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Topics: Poisson, Markov chains 

Due: May 10th, 2006 

1. (a) We are given that the previous ship to pass the pointer was traveling westward. 

i. The direction of the next ship is independent of those of any previous ships. There­
fore, we are simply looking for the probability that a westbound arrival occurs before 
an eastbound arrival, or 

λW
P(next = westbound) = 

λE + λW 

ii. The pointer will change directions on the next arrival of an east-bound ship. By 
definition of the Poisson process, the remaining time until this arrival, denote it by 
X, is exponential with parameter λE , or 

fX(x) = λEe −λEx , x ≥ 0 . 

(b) For this to happen, no westbound ship can enter the channel from the moment the 
eastbound ship enters until the moment it exits, which consumes an amount of time t 
after the eastward ship enters the channel. In addition, no westbound ships may already 
be in the channel prior to the eastward ship entering the channel, which requires that 
no westbound ships enter for an amount of time t before the eastbound ship enters. 
Together, we require no westbound ships to arrive during an interval of time 2t, which 
occurs with probability 

−λW 2t(λW 2t)
0e −λW 2t = e . 
0! 

(c) Letting X be the first-order interarrival time for eastward ships, we can express the 
quantity V = X1 +X2 + . . .+X7, and thus the PDF for V is equivalent to the 7th order 
Erlang distribution 

λ7 6 −λEv 

fV (v) = Ev e
, v ≥ 0 . 

6! 

2. (a) The mean of a Poisson random variable with paramater λ is λ. 

E[number of passengers on a shuttle] = λ 

(b) Let A be the number of shuttles arriving in one hour. The Poisson parameter now 
becomes µ · 1. 

e−µµa 

a = 0, 1, 2, . . . 
a!pA(a) = 
0 otherwise 

(c) To join Poisson process, the arrival rates are summed. The Poisson parameter now 
becomes λ + µ.


E[number of events per hour] = λ + µ


(d) The Poisson process is memoryless, and the expected time until the first arrival for the 
shuttle bus is 1 . 

µ 

1 
E[wait time | 2λ people waiting] = 

µ 
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(e) Let N be the number of people on a shuttle. The number of people that are on the 
shuttle are the number of people that arrive before the first shuttle arrives. The PMF 
is a shifted geometric starting at 0: 

pN (n) = 

� 

λ 

λ + µ 

�n � 

µ 

λ + µ 

� 

for n = 0, 1, 2, . . . 

3. (a) Let Ak be the event that the process enters S2 for first time on trial k. The only way 
to enter state S2 for the first time on the kth trial is to enter state S3 on the first trial, 
remain in S3 for the next k − 2 trials, and finally enter S2 on the last trial. Thus, 

P(Ak) = p03 · p k−2 
33 · p32 = 

� 

1 

3 

� � 

1 

4 

�k−2 � 

1 

4 

� 

= 
1 

3 

� 

1 

4 

�k−1 

for k = 2, 3, . . . 

(b) Let A be the event that the process never enters S4. 

There are three possible ways for A to occur. The first two are if the first transition is 
either from S0 to S1 or S0 to S5. This occurs with probability 2 

3 
. The other is if The 

first transition is from S0 to S3, and that the next change of state after that is to the 
state S2. We know that the probability of going from S0 to S3 is 

1 
3 
. Given this has 

occurred, and given a change of state occurs from state S3, we know that the probability 
1

4 1that the state transitioned to is the state S2 is simply Thus, the probability = 
3 
.1

4 

1

2 
+ 

of transitioning from S0 to S3 and then eventually transitioning to S2 is 
1 . Thus, the 
9 

1 7probability of never entering S4 is 
2 + 

9 
= 

3 9 
. 

(c) P({process enters S2 and then leaves S2 on next trial}) 

= P({process enters S2})P({leaves S2 on next trial }|{ in S2}) 
∞ 
� 1


= P(Ak) ·

2 

k=2 

∞ 
� 1


= (
1
)k−1 · 

1


3 4 2 
k=2


1
1 4= · 
6 1 − 1 

4 

1 
= . 

18 

(d) This event can only happen if the sequence of state transitions is as follows: 

S0 −→ S3 −→ S2 −→ S1. 

1 1 1Thus, P({process enters S1 for first time on third trial}) = p03 · p32 · p21 = 
3 
· 1 · = 

4 2 24 
. 

(e) P({process in S3 immediately after the Nth trial}) 

= P({moves to S3 in first trial and stays in S3 for next N − 1 trials}) 

1 1 
�n−1 

= for n = 1, 2, 3, . . . 
3 4 
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4. Let i, i = 1, . . . , 7 be the states of the Markov chain. From the graphical representation of 
the transition matrix it is easy to see the following: 

6 3 

4 

7 

51 
.3 

.5 
.5 

.3 

.3 .2 
.4 

.4 

.4 

.6 

.5 

.2
.6 

.5 .6 

.4 

.2 

.1 

2 

(a) {4, 7} are recurrent and the rest are transient. 

(b) There is only one class formed by the recurrent states. 

(c) Since state 1 is not reachable from state 4, limn→∞ p41(n) = 0. Since 6 is a transient 
state limn→∞ p66(n) = 0. 

5.	 (a) Given Ln−1, the history of the process (i.e., Ln−2, Ln−3, . . .) is irrelevant for determining 
the probability distribution of Ln, the number of remaining unlocked doors at time n. 
Therefore, Ln is Markov. More precisely, 

P(Ln = j|Ln−1 = i, L2−2 = k, . . . , L1 = q) = P(Ln = j|Ln−1 = i) = pij. 

Clearly, at one step the number of unlocked doors can only decrease by one or stay con­
stant. So, for 1 ≤ i ≤ d, if j = i−1, then pij = P(selecting an unlocked door on day n+ 
1|Ln = i) = 

d
i . For 0 ≤ i ≤ d, if j = i, then pij = P(selecting an locked door on day n+ 

1|Ln = i) = d−i . Otherwise, pij = 0. To summarize, for 0≤i, j≤d, we have the following: 
d 

 

d−i j = i 
 

 
d 

 

i pij = j = i − 1
d 

 

 

 

0 otherwise 

(b) The state with 0 unlocked doors is the only recurrent state. All other states are then 
transient, because from each, there is a positive probability of going to state 0, from 
which it is not possible to return. 

(c) Note that once all the doors are locked, none will ever be unlocked again. So the state 
0 is an absorbing state: there is a positive probability that the system will enter it, 
and once it does, it will remain there forever. Then, clearly, limn→∞ ri0(n) = 1 and 
limn→∞ rij(n) = 0 for all j �= 0 and all i, . 
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(d) Now, if I choose a locked door, the number of unlocked doors will increase by one the 
next day. Similarly, the number of unlocked doors will decrease by 1 if and only if I 
choose an unlocked door. Hence, 

 

d−i 
 d 

i + 1 j = 
 

 

pij = i 
d 

j = i − 1 
 

 

 

0 otherwise 

Clearly, from each state one can go to any other state and return with positive probabil­
ity, hence all the states in this Markov chain communicate and thus form one recurrent 
class. There are no transient states or absorbing states. Note however, that from an 
even-numbered state (states 0, 2, 4, etc) one can only go to an odd-numbered state 
in one step, and similarly all one-step transitions from odd-numbered states lead to 
even-numbered states. Since the states can be grouped into two groups such that all 
transitions from one lead to the other and vice versa, the chain is periodic with period 
2. This will lead to rij(n) oscillating and not converging as n → ∞. For example, 
r11(n) = 0 for all odd n, but positive for even n. 

(e) In this case Ln is not a Markov process. To see this, note that P(Ln = i + 1|Ln−1 = 
i, Ln−2 = i − 1) = 0 since according to my strategy I do not unlock doors two days in 
a row. But clearly, P(Ln = i + 1|Ln−1 = i) > 0 for i < d since it is possible to go 
from a state of i unlocked doors to a state of i + 1 unlocked doors in general. Thus 
P(Ln = i + 1|Ln−1 = i, Ln−2 = i − 1) �= P(Ln = i + 1|Ln−1 = i), which shows that Ln 

does not have the Markov property. 

G1† . a) First let the pij ’s be the transition probabilities of the Markov chain. 

Then 

mk+1(1) = E[Rk+1|X0 = 1] 

= E[g(X0) + g(X1) + ... + g(Xk+1)|X0 = 1] 
n 

= p1iE[g(X0) + g(X1) + ... + g(Xk+1)|X0 = 1,X1 = i] 
i=1

n


= p1iE[g(1) + g(X1) + ... + g(Xk+1)|X1 = i] 
i=1 

n 

= g(1) + p1iE[g(X1) + ... + g(Xk+1)|X1 = i] 
i=1 

n 

= g(1) + p1imk(i) 
i=1 

and thus in general mk+1(c) = g(c) + n
i=1 pcimk(i) when c ∈ {1, ..., n}. 

Note that the third equality simply uses the total expectation theorem. 

b) 
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vk+1(1) = V ar[Rk+1|X0 = 1]


= V ar[g(X0) + g(X1) + ... + g(Xk+1)|X0 = 1]


= V ar[E[g(X0) + g(X1) + ... + g(Xk+1)|X0 = 1,X1]] +


E[V ar[g(X0) + g(X1) + ... + g(Xk+1)|X0 = 1,X1]]


= V ar[g(1) + E[g(X1) + ... + g(Xk+1)|X0 = 1,X1]] +


E[V ar[g(1) + g(X1) + ... + g(Xk+1)|X0 = 1,X1]] 

= V ar[E[g(X1) + ... + g(Xk+1)|X0 = 1,X1]] + E[V ar[g(X1) + ... + g(Xk+1)|X0 = 1,X1]] 

= V ar[E[g(X1) + ... + g(Xk+1)|X1]] + E[V ar[g(X1) + ... + g(Xk+1)|X1]] 

= V ar[mk(X1)] + E[vk(X1)] 
n 

= E[(mk(X1))
2] − E[mk(X1)]

2 + p1ivk(i) 
i=1


n n n

2 = p1imk(i) − ( p1imk(i))

2 + p1ivk(i)

i=1 i=1 i=1


2 n	 nso in general vk+1(c) = i
n 
=1 pcimk(i)− ( 

�

i=1 pcimk(i))
2 + i=1 pcivk(i) when c ∈ {1, ..., n}. 

G2† .	 We introduce the states 0, 1, . . . ,m and identify them as the number of days the gate survives 
a crash. The state transition diagram is shown in the figure below. 

p 

p 

1-p 1-p 1-p
0 1 m 

1 

The balance equations take the form, 

π0 = π0p + π1p + · · · + πm−1p + πm 

π1 = π0(1 − p) 

π2 = π1(1 − p) = π0(1 − p)2 

. . . 

πm = π0(1 − p)m 

These equations together with the normalization equation have a unique solution which gives

us the steady-state probabilities of all states. The steady-state expected frequency of gate
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replacements is the expected frequency of visits to state 0, which by frequency interpretation 
is given by π0. Solving the above equations with the normalization equation we get, 

E[frequency of gate replacements] = π0 

p 
= 

1 − (1 − p)m+1 


