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Problem Set 8 Solutions


1. Let At (respectively, Bt) be a Bernoulli random variable that is equal to 1 if and only if the 
tth toss resulted in 1 (respectively, 2). We have E[AtBt] = 0 (since At = 0 implies Bt = 0) 
and 

1 1 
E[AtBs] = E[At]E[Bs] = 

k 
· 

k 
for s �= t. 

Thus, 

E[X1X2] = E [(A1 + · · · + An)(B1 + · · · + Bn)] 

1 1 
= nE [A1(B1 + · · · + Bn)] = n(n − 1) · 

k 
· 
k 

and 

cov(X1,X2) =	 E[X1X2] − E[X1]E[X2] 

n(n − 1) n2 n 
=	 = . 

k2 
−

k2 
−

k2 

2. (a) The minimum mean squared error estimator g(Y ) is known to be g(Y ) = E[X Y ]. Let |
us first find fX,Y (x, y). Since Y = X + W , we can write 

1 

x) = 2 , if x − 1 ≤ y ≤ x + 1; 
fY |X(y |

0, otherwise 

and, therefore, 

1 if x − 1 ≤ y ≤ x + 1 and 5 ≤ x ≤ 10; 
fX,Y (x, y) = fY X(y | x) fX(x) = 10 , | ·

0, otherwise


as shown in the plot below.


o ox , y 
x,y 

f (yo 

5 

10 

) = 1/10 

5 10 xo 

We now compute E[X Y ] by first determining fX Y (x y). This can be done by |	 | |
looking at the horizontal line crossing the compound PDF. Since fX,Y (x, y) is uniformly 
distributed in the defined region, fX Y (x y) is uniformly distributed as well. Therefore, | |

 
5+(y+1) 

 , if 4 ≤ y < 6; 
 2 

g(y) = E[X Y = y] = y, if 6 ≤ y ≤ 9; |
 
 10+(y−1) , if 9 < y ≤ 11.2 

The plot of g(y) is shown here. 
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(b) The linear least squares estimator has the form 

cov(X,Y ) 
gL(Y ) = E[X] + (Y − E[Y ]),2σY 

where cov(X,Y )


2σ+ W 

225/12, σW(10 − 5)2/12 (1 − (−1))2/12 
[(X [X])(Y [Y ])]. We compute [X] 7 5, [Y ] [X] + E E E E E E− −= = = .

2fact that X and W are independent, σY 

27 5, σ. XE[W ] 4/12 and, using the = = = = = 
2σX 29/12. Furthermore,
= = 

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] 

= E[(X − E[X])(X − E[X] + W − E[W ])] 

2σX 
2σX 

E[(X − E[X])(X − E[X])] + E[(X −E[X])(W − E[W ])] 

+ E[(X − E[X])]E[(W − E[W ])] 

= 

= 25/12.= = 

Note that we use the fact that (X − E[X]) and (W − E[W ]) are independent and 
E[(X − E[X])] = 0 = E[(W − E[W ])]. Therefore, 

25 
gL(Y ) = 7.5 + (Y − 7.5). 

29

The linear estimator gL(Y ) is compared with g(Y ) in the following figure. Note that 
g(Y ) is piecewise linear in this problem. 
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3. (a) The Chebyshev inequality yields P( X − 7 ≥ 3) ≤ 9 = 1, which implies the uninfor­
32| |

mative/useless bound P(4 < X < 10) ≥ 0. 

(b) We will show that P(4 < X < 10) can be as small as 0 and can be arbitrarily close to 1. 
Consider a random variable that equals 4 with probability 1/2, and 10 with probability 
1/2. This random variable has mean 7 and variance 9, and P(4 < X < 10) = 0. 
Therefore, the lower bound from part (a) is the best possible. 

Let us now fix a small positive number ǫ and another positive number c, and consider a 
discrete random variable X with PMF 

 
 0.5 − ǫ, if x = 4 + ǫ; 
 
 

pX(x) = 
0.5 − ǫ, if x = 10 − ǫ; 

 ǫ, if x = 7 − c; 
 
 

ǫ, if x = 7 + c. 

This random variable has a mean of 7. Its variance is 

(0.5 − ǫ)(3 − ǫ)2 + (0.5 − ǫ)(3 − ǫ)2 + 2ǫc 2 

and can be made equal to 9 by suitably choosing c. For this random variable, we have 
P(4 < X < 10) = 1 − 2ǫ, which can be made arbitrarily close to 1.


On the other hand, this probability can not be made equal to 1. Indeed, if this probability

were equal to 1, then we would have X − 7 ≤ 3, which would imply that the variance
| |
in less than 9. 

4. Consider a random variable X with PMF 
 
 p, if x = µ − c; 

pX(x) = p, if x = µ + c; 
 

1 − 2p, if x = µ. 

The mean of X is µ, and the variance of X is 2pc2 . To make the variance equal σ2, set 
σ2 

p = 2c2 
. For this random variable, we have 

σ2 

P( X − µ ≥ c) = 2p = 
2 
,| |

c

and therefore the Chebyshev inequality is tight. 

5. Note that n is deterministic and H is a random variable. 

(a) Use X1, X2, . . . to denote the (random) measured heights. 

X1 + X2 + + Xn· · ·
H = 

n 

E[H] = 
E[X1 + X2 + · · · + Xn] 

= 
nE[X] 

= h 
n n 
√ 

σH = 
√ 

var(H) = 
n var(X) 

n2 
(var of sum of independent r.v.s is sum of vars) 

1.5 
= √

n 
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(b) We solve 1.5 < 0.01 for n to obtain n > 22500. √
n 

(c) Apply the Chebyshev inequality to H with E[H] and var(H) from part (a): 

( )2σH
P( H − h ≥ t) ≤| |

t 
( )2σH

P( H − h < t) ≥ 1 −| |
t 

To be “99% sure” we require the latter probability to be at least 0.99. Thus we solve 

( )2σH 
99 1 − ≥ 0.

t 

1.5with t = 0.05 and σH = √
n 

to obtain 

( )21.5 1 
n ≥ = 90000. 

0.05 0.01 

(d) The variance of a random variable increases as its distribution becomes more spread 
out. In particular, if a random variable is known to be limited to a particular closed 
interval, the variance is maximized by having 0.5 probability of taking on each endpoint 
value. In this problem, random variable X has an unknown distribution over [0, 3]. The 
variance of X cannot be more than the variance of a random variable that equals 0 with 
probability 0.5 and 3 with probability 0.5. This translates to the standard deviation not 
exceeding 1.5. 
In fact, this argument can be made more rigorous as follows. 
First, we have 

3 
var(X) ≤ E[(X − )2] = E[X2] − 3E[X] +

9 

2 4 

since E[(X − a)2] is minimized when a is the mean (i.e., the mean is the least-squared 
estimator). 
Second, we also have 

0 ≤ E[X(3 − X)] = E[X] − E[X2] 

since the variable has support in [0, 3]. Adding the above two inequalities, we have 

9 
var(X) ≤

4 

3or equivalently, σX ≤ 2 . 

6. First, let’s calculate the expectation and the variance for Yn, Tn, and An. 

Yn = (0.5)nXn 

Tn = Y1 + Y2 + · · · + Yn 

1 
An = Tn 

n 
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E [Yn] = E (1 
] 1 

2 )
n = 2(1 

2 )
nXn = ( )nE [Xn] = E [X] (1

2 )
n 

2

2 )
nXn = (1

2 )
2n = 9(1var (Yn) = var (1

2 )
2nvar (Xn) = var (X) (1

4 )
2n 

E [Tn] = E [Y1 + Y2 + + Yn] = E[Y1] + E[Y2] + + E[Yn]· · · · · ·
1 = 2 (1 

2 )
i = 2

0.5(1 − 0.5n) 
= 2 

( 
1 − 

( 
2 

)n) 

1 − 0.5 
n 

var (Tn) = var (Y1 + Y2 + + Yn) = (1 
4 )

ivar (Xi)· · ·
i=1 

( ( )n)1 1 
( ( )n)1 = 9 4 1

1 

−
− 4

4 = 3 1 − 41 

1 1 2 ( ( )n)1
E [An] = E Tn = E [Tn] = 1 − 2n n n 

( ) ( )2 ( ( ) 
1 1 3 1 

)n

var (An) = var Tn = var (Tn) = 
2 

1 −
n n n 4 

(a) Yes. Yn converges to 0 in probability. As n becomes very large, the expected value of 
Yn approaches 0 and the variance of Yn approaches 0. So, by the Chebychev Inequality, 
Yn converges to 0 in probability. 

(b) No. Assume that Tn converges in probability to some value a. We also know that: 

Tn = Y1 + (Y2 + Y3 + .....Yn) 

= Y1 + ((0.5)2X2 + (0.5)3X3 + · · · + (0.5)nXn) 

1 
= Y1 + (0.5X2 + (0.5)2X3 + · · · + (0.5)n−1Xn). 

2

Notice that 0.5X2 +(0.5)2X3 + 5)n−1Xn converges to the same limit as Tn when · · ·+(0.
n goes to infinity. If Tn is to converge to a, Y1 must converge to a/2. But this is clearly 
false, which presents a contradiction in our original assumption. 

(c) Yes. An converges to 0 in probability. As n becomes very large, the expected value of 
An approaches 0, and the variance of An approaches 0. So, by the Chebychev Inequality, 
An converges to 0 in probability. You could also show this by noting that the Ans are 
i.i.d. with finite mean and variance and using the WLLN. 

7. (a) Suppose Y1, Y2, . . . converges to a in mean of order p. This means that E[ Yn −a p] → 0, | |
so to prove convergence in probability we should upper bound P( Yn − a ≥ ǫ) by a | |
multiple of E[ Yn − a p]. This connection is provided by the Markov inequality. | |
Let ǫ > 0 and note the bound 

P( Yn − a ≥ ǫ) = P( Yn − a|p ≥ ǫp) ≤ E[|Yn − a|p] 
,

p
| | |

ǫ

where the first step is a manipulation that does not change the event under consideration 
and the second step is the Markov inequality applied to the random variable Yn − a|p.|
Since the inequality above holds for every n, 

lim P( Yn − a ≥ α) ≤ lim 
E[|Yn − a|p] 

= 0. 
p

|
n→∞ 

|
n→∞ α
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Hence, we have that {Yn} converges in probability to a. 

(b) Consider the sequence {Yn}∞n=1 of random variables where 

0, with probability1 − 1 ;
nYn = 

n, with probability 1 
n 

Note that {Yn} converges in probability to 0, but E[ Yn − 0 1] = E[Yn ] = 1 for all n.| | |
Hence, {Yn} converges in probability to 0 but not in mean of order 1. 

G1†. (a) E[ˆ
n 

1 µ] = E[ 1 (X1 + + Xn)] = 
n 
(E[X1] + + E[Xn]) = 1 nE[X] = µ. 

n 
·· · · · · ·

Hence, µ̂ is an an unbiased estimator for the true mean µ. 

(b) 

n n 

E[σ̂2] = E 
1

(Xi − µ)2 =
1 

E[(Xi − µ)2] =
1 

nσ2 = σ2 . 
n n n 

·
i=1 i=1 

Therefore σ̂2 (which uses the true mean) is unbiased estimator for σ2 . 

(c) 

n n 

µ)2 = [Xi − µ − (ˆ(Xi − ˆ µ − µ)]2 

i=1 i=1

n


= (Xi − µ)2 + (ˆ µ − µ)µ − µ)2 − 2(Xi − µ)(ˆ
i=1 
n n 

µ − µ)2 − 2(ˆ= (Xi − µ)2 + n(ˆ µ − µ) (Xi − µ) 
i=1 i=1 
n 

= (Xi − µ)2 + n(ˆ µ − µ)n(ˆµ − µ)2 − 2(ˆ µ − µ) 
i=1 
n 

= (Xi − µ)2 − n(µ̂ − µ)2 

i=1 

(d) 

n n 

µ)2 = E (Xi − µ)2 − nE[(ˆE (Xi − ˆ µ − µ)2] 
i=1 i=1 

  
( )2n 

= nσ2 − nE  1 
Xi − µ  

2n
i=1 

  
n n 

= nσ2 1 
E  (Xi − µ)(Xj − µ)−

n 
i=1 j=1 

n 

= nσ2 1 
E (Xi − µ)2−

n 
i=1 

= (n − 1)σ2 
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where we used the fact that for i = j, E[(Xi − µ)(Xj − µ)] = 0; and for i = j, it is is 
equal to σ2 . 

(e) From part (d), 
n 

σ2 1ˆ̂ = µ)2 

n − 1
(Xi − ˆ

i=1 

is an unbiased estimator for the variance. 

(f) 

1 
var(µ̂) = var( (X1 + · · · + Xn)) 

n 
1 

= 
n2 

(var(X1) + · · · + var(Xn)) 

= 
1 

n2 
· nσ2 

σ2 

= . 
n 

µ) goes to zero asymptotically. Furthermore, we saw that E[ˆThus, var(ˆ µ] = µ. Simple 
application of Chebyshev inequality shows that µ̂ converges in probability to µ (the true 
mean) as the sample size increases. 

(g) Not yet typeset. 
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