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Problem Set 6: Solutions
Due: April 5, 2006

1. X is the mixture of two exponential random variables with parameters 1 and 3, which are
selected with probability 1/3 and 2/3, respectively. Hence, the PDF of X is

e’ + % . 3e73% for x >0,
otherwise.
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2. X is a mixture of two exponential random variables, one with parameter A and one with
parameter pu. We select the exponential with parameter A with probability p, so the transform
is Mx(s) = pﬁ + (1 —p);L;. Note that the transform only exists for s < min{A, u}.

3. (a) The definition of the transform is
My(s) = E[e*?]
Therefore, we know the following must be true:
Myz(0) = E[e??] = E[1] = 1.

So in our case

Mz(0)== =1

a
8
and

a=S8.

(b) We approach this problem by first finding the PDF of Z using partial fraction expansion:
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Thus,
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L —2z —4az >
) = { 8(46 +2e7%%) for z >0,

otherwise.

From this we get
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P(Z >05) = [55 3(de™ +2e72%)dz = & + & |

(c) E[Z] = [§° 2(de™ + 2e72%)dz = L([5° dze™2dz + [0 2z 22dz) = (1 + §) =| 2
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(e)

()

var(Z) = B[22) — (B[Z)?
E[Z% = [5° %(46_42 +2e7B)dz = L([gP 4P da + [P 222 Ede) = (S + %) = &

var(Z) = 5 — ()" < &
BZ% = faMz(s)| =il a5)|
var(Z) = B[7?] - (B2 = & - ()" 4 1]

Since it is impossible to get a run of n heads with fewer than n tosses, it is clear that
pr(k) =0 for k < n. In addition, the probability of getting n heads in n tosses is ¢" so
pr(n) = ¢". Lastly, for kK > n+ 1, we have T' = k if there is no run of n heads in the
first kK —n — 1 tosses, followed by a tail, followed by a run of n heads, so

_ 4 2
= @y T e

5
16

n

pr(k) =P(T >k —n—1)(1-q)q" (ZPT ) (1-q)q"

We use the PMF we obtained in the previous part to compute the moment generating
function. Thus,

Mr(s) = E[e*"] = Y32 _ o pr(k)e*
:qn s (1 _q)q Zk n+1 Zz k— in() k'

We observe that the set of pairs {(i,k) | k > n+1,i > k—n} is equal to the set of pairs
{(i,k)|i>1,n+1<k<i+n},so by reversing the order of the summations, we have

Myp(s) =q"e™ + (1= q)q" 352 Yp  pr(i)e™®
q e ( +(1—q)>22 Zk—l pT(Z)@Sk>
=g (1+(1-g X mﬂ)%“:f”)
(

= e (1+ G225 522 pr(i)(1 - e)) .
Now, since 3.5°, pr(i) = 1 and, by definition, 332, pr(i)e* = Mrp(s), it follows that
1 _ S
L R I 0))
—e
Rearrangement yields
M . 1+(1—‘1)es e ((1—e®)+(1—q)e®)
T(S) - t gn_"_(l q)es - 1_65+(1_q)qnes(7b+l)

T l—es+(1— q)q"es("+1)'
We have

B[] = A Mr(s)|

{[1 e +(1 q) n s(n+1)“nq esn(l qe) qesqnesn]
(1—es+(1—q)qres(nt D)2
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Note that for n = 1, this equation reduces to E[T] = 1/q, which is the mean of a
geometrically-distributed random variable, as expected.

. We calculate fx|y(z|y) using the definition of a conditional density. To find the density of
Y, recall that Y is normal, so the mean and variance completely specify fy(y). Y = X + N,
so E[Y] = E[X]|+ E[N] = 04+ 0 = 0. Because X and N are independent, var(Y) =
var(X) + var(N) = o2 + o2. So,

fxy(x,y)
Ixy(zly) =
Iy(y
_ Sx@)fn(y — =)
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27 voT
We can simplify the exponent as follows.
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Thus, we obtain

1 s

fxiy(@ly) = === =t
2 o3oa
Trog-i-o%

2
Iy
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Looking at this formula, we see that the conditional density is normal with mean

2.2
T20n

2 2
Tz +Un

variance

6. Let R; be the number rolled on the i** die. Since each number is equally likely to rolled,
the PMF of each R; is uniformly distributed from 1 to 6. The PMF of X; is obtained by
convolving the PMFs of R; and Rp. Similarly, the PMF of X5 is obtained by convolving
the PMF's of R3 and R4. X7 and X, take on values from 2 to 12 and are independent and
identically distributed random variables. The PMF of either one is given by

R (. ()

6/3>6(1 Q ? ®
5/36 Y )
4/36
3/26
2/36

1/36 T T

o 2 4 6 8 10 12 |

Note that the sum X7 + X5 takes on values from 4 to 24. The discrete convolution formula
tells us that for n from 4 to 24:

P(X1+X2:n):iP(X1:Z)P(XQZTZ—’L)
=1

SO
8

P(X1+X,=8)=> P(X; =i)P(Xs=8—1)
i=1
and thus we find the desired probability is % = .027.

7. The PDF for X and Y are as follows,
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X(x) fY (y)
2

2 X 1 y

Because X and Y are independent and W = X + Y, the pdf of W, fy(w), can be written as
the convolution of fx(z) and fy(y):

fw(w) = /_O:o fx (@) fy(w— x)dx

There are five ranges for w: 1. w <0

fY(wx) AT
fX(x)
} —
w-1 w 1 2 X
2.0w<1
?
3.1 <w<2
fY (w-x)
2Ak
11 fX(x)
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G1t.

4.2<w<3
fY (w-x)
24k
1LFX(x)
f —_—
1 w1l 2 w 3 X
5. 35w
fY (w-x)
24k
11 FX(x)
‘1 2 w1 3 w X
féUfX(x)fY(W—x)dx, 0<w<1
fw(w) = fﬂju;fl fx(@)fy(w—z)de, 1<w<2
Jo1 [x (@) fy(w—x)dz, 2<w<3
0, otherwise
Therefore,
2w — Jw? + gu?, 0<w<1
=3 < <
fw)=4 § 8% 5y 1 lsws2
3 —swtjw' —gw?, 2<w<3
0, otherwise

To compute fi(w), we will start by computing the joint PDF fy z(y,z). Computing the
joint density is quite simple. Define the joint CDF Fy z(y,z) = P(Y < y,Z < z). Now,
Fz(z) =P(Z < z) = 2", because the maximum is less than z if and only if every one of the
X is less than z, and all the X;’s are independent. We can also compute P(y <Y, 7 < 7) =
(z — y)™ because the minimum is greater than y and the maximum is less that z if and only
if every X; falls between y and z. Subtraction gives

Fyz(y,z) = 2" = (z—y)".

Now, we find the joint PDF by differentiating, which gives fy z(y,z) = n(n—1)(z—y)" 2,0 <
y < z < 1. Because Y and Z are not independent, convolving the individual densities for Y
and Z will not give us the density for W. Instead, we must calculate the CDF Fyy (w) by
integrating Py, z(y, z) over the appropriate region. We consider the cases w < 1 and w > 1
separately.
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When w < 1, we need to compute

5 [w-y w™
/ / frz(y, z)dzdy = —-.
0 Y 2
When w > 1, we can compute the CDF from

2w

1 rz
1— [v / frz(y,z)dydz =1 — -
5 Jw-z

Finally, we take the derivative to get

n“ﬂ;I c 0<w<1
fw(w) = pEW"0 1 <w<2
0 ; otherwise

To prove the concentration result, it is easier to look at Fy(w). The CDF is exponential
in . Thus, P(W <1 —¢) = U522 and P(W > 1 4¢) = 1 — (1 - E=0FD) — (1297
is easily seen that both of these probabilities go to 0 as n — oo, which proves the desired
concentration result.




