MT (s) =
1+

(1−q)es

1−es

1
qnesn +

(1−q)es

1−es

= qnesn((1−es)+(1−q)es)

1−es+(1−q)qnes(n+1)

= qnesn(1−qes)

1−es+(1−q)qnes(n+1) .

(c) We have

E[T ] = d
ds

MT (s)
∣

∣

∣

s=0

=
{

[1−es+(1−q)qnes(n+1)][nqnesn(1−qes)−qesqnesn]

(1−es+(1−q)qnes(n+1))2
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− qnesn(1−qes)(−es+(n+1)(1−q)qnes(n+1)]

(1−es+(1−q)qnes(n+1))2

}∣

∣

∣

s=0

= (1−q)qn(nqn(1−q)−qn+1)−qn(1−q)(−1+(n+1)(1−q)qn)
(1−q)2q2n

= n(1−q)qn−qn+1+1−(n+1)(1−q)qn

(1−q)nqn

= 1−qn

qn(1−q) .

Note that for n = 1, this equation reduces to E[T ] = 1/q, which is the mean of a
geometrically-distributed random variable, as expected.

5. We calculate fX|Y (x|y) using the definition of a conditional density. To find the density of
Y , recall that Y is normal, so the mean and variance completely specify fY (y). Y = X + N ,
so E[Y ] = E[X] + E[N ] = 0 + 0 = 0. Because X and N are independent, var(Y ) =
var(X) + var(N) = σ2

x + σ2
n. So,

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

=
fX(x)fN (y − x)

fY (y)

=

1√
2πσ2

x

1√
2πσ2

n

e
− x2

2σ2
x

−
(y−x)2

2σ2
n

1√
2π(σ2

x+σ2
n)

e
− y2

2(σ2
x+σ2

n)

=
1

√

2π σ2
xσ2

n

σ2
x+σ2

n

e
y2

2(σ2
x+σ2

n)
− x2

2σ2
x

−
(y−x)2

2σ2
n .

We can simplify the exponent as follows.

y2

2(σ2
x+σ2

n)
− x2

2σ2
x
− (y−x)2

2σ2
n

=
σ2

x + σ2
n

2σ2
xσ2

n

(

y2σ2
xσ2

n

(σ2
x + σ2

n)2
− x2σ2

n

σ2
x + σ2

n

− (y − x)2σ2
x

σ2
x + σ2

n

)

=
σ2

x + σ2
n

2σ2
xσ2

n

(

y2σ2
xσ2

n − x2σ2
n(σ2

n + σ2
x) − (y − x)2σ2

x(σ2
x + σ2

n)

(σ2
x + σ2

n)2

)

=
σ2

x + σ2
n

2σ2
xσ2

n

(

y2σ2
xσ2

n − x2σ4
n − x2σ2

xσ2
n − y2σ4

x − y2σ2
xσ2

n − x2σ4
x − x2σ2

xσ2
n + 2xyσ4

x + 2xyσ2
xσ2

n

(σ2
x + σ2

n)2

)

=
σ2

x + σ2
n

2σ2
xσ2

n

(

−y2σ4
x − x2(σ4

x + 2σ2
xσ2

n + σ4
n) + 2xy(σ4

x + σ2
xσ2

n)

(σ2
x + σ2

n)2

)

= −σ2
x + σ2

n

2σ2
xσ2

n

(

x − y
σ2

x

σ2
x + σ2

n

)2

.
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Thus, we obtain

fX|Y (x|y) =
1

√

2π σ2
xσ2

n

σ2
x+σ2

n

e

−

(

x−y
σ2

x

σ2
x+σ2

n

)2

σ2
xσ2

n

σ2
x+σ2

n .

Looking at this formula, we see that the conditional density is normal with mean σ2
xy

σ2
x+σ2

n
and

variance σ2
xσ2

n

σ2
x+σ2

n
.

6. Let Ri be the number rolled on the ith die. Since each number is equally likely to rolled,
the PMF of each Ri is uniformly distributed from 1 to 6. The PMF of X1 is obtained by
convolving the PMFs of R1 and R2. Similarly, the PMF of X2 is obtained by convolving
the PMFs of R3 and R4. X1 and X2 take on values from 2 to 12 and are independent and
identically distributed random variables. The PMF of either one is given by

0

X        X  
p   (i), p   (i)

1             2

2 4 6 8 10 i12

4/36

5/36

6/36

3/26

2/36

1/36

Note that the sum X1 + X2 takes on values from 4 to 24. The discrete convolution formula
tells us that for n from 4 to 24:

P (X1 + X2 = n) =
n

∑

i=1

P (X1 = i)P (X2 = n − i)

so

P (X1 + X2 = 8) =
8

∑

i=1

P (X1 = i)P (X2 = 8 − i)

and thus we find the desired probability is 35
362 = .027.

7. The PDF for X and Y are as follows,
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fX(x) fY(y)

1

2 x y

2

1

Because X and Y are independent and W = X + Y , the pdf of W , fW (w), can be written as
the convolution of fX(x) and fY (y):

fW (w) =

∫ ∞

−∞
fX(x)fY (w − x)dx

There are five ranges for w: 1. w ≤ 0

1

1

2

x

fX(x)

2w-1 w

fY(w-x)

2. 0 ≤ w ≤ 1

1ww-1

1

2

x

fY(w-x)

fX(x)

2

3. 1 ≤ w ≤ 2

1

1

2

x

fX(x)

w-1 w

fY(w-x)

2
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4. 2 ≤ w ≤ 3

1

1

2

fX(x)

w

fY(w-x)

w-1 x2 3

5. 3 ≤ w

1

1

2

fX(x)

fY(w-x)

x2 3 ww-1

fW (w) =



















∫ w
0 fX(x)fY (w − x)dx, 0 ≤ w ≤ 1

∫ w
w−1 fX(x)fY (w − x)dx, 1 ≤ w ≤ 2

∫ 2
w−1 fX(x)fY (w − x)dx, 2 ≤ w ≤ 3

0, otherwise

Therefore,

fW (w) =



















2w − 3
2w2 + 1

6w3, 0 ≤ w ≤ 1
7
6 − 1

2w, 1 ≤ w ≤ 2
9
2 − 9

2w + 3
2w2 − 1

6w3, 2 ≤ w ≤ 3
0, otherwise

G1†. To compute fW (w), we will start by computing the joint PDF fY,Z(y, z). Computing the
joint density is quite simple. Define the joint CDF FY,Z(y, z) = P(Y ≤ y, Z ≤ z). Now,
FZ(z) = P(Z ≤ z) = zn, because the maximum is less than z if and only if every one of the
Xi is less than z, and all the Xi’s are independent. We can also compute P(y ≤ Y, Z ≤ Z) =
(z − y)n because the minimum is greater than y and the maximum is less that z if and only
if every Xi falls between y and z. Subtraction gives

FY,Z(y, z) = zn − (z − y)n.

Now, we find the joint PDF by differentiating, which gives fY,Z(y, z) = n(n−1)(z−y)n−2, 0 ≤
y ≤ z ≤ 1. Because Y and Z are not independent, convolving the individual densities for Y
and Z will not give us the density for W . Instead, we must calculate the CDF FW (w) by
integrating PY,Z(y, z) over the appropriate region. We consider the cases w ≤ 1 and w > 1
separately.

Page 6 of 7



Massachusetts Institute of Technology

Department of Electrical Engineering & Computer Science
6.041/6.431: Probabilistic Systems Analysis

(Spring 2006)

When w ≤ 1, we need to compute

∫ w
2

0

∫ w−y

y
fY,Z(y, z)dzdy =

wn

2
.

When w > 1, we can compute the CDF from

1 −
∫ 1

w
2

∫ z

w−z
fY,Z(y, z)dydz = 1 − (2 − w)n

2
.

Finally, we take the derivative to get

fW (w) =











nwn−1

2 ; 0 ≤ w ≤ 1

n (2−w)n−1

2 ; 1 ≤ w ≤ 2
0 ; otherwise

To prove the concentration result, it is easier to look at FW (w). The CDF is exponential

in n. Thus, P(W ≤ 1 − ǫ) = (1−ǫ)n

2 and P(W ≥ 1 + ǫ) = 1 − (1 − (2−(1+ǫ))n

2 ) = (1−ǫ)n

2 . It
is easily seen that both of these probabilities go to 0 as n → ∞, which proves the desired
concentration result.
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