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CHAPTER TWO

random
variables

Often we have rensons Lo assoeiate one or more numbers (in addition
to probabilities} with cach possible cutcome of an experiment. Such
numbers might correspond, for instance, to the cost to us of each experi-
mental outcome, the amount of rainfall during a particular month, or
the height and weight of the next football player we meet.

This chapter extends and specializes our earlier work to develop
effective methods for the study of experiments whose outcomes may be
described numerically.
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RANDOM VARIABLES

Random Variables and Their Event Spaces

For the study of experiments whose outecomes may be specified numeri-
cally, we find it useful to intreduce the following definition:

==
A random varigble is defined by a function which assigns a value of the %
random variable to each sample point in the sample space of an E
experiment, EE__;

Euch performanee of the experiment is said to generate an experimenial
ralue of the random variable. This experimental value of the random
variable is equal to the value of the random variable assigned to the
sample point which corresponds to the resulting experimental outcome.
Consider the following example, whieh will be referred to in
several sections of this chapter. Our experiment consists of three
independent flips of a fair coin.  We again use the notation

Event l;{:l : }é‘iai?:, on the nth flip

We may define any number of random variables on the sample space

of this experiment. We choose the following definitions for two ran-

dom variables, & and »:

L = totul number of heads resulting from the three fips

» = length of longest run resulting from the three flips (2 run is o set of
successive flips all of which have the same outcome)

We now preparc u fully labeled sequential sample space for this
experiment. Weinclude the branch traversal conditional probabilities.
the probability of each experimental outcome, and the values of random
variables & and r assigned to each sample point.  The resutting sample
space is shown at the top of the following pege.

Ef this experiment were performed once and the experimental
outcome were the event H,T,T,, we would say that, for this per-
formance of the experiment, the resulting experimental vatues of ran-
dom variables A and r were 1 and 2, respectively.

Although we may require the full samnple space to describe the
detailed probabilistic structure of an experiment, it may be thaf our
only practical interest in each perforinance of the experiment will relate
to the resulting experimental values of one or more random variables.
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When this is the case, we may prefer to work in an event space which
distinguishes among outcomes only in terms of the possible experi-
mental values of the random variables of intercst. Let’s consider this
for the above example,

Buppose that our only interest in & performance of the experi-
ment has to do with the resulting experimental value of random varia-
ble . We niight find it desirable to work with this variable in an
cvent space of the form

. . Sho

0 hy=1 hy=2 hy=3

The four event points marked along the A, axis form a mutually exclu-
sive colleetively exhaustive listing of all possible experimental outcomes.
The event point at any A, corresponds to the event “The experimental
value of random variable & generated on a performance of the experi-
ment is equal to ky” or, in other words, “On a performanee of the
experiment, random variabie 4 takes on experimental value o”

Similarly, if our concern with euch performance of the experi-
ment depended only upon the resulting experimental values of random
variables A and », & simple event space would be
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This event peint represents the event
. / *exactly two heads resulted from the
three flips and no pair of consecutive

/ flips had the same outcome®

h

i ™,
3 M

An event point in this space with coordinates hq and #, corresponds to
the event "“On a performance of the experiment, random variables A and
» take on, respectively, experimental values g and »,.”" The proba-
bility assignment for each of these six event points may, of course, be
obtained by collecting these events and their probabilities in the origi-
nal sequential sample space.

The random variables discussed in our example could take on
only experimental values selected from a set of diserete numbers.  Such
random variables are known as discrefe random variables. Random
variables of another type, known as conlinuous random variables, may
take on experiinental values snywhere within continuous ranges.
Examples of continuous random variables are the exact instantaneous
voltage of a noise signal and the precise reading after a spin of an
infinitely finely calibrated wheel of fortune (as in the last example of
Sec. 1-2),

Formally, the distinction between discrete and continuous ran-
dom variables can be avoided. But the development of our topics is
easier to visualize if we first become familiar with matters with regard to
discrete random variables and later extend our coverage to the con-
tinuous case, Our discussions through Sec. 2-8 deal only with the
diserete case, and Sce. 2-9 begins the extension to the continuous case,

Z2-2 The Probability Mass Function

We have learned that a random variable is defined by a function which
assigns a value of that random variable to each sample point. These
assigned values of the random varizble are said to represent its possible
experimental vajues, Each performanece of the experiment gencrates
an experimental value of the random variable. For many purposes,
we shall find the resulting experimental value of a random variable
to be an adequate charecterization of the experimental outcome,

In the previous section, we indicated the form of & simple event
space for dealing with a single discrete random variable. To work with
a random variable x, we mark, on an x, axis, the points corresponding
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to ali possible experimentul values of the random variable. One sueh

event space could be

—— 3 . n J ‘ x

-1 4] 1 2 3 4

\

Each point in this event space corresponds to the event “On a per-
formance of the experiment, the resulting experimental value of random
variable z is equal to the indicated value of x,.”

We next define & function on this event space which nssigns n
probability to each event point. The funetion p.(zy) is known as the
probability mass function (PMF) for discrete random variable r,
defined by

pr(¥e) = probability that the experimental value of random variable ===
x obtained on a performance of the cxperiment is equal to z, %E
=

We often present the probability mass function as a bar graph drawn
over an event space for the random variable. One possible PXMT is
sketched below:

Py lxy)

Since there must be some value of random variable » associated with
every sample point, we must have

Z P;(Io) =1

and, of course, from the axioms of probability theory we also have

0 < pulze) <1 for nfl values of x4

Note thut the argument of a PMT is a dummy variable, and the
PMF for random variable z could also be written as p,(y), p.(®=), or,
as some people prefer, p.('}.  We shall generally use the notation p,{x,)
for a ’MIF.  However, when another notation offers advantages of
clarity or brevity for the detailed study of a particular process, we shall
adopt it for that purpose,



For an example of the PAF for a rundom variable, let's return
to the experiment of three flips of a fair coin, intreduced in the previous
We may go baek to the original sample space of that experi-
ment Lo collect pi(ho}, the PME for the total number of heads resulting
We obtain

p, (R, )= prebabiiity mass
function for random
variable i
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seetion.
from the three flips.
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2-3 Compound Probability Mass Functions

Py (Xayo) = probability that the experimenta! values of random varin-

We wigh to consider situations in which values of more than one random
variable are nszigned to each point in the sample space of an experiment.
Our discussion will be for two diserete random variables, but the exten-
sion to more than two is apparent.,

For a performance of an experiment, the probability that random
varieble z will take on experimental value 24 and random variable y
will take on experimental value yo may be determined in sample space
by summing the probabilities of each sainple point which has this com-
pound attribute. To designate the probability assignment in an zg,y0
event space, we extend our previous work to define the compound (or
Joint} PMTF for two random variables £ and y,

bles z and y obtained on a performance of the experi-
ment are equal to zo and yo, respectively

A picture of this function would have the possible event points marked
on an rg Yo coordinate system with each value of p,,(rs,¥0) indicated
a8 o bar perpendicular to the z,,4, plane above eachevent point. [We
use the word event point here since each possible (zq,y0) point might
represent the union of several sumple points in the finest-grain deserip-
tion of the experiment.]

By considering an g,y event space and recalling that an event
space is a mutually exclusive, collectively exhaustive listing of all pos-
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sible experimental outcomes, we see that the following relations hold:

E Z p!.‘J(IOryO) = l

T

E P:.-r(iﬁu,yu) —Pu(?lo) E p(.u(I’-byﬂ) = pl(r‘o)

1"1)
In situations where we wre concerned with more than one random varia-
ble, the PMI's for single random variubles, such as p.(x,), are referred
to as marginal PMEF's, No matter how many random variables may
be defined on the sample space of the experiment, this function p.(z,)
always has the same physical interpretation. For instance, p.(2) is
the probability that the experimental value of discrete random variable
z resulting from a performance of the experiment will be equal to 2.
Let's return to the example of three flips of o fair coin in Sec.
2-1 to obtain the compound PMF for random variables A (number of
leads) and » (length of longest run). By collecting the events of
interest and their probabilities from the sequential sample space in
Sec. 2-1, we obtain p,.(he,ro). We indicate the value of ph,(herq)
associated with each event by writing it beside the appropriate event
point.

o
2
1 1

& *a

2 L2
a 8 a
L L

8 8
L 1 I Y

7 7

The probability of any event described in terms of the experi-
mental values of random variables b and » may be found easily in this
event space onece ps {ho,7o) has been determined.

For instance, we may obtain the marginal PME's, py(he) and
7:(ro), simply by collecting the probabilities of the appropriate events
in the Agro sample space,

Event: expenmental value of ris equal to 2
11 .
'5 7" )-——-~ Evenl: experrmental value of ris equal to 1

1 :;“ 3 > ho
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The reader can check that the above procedure and a similar operation
for random variable 4 lead to the marginal PAIF’s

p,(hg) P iry)
4 /\

i 3

s 3

To

0 1 2 3 1 2 3

It is important to note that, in general, there is no way to go back
from the marginal PMF’s to determine the compound PMFE.

2-4 Condltional Probablility Mass Functions

Our interpretation of conditional probability in Chap. 1 noted that
conditioning a sample space does one of two things to the probability
of each finest-grain event, If an event does not have the attribute of
the conditioning event, the conditional probability of that event is set
to zero. For all finest-grain events having the attribute of the condi-
tioning event, the conditional probability associated with each such
event is cqual to its original probability scaled up by a constant [1/P(A4),
where 4 is the conditioning event| such that the sum of the conditional
probabilities in the conditional sample spuce is unity. We can use the
same concepts in an event space, as long as we can answer either “yes"
or “no” for each event point to the question “Does this event have the
attribute of the conditioning event?' Difficulty would arise only when
the conditioning event was of finer grain than the event space. This
matter was discussed near the end of See, 1-4,

When we consider a discrete random variable taking on a partic-
ular experimental value 2s a result of a performance of an experiment,
this is simply an event like those we denoted earlier as A, B, or anything
else and all our notions of conditicnal probability are carried over to the

discussion of discrete random variables. We define the conditional
I’MF by

W

i

I!H-

1

Psiv(zo| o) = conditional probability that the experimental value of
random variable r is zo, given that, on the same perfor-
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mance of the experiment, the experimental value of ran-
dom varinhle y is ya

From the definition of conditional probability, there follows

p..u(l'o,ya_) Pau(To, Vo)
iy Palz0)

As was the case in the previous chapter, the conditional probabilities
are not defined for the ease where the conditioning event is of proba-
bility zero.

Writing these definitions another way, we have

Pey(e | 3o) = and, similerly,  pyix(yo [ 20) =

Px,u(Io,yo) = P:(Io)Puiv(yo I -1'0) = PV(HO)PrIv(IO l yu)

Notice that, in general, the marginal PMI's p,(xo) and p,(ye) do not
specify p,..(zo,y0) just as, in general, p(A) and p(B) do not specify
p(AB).

Finally, we need a notation for a conditional joint probability
mass function where the conditioning event is other than an observed
cxperimental value of one of the random variables. We shall use
ProalTayel A) to denote the conditionul compound PMF for random
varizbles r and y given eveut 4. This is, by the definition of condi-
tional probability,

p;.;f(l;;:;f_f') if (zo,10) in A

0 if (zo,y0) in 47

We return to the hgrg event space of the previous sections and
its compound I’MF in order to obtain soinc experience with conditional
probability mass functions

Ps,uM(IO;UO] A) =

1
®3
h, rp evenl space including
o fp event
: W3 vaiue of joint PMF for each
event point
1 i
i %
SN
2 é I ho

We begin by finding the conditional PMF for random variable r, the
length of the longest run obtained in three flips, given that the experi-
mental value of 4, the number of heads, isecqual to 2. Thus, we wish to
find pa(re|2). Only two of the cvent points in the original Aere
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event space have the attribute of the conditioning event (Ay = 2), and
the relative likelihood of these points must remain the same in the
conditional event space. Either by direct usc of the definition or from
our reasoning in sample space, there results
Paalrol2)
% - - -;' rg=1
Pon(rg2) =12 rom2
1 0 for all cther
3 L values of ry
1 Y
0 1 2 3 2o
Had the conditioning event been that the experimental value of A were
equal to 3, this would specify the experimental value of r for this
experiment, because there is only one possible hora event point with
ha = 3. The resulting conditional PMiF would, of course, be
#,,(rl3)
e
p=3
IREE
0 ry¥3
0 ; 2 3 27

Conditional kyr,
event space given "ex-
perimental values of
hand r are not equal®

Suppose that we wish to condition the compound PME in the
frg,ry event space by the event that the experimental values of A and r
resulting from a performance of the experiment are not equal,  In
going to the appropriate conditional event space and nlloeation of con-
ditional probability, we remove cvent points incompsatible with the
conditioning event and renormalize to obtain

o
™

If we let A represent this con.
2 ditioning event, the numbers
N beside each event point are

s
T
L]

cqual to p, ,, (A, rolA)

1
1+ .f.-

1 1 H
0 1 2 3 rdl

Finally, we can note one rensonable example of a phenomenon
which was mentioned carlier. We have stated that we cannot alwuys
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Random variables 22 and y wre defined to be independent if and only
if pue{of o) = Pu{y0) for all possible values of =, and ye.

Random variables z and y are defined to be conditionally independent
given event A [with P{A4) » 0] if and only if

Prvia(Zoyo | A) = paialzo | A)pyialyo | 4)

INDEPENDENCE OF RANDOM VARIABLES bl

directly condifion an evenf space by an arbitrary event defined on the
experiment. For our example, if we were told that the second flip
resulted in heads, our simple conditioning argument cannot be applied
in an hgre event space because we can’t answer uniquely “yes"” or “no”’
a5 to whether or not each event point has this attribute. The eondi-
tioning requires information which appeared in the sequential sample
spave of See, 2-1 but which is no longer available in an ke, cvent space,

2-5 Independence and Conditional Independence of Random Variables

In Sec. 1-6 we obtained our definition of the independence of two
events by stating formally an intuitive notion of independence. For
two random variables to be independent, we shall require that ne possi-
ble experimental value of one random variable be able to give us any
new tnformation about the probability of any experimental value of the
other random variable. A formal statement of this notion of the inde-
pendence of two random variables is

OIS

From the definition of the conditional PMI[7s, as long as the
conditioning event is of nonzero probability, we muy abwvays write

PralZoyn) = Pz(ﬂ‘a)mp(yo r Tl = pw(UO)Prlv(IU, Ya)

and, substituting the above definition of independenee into this equa-
tion, we find that p,.(yef o} = p.(yo) for ull xro,yo requires that
Po.{to| 1) = p:lxe) for all x40 thus, one equivalent definition of
the independence condition would be to state that random varizbles z
and y ure independent if and only if p,(roga) = p(zo)p. (4o} for all
Yo, lfo.

We define any number of random variables to be mutuafly inde-
pendent if the compound PMFE for all the random variables factors
into the product of ail the marginal PA[I7s for all nrguments of the
compound DA

It is nlso convenient to define the notion of conditional indepen-
dence.  One of several equivalent definitions is

=
e
=

for all {xo,y0) %
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Of course, the previous unconditional definition may be obtained by
sctting A = U in the conditional definition. The function p,4(ze| A)
is referred to ns the conditional marginal PMTF for random variable =
given that the experitnental outcome on the perforinance of the experi-
ment had attribute A.

We shall learn later that the definition of independence has
implieations beyond the obvious one here. In studying situations
involving several random variables, it will normally be the ease that, if
the random vartables are mutually independent, the analysis will be
greatly simplified and several powerful theorems will apply.

The type of independence we have defined in this section is often
referred to as frue, or sletistical, independence of random variables.
These words are used to differentiatc between this complete form of
independence and a condition known as fnear independence. The
latter will be defined in Sec, 2-7,

The reader may wish to use our three-flip experiment and its
ho,ry cvent space to verify that, although 4 and r are clearly not inde-
pendent in their original event space, they are conditionally independent
given that the longest run was shorter than three flips.

2-6 Functions of Random Varfables

A function of some random variables is just what the name indicates—
it is a function whose experimental value is determined by the experi-
mental values of the random variables.  For instance, let A and »r again
be the number of heads and the length of the longest run for threc flips
of a fair coin,  Some functions of these random variables are

v(h,r) = At wlh,r) = |h —r| z(h,r) = e* log (r cos k)
h h 4+ - < 2h
y(hyr) = max (F’ .Trh) 2(h) = | o r >

and, of course, A and r.

Functions of random variables are thus new random variables
themselves.  The exporimental values of these new random variables
may he displayed in the event space of the original random variables,
for instance, hy adding some additional markers beside the event points.
Once this is done, it is & simple matter to assemble the PMF for a
function of the originul random variables.

For example, let random variable w be defined by w = [ — .
We'll write the value of w assigned to each cvent point in 2 box beside
the point in the hqro event space,
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and then working in the above event space, we can rapidly collect

2 O%E] o-:—@

1 oé—@ o—;-m

a 1 F 3 >ho
w (o), to obtain

P lw,)
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3
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2-7 Expectation and Conditional Expectation

Let z be a random variable, and let g(z) be any single-valued function
of its argument. Then g(z) is a function of a random variable and js
itself a random variable. We define E[g(z)], the expectalion, or expecied
value, of this function of random variable z, to be

Elg(z)] = ¥ glzodp.(as) = g(x)

and we also define Eg(x) | Al, the conditional expectation of g(x) given
that the cxperimental outeome has attribute A, to he

s

==

Elg(x) | A] = ¥ gxo)paalre [ A) = g(z | A) ==
X3 Ez___:
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As usual, thig definittion for the conditional case includes the uncondi-
tional case (obtained by setting A equal to the universal event),

Consider the event-spuce interpretation of the definition of
Elg(z)] in an zy event space. For each event point z,, we multiply
g{xo) by the probability of the event point representing that experi-
mental outcome, and then we sum ull such products. Thus, the
expected value of g(x) is simply the weighted sum of all possible experi-
mental values of g(z), each weighted by its probability of oecurrence
on a performance of the experiment. We might anticipate a close
relationship between E[g(2)] and the average of the experimental values
of g(x) generated by many performances of the experiment. This type
of relation will be studied in the last two chapters of this book.

Certain cnses of g(x) give rise to expectations of frequent interest
and these expeetations have their own names.

If glx) = z:
Flg(z)] = § £0pu(es) = &

zy

If g(z) = [x — E(z)]":
Elg()} = ¥ g0 — E(x))*pu(2e) = (z — 2)7

The quantity z" is known as the nth moment, and the quantity {x — )"
is known as the nth central moment of random variable z.

Often we desire a few simple paramecters-to characterize the
J.PL\I F for a particular random variable. Two choices which have both
intuitive appeal and physical significance are the expected value and
the sccond central moment of the random variable. We shall discuss
the intuitive interpretation of these quantities here. Their physical
significance will become apparent in our later work on limit theorems
and statistics.

The first moment {or expected ralue or mean value) of random
variable x is given by

|

F
|

F(z) = ¥ zop.(zo)

and if we picture a PMTF bar graph for random variable # to be com-
posed of broomsticks on a weightless axis, we may say that F(z)
speeifies the location of the center of mass of the PMFE.

The sccond central moment E{(z — F£(x)]*] is » measurc of the
second power of the spread of the PMT for random variable ¢ about its
expected value, The second central moment of random variable ¢ is
known as its varience and is denoted by #,2.  The square roct of the
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variance, o, 5 known us the standerd deviation of random variable r
and may be considered to be one charaeterization of the spread of a
PMT about J¢(z). Here are nfew PMI's for random variable «, each
with the same mean but different standard deviations.

p:(xo) P.r(xo)
10 E(x)=0
g =0
g, =0
T 2 3 0
Px(“'o) pe(xy)
E{x}=00 E(x)y=00
ai = 4.0 ol = 250

ay =20 g, = 158

-1 © 1 2 a1 ~-~°°® -3 -2 -1 ©o 1

RPN B D
: PR ¥ SO
I I I |
1 1 L L 3 x ! L Sy
7 2 3 0

A conditional central moment is a mensure of the nth power of
the spread of a conditional PMT for a random varinble about its con-
ditional mean. lor instance, given that the experimental outcome had
attribute 4, the conditional variance of random variable x, ¢, is

given by
aa = Y iwe — E(c! A)Ppaalzel 4) %
==—}

For functions of several random variables, we again define expec-
tation to be the weighted sum of all possible experimental values of the
function, with each such value weighted by the probability of its
vceurrence on a performance of the experiment. Let g(z,y) be a
single-valued funetion of random variables r and y. By now we are
familiar enough with the ideas involved to realize that a definition of
Elg(z,y) | Al, the conditional cxpectation of g{z,y), will include the
definition for the unconditional case.

Elgxy) [ 4] = 3 ¥ glxayo)Pragalzona | A)

I @

We should remember that in order to determine the expectation
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of g{x) lor of ¢(x,y) or of any function of g{x,y}] it is not necessary that
we first determine the PMF p,{g,). The caleulation of Elg(z,y)] can
always be carried out directly in the zo,l70 event space (see Prob. 2.10),

We wish to establish some definitions and results regarding the
expected values of sums and products of random variables. From the
definition of the expectation of a function of several random variables,
we may write

Ex + %) = Y.3 (2o + ya)pey(Zoyo)

Te Mo
= z z Iﬂpr.u(zﬂryﬂ) + E z UuPny(Io,Uo)
I8 e Ir pe

We'll sum this We'll sum this
over y» Arat over Is firat

= Y zop:(zo) + ¥ wop,(yo) = E{z) + E(y) = E(x + y)

The expected value of the sum of twe rendom variables is alwoys
equal Lo the sum of their expected values. This holds with no restrictions
on the random variables, which may, of course, be functions of other
random variables. The reader should, for instance, be able to use this
result directly in the definition of the variance of random variable z
to show

o' = Eflz — E@)*] = E@@) - [E@)]

Now, consider the cxpected value of the product zy,
E(zy) = 3, ¥, 2popza(zoyo)

T We

In general, we can carry this operation no further without some knowl-
edge nbout p.,{(zoys). Clearly, il x and y are independent, the above
expression will factor to yield the result E(zy) = E{x)FE{y). Evenifl
z and y are not independent, it is still possible that the numerical result
would satisfly this condition,

If F(zy) = E(z)E(y), random variables = and y are said to be linearly %

this condition.}

independent. (Truly independent random variables will always satisfy §

An important expectation, the covariance of two random vari-
ables, is introdueed in Prob. 2.33. Chapter 3 will deal almost exclu-
sively with the properties of some other useful expected values, the
transforms of PMF's. We shall also have much more to say about
expected values when we ronsider limit theorems and statistics in
Chaps. 6 and 7.
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2-8 Examples Involving Discrete Random Variables

We have dealt with ouly one example related to our study of discrete
random variables. We now work out some more detailed examples.

example 1 A biased four-sided dieisrolled once. Random variable N is defined

to be the down-face value and is deseribed by the PMF,

N
p.-v(No) — -m fDl'Nc= 1,2, 3,4
0 for all other values of N,

Based on the outcome of this roll, a coin is supplied for which, on any
flip, the probability of an outcome of heads is (N + 1)/2N. The eoin
is flipped once, and the outcome of this flip completes the experiment,

Determine:
(a) The expected value and variance of discreie random variable N,
{(b) The conditional PMF, conditional expected value, and conditionat
variance for random variable N given that the coin came up heads.
(c) If we define the events
Event A: Value of down face on die roll is either 1 or 4
Event H: Outeome of coin flip is heads
are the events A and H independent?

We'll begin by drawing a sequential sample space for the experi-
ment, labeling all branches with the appropriate branch-traversal
probabilities, and colleeting somne relevant information.

PL:) H A AH

I/H" Z v v v
\O\TO 2% y

3 3

/‘/'/H. 2 v

\%\T. i]_E

\}\TO 2

3 20

5 5
/-_8-/‘". 20 v v v

YR =1 PUD=Y pa)=19 piapy. L
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a Applying the definitions of meun and varinnce to random variable ¥,
described by the DAY py{No) given above, we have
EN) = § Nopu(No) = 1 v + 2 5 + 3 o + 4% = 30
Ne
avt = 3 (Vo — E(N)|?px(No)
Na
= (=2 (1) 0+ 1P = 10
h Given that event I7 did occur on this perforinance of the experiment,
we may condition the above space by event /7 by removing all points
with attribute 7 and scaling up the probabilities of all remaining events
by multiplying by 1/P(If) = 10/7. This results in the four-point
conditional event space shown below. To the right of this conditional
event space we present the resulting conditional PME for random vari-
able N, given that event /I did occur.
Py Ny [ )
N
P {:|H) el
2 W[~ TTTTTTTTre
oH, Ny =1 z
oH Ny=2 &
o H Ny =3 &
SH Ny=4 >
> No

Applying the definitions of the mean and variance in this conditional
event space, we have

EWN[H) =Y NpxwNo | H) = 1 e+ 2 % +3 W+ =%
Nao
ox(at = g: (No — E(N | H)*pyiu{No | H)

= (= A+ (-9 A+ E A3 =18

¢ We wish to test P(AH) L P(A)P(H), and we have already col_lecbed
each of these threc quantities in the sample space for the experiment.

P(A) =4 PH) =4  PAH) =1}

8o the cvents A and H are independent.
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example 2 Patrolman G. R. Aft of the local constabulary starts each day by

deciding how many parking tickets he will award that day. For any
day, the probability that he decides to give exactly K tickets is given
by the PAIF

5 — Ka _
PK(KU) — ,T for Kq— 1,2, 3, or 4

0 for all other values of K,

But the more tickets he gives, the less time he has to assist old ladies
at strect crossings. Given that he has decided to have a K-tieket day,
the conditional probability that he will also help exactly £ old ladies
eross the street that day is given by

1 . -
prrl{le| Ko = {5_—K‘G il €L L5 — K,y
0 f Lo <lorif Iy >3 — K,

His daily salary § is computed aceording to the formula
S=2K+L {dollars)

Before we answer some questions about Officer Aft, we should

be sure that we understand the above statements. For itnstance, on a

day when Officer Aft has decided to give two tickets, the conditional

PAIL states that he is equally likely to help one, two, or three old

ladies. Similarly, ou o day when he has decided to give exactly four

tickets, it is certain that he will help exactly one old lady cross the
street.

{n) Determine the marginal PMF pr(Lo). This marginal PMF tells
us the probability that Officer Aft will assist exnctly Lg old ladics
on any day. Determine also the expected value of random vari-
able L.

(b) Itandom variable §, Ofticer Aft’s salary on any given day, is a func-
tion of random variables K and .. Determine the expected value
of the gquantity S(L,K).

{e¢) Given that, on the day of interest, Officer Aft carned at least $6,
determine the conditional marginal PMF for random variable K,
the number of traffic tickets he awarded on that particular day.

(d) We define
Event A: Yesterday he gave a total of one or two parking tickets,
Event B: Yesterday he assisted a total of one or two old ladies.
Determine whether or not random vartables K and L are condi-
tionaily independent given event AB.

From the statement of the example we can obtain a sample space
and the assignment of & priort probability measure for the experiment.
We could begin with a sequential picture of the experiment such as
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or we might work directly in a K, Ly coordinate event space with the
probability assignment px (Ko, Lo) determined by

puL(KoLo) = px(K)prx(La| Ko)

5 - KIJ l . N -
= ——la—f)—“:_—k*o lfKo=l,.2,3,"lﬂ.ndl£Lo‘_\_U—I\o
0 otherwise
={01 ifKn=_l,2,3,4&ndlSLoSﬁ"Ku
0.0 otherwise
Lg
e
- e We have established that each
aof the ten possible event paints
has an a priari probability of 0.1
- . 4 af representing the outcome of
. any particular day in the life
T . . of Qtticer G. R. ARt
1 L . L] -
- | [ ! i
2 1 2 3 4 2Ky
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The caleulation pr(Lo) = E pr.x{Lo,Ks) is easily performed in our
Ks

event space to obtain

.ul I

To find the expectation of I, we could multiply the experimental value
of I corresponding to each sample point by the probability measure
assighed to that point and sum these products. But since we already
have pr(Lq), it is quicker to work in the event space for random variable
L to obtain

B(L) = 3, Lplle) = 1o ofs + 2 f5 + 3 5 + 4 1g = 20
L
Although it has happened in this example, we should note that there is

no reason whatever why the expected value of a random variable need
be equal to a possible cxperimental value of that random variable.

b (S) = ¥ ¥ (2Ke + Lo)px (Ko, o). We can simply mulliply the

B tLy)
AN
04+
03
Q2
0.1k
0
Ly
N
4 ®6
3= *5
2}- a4
1 a3

Ko Le
experimental value of S corresponding to each event point by the
probability assignment of that event point. Let’s write the corre-
sponding experimental value of 8 beside cach event point and then
compute E(S).

Ly
ek el

e5 a7 9
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ES) =18 +4+5+6+5+86+7+7+8+9) =36

¢ Given that Officer Aft earned at least $6, we can easily condition the
above event space to get the conditional event space (still with the
experimental values of S written beside the event points representing
the remaining possible experimental outcomes)

L,
- [ X
Since the relative likehhood
Condit:onal K, .L° 3 o7 of all event points included
:amp-!_e spa'nc'e gu;ren in the conditioning event
xpertmental outcome can'l change, these remain -
had attribute S=60 2~ *6 *9 ing six event points are stil
equally probable
1p- .7 .9
| ol | 1 N
0 1 2 3 a2 Ko

Thus, by using the notation Event C: § > 6, we have

(K, 1C)

Pric

K,

o 1 2 3 3
Recall that we can use this simple interpretation of conditional prob-
ability only if the event space to which we wish to apply it is of fine
enoughi grain to allow us Lo classify each event point as being wholly in
C or being wholly in .

d There are only four (equally likely) event points in the conditional
Ko,Lg event space given that the experimental outeorne has attribute

AB,
Ly
Conditional K Lg event 2 " .
space given experimental
ouicome has attribute 48 1 . °
L
0 12 Ko

|
|
|
f
|

A BRIEF INTRODUCTION TO THE UNIT-IMPULSE FUNCTION 63

2-9

We wish to check
prrian(Ko o | AB) L priaa(Ko| AB)prjas(Le | AB)

Each of these three PA s is found froin the conditional Ko, Lo event
space presented above,

for all Ky, Lo

pK.L|.4B([(n,Lo | A B)

1l

+ fKy,=1,2and I, =1,2
Q otherwise
ifKy=1,2
otherwise

Prian(Ko| AB) = [

S e

1 T -

Prian(lo | AB) ~ B gtllllgrwislej ?
The definition of conditional independence is found Lo be satisfied, and
we eonclude that random variables K and L, which were not inde-
pendent in the original sample space, are eonditionally independent,
given that the cxperimental outcome has attribute AB. Thus, for
instance, given that AB hes ovcurred, the conditional marginal PDF
of vurinble L. will he unaficeted by the experimental value of random
variable K.

In this text, the single word independence applied to random
variables is always used to denote stafistical independence.

A Brief Introduction to the Unit-impulse Function

To prepare for o general discussion of continuous random variables,
it is desirable that we become familiar with some properties of the
unit-tmpulse function. Qur introduction to this function, though
adequate for our purposes, will lack certain details required to deai
with more advanced matters,

The unit-impulse function up(zs — a) is o funetion of xo which
is equal to infinity at z, = a and which is equal to zero for all other
values of zg. The integral of wo{zo — a) over any interval which
includes the point where the unit impulse is nonzero is cqual Lo unity,

One way to obtuin the unit impulse gs(rs — @) is to consider the
limit, as A goes to zero, of

Hylx,~a) I"ﬁ*i _
1
i
i
1 )
0 a_% a a‘% T

—r
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which, after the limit is taken, is normally represented as

izy(x,—a)

0 a —>%

where the scale height of the impulse is irrelevant and the total aren
under the impulse function is written beside the arrowhead. The
integral of the unit-impuise function,

[ walze — a) dx

g -

isa funetion known as the unit-step function and written as u_(xo — a).

@, {x,—n)

N
0 ® X5

Thus an impulse may be used to represent the derivative of a function
at a point where the function has a vertical discontinuity.

As long as a function g(x,) does not have a discontinuity at
o = @, the integral

fo{zo)uo{xs — a) dz,

over any interval which includes zo = a is simply g(a). This results
from the fact that, over the very small range where the impulse is non-
zero, g(rq) may be considered to be constant, cqual to g(a), and factored
out of the integral.

2-10 The Probabhility Density Function for a Continuous Random Variable

We wish to extend our previous work to include the analysis of situa-
tions involving random variables whose experimental values may fall
anywhere within continuous ranges. Some examples of such con-
tinuous random variables have aiready occurred in Secs. 1-2 and 2-1,

The assignment of probability measure to continuous sample and
event spaces will be given by a probability density function (PDI?).  Let
us begin by considering a stngle continuous random variable r whaose

T T AT Ay P T T T T R T R S S T T .o
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event space is the real line from zy = — = toz, = =. We define the
DY for random variable z, f:(xo), by
=

= -_-}
== =]

b
Prob(a < z < b) = [ f.(20) dio %

Thus, f.(zo) is a density of probability measure on the event spuce
(the x, axis) for random variable r.

Any event can be collected by selecting those parts of the zo axis
which have the attribute of the event. I‘or instanee,

/—The evenl: Ix|<1
P J 1 1 >X

1 1
A~z -1 0 1 2 3 770
[The event; x < -%
. " : . 1 ! PNy
-3 -2 -1 0 1 2 3

The probability of any event is found by cvaluating the integral of
f.(xo) over those parts of the event space included in the event,
fx(x,)

This area is equal to the probability
of the experimentat sutcome ixl<1

This area is equal to the prabability
of the experimental cutcome <3

Should the PDT f,(r,) contain impulses at either a or b, the
integral [bf,(ro) dz, is defined to include the arca of any impulse at the

upper limit but 2ot the area of any impulse at the lower limit. Note
that this convention is determined by our choice of the inequality
signs in the definition of fi{rs).

Based on our understanding of event space and probability
measure, we note that any PDF must have the following properties:

N L

“ta NS s e

S P

B e
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[T itz dze = 1

If we wish to reason in terms of the probability of events (of nonzero
probability), it is important to realize that it is nol the PDF itsell,
but rather its integral over regions of the event space, which has this
interpretation. As a matter of notation, we shall always use f.(z.}
for PDF’s and reserve the letter p for denoting the probability of events,
This is consistent with our use of p.(zs) for a PMF.

Note that, uniess the PDF happens to have an impulse at an
experimental value of a random variable, the probability assignment to
any single exact experimental value of a continuous random variable
is zero. [The integral of a finite f,(x,) over an intervel of zero width is
erqual tozero.] This doesn’t mean that every particular precise experi-
mental value is an impossible outcome, but rather that such an event of
probability zero is one of an infinite number of possible outcomes.

We next define the cumulative distribution function (CDF) for

random variable z, p.<(xd), by

Paclms) = Prob(z < w) = [ fulzo) do %

0 Sfx(Iu) < w

The function p,<(zs) denotes the probability that, on any particular
performance of the experiment, the resulting experimental value of
random variable z will be less than or equal to z,.  Note the fellowing
properties of the CDF:

Prg(®) =1 peg(—w) =0
pxs(b) 2 'ng(a) for b 2'_ a
Probla < £ € b) = p.<(b) — p:<(a) forb > a

Edi; pe<(ze) = fulzo)

The CDT will be especially useful for some of our work with continuous
random variables. For a diserete random vartable, the CDF is dis-
continuous and therefore, to some tastes, not differentiable. For our
purposes, we have defined the derivative of the CDF at such a dis-
continuity to be an impulse of infinite height, zero width, and ares
equal to the discontinuity.

Let's consider an experiment involving a random variable z
defined in the following manner: A fair coin is flipped once. If the
outcome is heads, the experimental value of r is to be 0.2, If the out-
come is tails, the experimentnl value of x is obtained by one spin of a
fair, infinitely finely calibrated wheel of fortune whose range is from
zero to unity. This gives rise to the PDF

" A m— = e g
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felxg)
A~

O
0.5
The scale height of the impulse
0.5 in the diagram is irrelevanl. The
are3 confained under the impuise
is written alongside it.

N
0 o0z 10 > %o

and to the CDF

'
'
1
1
'
I
]
1
]
]
1
1
1
I

o
-
T

N

o 02 06 10 7 o

Beeause of the integration convention discussed earlier in this section,

we can note that p, <(xo) has (in principle) its discontinuity immediately
to the left of x, = 0.2.

We cpnsider one simple example which deals with o continuous
Irandom variable.  Assume that the lifetime of a particular component
is known to be a random variable described by the DY

f(xy)

0.50

0.2%

% ; 3 4 ; 3 —> x,{months)

Lcl-.t"s hegin by deterniining the a priori probability that the component
fails during its second month of use. In an z, event spice we can col-
lect this event,

/— The evant: component fails during its
/ second month of use

L i I { L N

aQ 1 2 3 3 g 7 g
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T
Thus, we require the quantity Prob(l < 5 < 2) = L felxa) drs = 1y,
which is equal to the shaded ares in the following sketeh:

IRES
T\ — This ares 15 egual do the profablity
| £ ynat the componant wil f2il durnng

; s second monih of use

i 1 F] 3 : 5 5
Since random variable r does uot have o nonzero probability of taking
on an experimental value of precisely 1.0 or 2.0, it makes no difference
for thisexample whether we write Prob{l < x < NorProbil <z < 2)
or Prob(l < z < 2) or Probi{l < » < 2),

Npxt, we azk for the conditional probabilily that the component
will fail during its second month of use, given that it did not fail during
the first month,  We'll do this two ways.  One approach is to define
the events,

~Even! A Compenent lads

dusrmng forst manih during fecond month

I i 1 ) 1 »‘JIIJ ! !

/—Evmt B Companent lads

S

2 o ; F) i 4 g

and then use the definition of conditional probability to determine the
desired quantity, P(B ] A’). Since it happens here that event B is
included in event A7, there follows

PA'E) Pl
P(A"y P4

P{R) = ¢ {previous resull)
PREA) = §

As we would £xpect from the nature of the physical situation in this
problem, our result has the property P(B|A") > P(B).

One other approach to this question would he to condition the
event space for random variable £ by noting that experimental values
of ¢ hetween 0.0 and 1.0 are now impossible,  The relative probabilities
of all events wholly contained within the conditioning event A" are to
remain the same in our eonditional space as they were in the original
ovent space.  To do this, the a priori FDF for the rr_-mnining_ cfvent
points must be multiplied by a constant so that the resulting cnmhtmngl
PDF for z will integrate to unity  This loads to the following condi-
tional PDF fra(zy | A'):

P(B|A"Y =

PAAY = [ fuao) dxo = e

!
|
;
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£ il A’}
s o~ This zrea 15 equal fo the conditional probability of
7| fankere in The secardd manth, green that fadure did
¥ nat gocur during the liest monih, Area -%
o i 2 3 ] . %

In this latter solution, we simply worked directly with the
notien which was formalized in See, 1-4 to obtan the definition of
conditional probabitity.

Befnre closing this section, let us ohserve that, once we are
fumiline with the unit-impulse function, 2 PMEF may be considered to
represent s special type of PDEF, Por instance, the following prob-
ability noass function and probability dessity funetion give identieal
dexeriptions of some rapdom varinble x.

pelag} felzg)
P E
auife e el =
d E
o8-
'y L]
o ! H 3 ¢ o i 2 1 # %

Crnly when there are partionlar advantoges in doing so shall we repre-
sent the probability assignment to a purely diserete random variable
by u I'DTF instead of a PAF,

2-11 Compound Probability Density Functions

We may now consider the case where several continnous random
variables are defined on the sample spare of an experiment. The
nssignment of probability measure is then specified by a compound
probability density function in an event space whose coordinates are
the experimental values of the random variahles.

In the two-dimensional event space for the possible experimental
values of random variables r and y, the compound PDF £, ,(rq,50) may
be pictured as a surface plotted above the ryps plane. The volume
enclosed between any area in the ry,ys plane and this f, (ze.y:) surface
is equal to the probability of the experimental ovteome falling within
that nrea.  For any event 4 defined in the ryy plane we have
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%

x
[

B

e

=

- 7 F |

The probability that the experimental value of = will fall between
zp and z4 + dr,, which we know must be equal to f,(x,) dr,, is obtained
by integruting the compound PDI over the strip in the evenl space
which represents this event,

Pob(n, < x Sagedn) = [ AU Mixdy,
i b

= g [ 1, (g Mty = (g g
ol =

For the continvous case, we oblain the marginal PDF's by integrating
over other random varisbles, just as we performed the same operation
by summing over the other random variables in the discrete case.

120 = [T fralzayo) due futwe) = [ Fealzayo) dze
And, in accordance with the properties of probabilily measure,

0 < .rrq{:irw) 5 - f:_ e I':___' L..{n.y-} dry dyq. = ]
For convenience, we often use relations such as

Probl(zy < z < z¢ + dty) = filxe) dxg
Probize < 7 < 5o + d5g, 4o < ¥ < wo + dye) = [oolZo o) dro diype

It should be remembered that such relations are not valid at points
where a PDJF containa impulses. We shall not add this qualification
each (tme we employ such incremental statements.  In any phyaical prob-
lem, as long as we are aware of the presence of impulses in the PDF
(nonzero probability mass at & point), this situation will cause us no
particular difficulty.

We close this section with a simple example. Suppose that the
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compaund PDF lor random variables & and y is specified to be

A f0Sm<Ensl
.r-..{«‘l'u-.ll’u} = u:‘ :Fu'lf‘.l'ﬁ'yI;E o3

and we wish to delermine A, f,(z:), and the probability that the product
of the experimental values of r and ¥ obtained on a performance of tha
experiment is less than or equal to 023 Three relevant sketches In
the re, ye event space pre

Ragion m which X .J', .
I,_,Iq,, ¥, ) Is nontena Cvenl g <zgs, +ds, ‘I\ R
,lr Lo 10
1'
o % o o3 o o
Ty” Xy tde, bvant; sy < 0.5

The value of A will be obtained from
Lodn [ du e =1

== - —-
where our notation will be that the rnghtmost integration will always

be performed first, Thus we have
I [ 1 A
L dry fn_pdy“tx@ = L Azt dey = 7 = 1 A =23
To determine the marginal PDF f.{zg), we use
Sulza) = j' Foclzage) dys = { o edys MO 3 <]
b 0 otherwise

Note that we must be careful to substitute the correct expression for
Jialxe,ya) everywhere in the zeye ovent space.  The result simplifies to

dxg? 0 <z <1
1] otherwise

To determine the probabilivy of the event zy < 0,25, there are
severn] ways to proceed. We may integrate f, {zsp¢) over the area
representing this event in the rey, event space.  We may integrate the
joint PDF over the complement of thiz event and subtmet our result
from unity. In each of these approaches we may integrate over zp
first or over yq first. Note that each of these four possibilities is equiva-
lent bt that one of them involves far less work than the other three,

Si{zo) =
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We now display this result and complete the problem by considering a
more detailed sketch of the rgyq event space,

Y9 = %y

Only if we integrate the jont PDF here,
,/— aver the comptement of the event of

| " interest, and if we integrate over y,

first, may we perform the double

integration by using only one set

of limits for the entire integration

1.0 Ty
Prob (xy < 0.25) = 1-] dzof dy, 3x,=05
035

ir,

This last discussion was a matter of elementary caleulus, not probabil-
ity theory. However, it is important to realize how a little fore-
thought in planning these multiple integrations can reduce the amount
of valeulation and improve the probability of getting a correet result,

2-12 Conditicnal Probabllity Density Functions

Consider continuous random varizbles ¥ and y, defined on the sample
spaee of an experiment.  If we are given, for i particular performance
of the experiment, that the experimental value of y is hetween yo and
ya + dyo, we know that the event point representing the experimental
outeaome must lie within the shaded strip,

Yo
Yo +dyo’\/‘\ o
# = .
Yo' '

10,/ \«xo+dx0

PO

—> g

We wish to evaluate the quantity f,, (o | 30) dxo, defined to be
the conditional probability that the experimental value of x is between
a2y and zy + drg, given that the experimental value of y is between y,
and y, + dyo.  Our procedure will be to define the incremental events
of interest and substitule their probabilities into the definition of con-
ditional probability introeduced in Sce, -4,

Event A: 2y < x < 19 + dxy Event B: y, < y < yo + dya

_ P(AB) _ feu(zoye) d2odye _ feu(Zoya)
PATEY ="pay =7 fwdye ~ flw)

E
|
|
!

:
¥
g
i
£

-

T T TR WY

—re T

|
!
i
|
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Since the quantity f.1, (o | yo} drs has been defined to equal P{4 | B),

we have -
Ferolza ) yo) = -[i}f(i;_;_;‘@ and, similacly,  fy(po | zo) = fz}fg;l)l_o)_ | |
p——— =

The conditionnl PDIs are not defined when their denominators are
equal to zero.

Note that the conditional PDF f.), (s [ 5o), us & funetion of xo
fora given yq, is a curve of the shape obtained at the intersection of the
surface f. ,(to,50) and a plane in three-dimensional space representing
a constant value of coordinate yq.

Using the event-space interpretation of conditional probability,
we readily recognize how to condition a vompound PDI given any
cvent A of nonzero probability,

f.,y(Iu,yu)
P4)

0 if Zo,yo in 4°

if zo50 i A
Srmalzogo| A} = mye

As an example of some of these concepts, let’s continue with the
example of the previous section, where the I'DY for continuous random
variables = and y is specified by

3 0Ll
fr.u(IO)yo) - O othenvise

Joint PDF for x and y is
equal to Jx, (nside this
triangle and is equat to
Ze10 everywhere else

X,

10 0

We'll ealeulate f,,. (5o | o), taking advantage of the faet that we have
already determined [ (x).

3 1 .
MWHW=LMWQ:3$:E 10 < g0 < a0< 1
ulE N
Jlza) 0 otherwise
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fet9lz)
A
1
%o
/ \y
0 X 1 i}

2-13

Since the a priori PDF f; ,(x,,y0) is not a function of y,, it is reasonable
that the conditionat PDF f,,.{yo | &) should be uniform over the possi-
ble experimental values of random variable . For this example, the
reader might wish to establish that '

29:;.
1 — yo*

0 otherwise

f:|y(x0| Yo} = 0Lz <l

Independence and Expectation for Continucus Random Variables

Two continuous random variables r and y are defined to be indepen-
dent (or stafistically independent) if and only if

Fewla ] po) = fe(zo)

and since £ (zo,yo) = felzodfui(vo | 20) = fulwa)ata(xo | yo) is always true
hy the definition of the conditional PDI”s, an equivalent condition
for the independence of z and y is

fr.v('rﬂsyﬁ) = f:(ﬂ'o)fy(yo)

We say that any number of random variables are mutually indepen-
dent if their compound PDF factors into the produet of their marginal
PDF’s for all possible experimental values of the random variables.

The conditional expectation of g(x,y), 2 single-valued function
of continuous randomn variables r and y, given that event A has oceurred,
is defined to be

for all possible xo,y0

for all 20,5,

oy [ A) = [ 7 soydemalzoye] A) dro dye

All the definitions and results obtained in Sec. 2-7 carry over directly
to the continuous case, with summations replaced by integrations.

2-14  Derived Probabliity Density Functions

.“FC‘ have learned that g(r,y), a function of random variables z and y,
is itself a new random variable. From the definition of expectation,
we 2lso know that the expected value of g(x,), or any function of glz,y),

FIRAT
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may be found direetly in the xo,y event space without ever determin-
ing the PDF f,(g0).

However, if we have an interest only in the behavior of random
variable g und we wish to answer several questions about it, we may
desire to work in agoevent space withthe PDF f,(g,}). A PDF obtained
for a function of some random variables whose PDI is known is referred
to as a derived PDF.

We shall introduce one simple method for obtaining a derived
distribution by working in the c¢vent space of the random variables
whose PDI is known. There may be more cfficient technigues for
particular classes of problems.  Our method, however, will get us there
and beeause we'll live in event, space, we'll always know exaetly what
we arc doing.

To derive the I'DF for g, & function of some random variables,
we nced to perform only two stmple steps tn the event space of the
origina] random variables:

sTEP; Determine the probability of the event g < g, for all
values of gq.
step: Differentiate this quantity with respect to g, to obtain

felgo).

ARG

The first step requires that we caleulate the cumulative prohability
distribution function p,<(ge). To do so; we simply integraie the given
PDI for the original randem variables over the appropriate region of
their event space.

Consider the following example: A fair wheel of fortune, con-
tinuousty calibrated from 0.00 to 1.00, is to he spun twice, The expert-
mental values of random variables x and y arc defined to he the readings
ont the first and sccond spins, respectively,  [By “fair'’ we mean, of
course, that the wheel has no memory (different spins are independent
events) und that any intervals of equat are are equally likely to include
the experimental outcome.] We wish to determine the PDE f,(gq) for

. ) ) z
the ease where random varinble g is defined by g{z,y) = ;

The example states that the spins wre independent.  Therefore

we may obtain the joint PDF

= Je(wlfy(p) - 0.0  otherwisc

Next, in the e,y event space, we collect the event g < g,
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For tha cose |5, < o

¥, T
i /”a . _?f
12
F— Event:
&350,
0 TEEEEAL
Twn aketehes are given to show thut the boundaries of the event of
interest are different for the cases go << 1 ond g9 > 1. For our par-
ticular example, hecnuse of the very special fact that Fralzaus) is
everywhere equal to cither zero or unity, we ean replace the integration
[}
Pozlf) = [f S ulanit) daa i
by a simple ealeutation of arcas to nhtain, for the first step of our
Lwaestep procedure,
i ga= 0
Fa
Poslon) = { 2 0Sgp=l
1
R |l <gg < m
2% EZhz=
AL this point, of course, we may cheek that this CDF is a
manatonically inereasing lunction of ry and that it increases from zero
ab go = —o tounity at g = + e, Now, for step 2, we differentiate
Paclgn} to find
f go = 0
fn{!ﬂ} = 0.5 ﬂ £ Fa E:. 1
ﬂ-ﬂﬂ’u—' l €go =5 =
Ly
AT
0 5
azs

T T PRy R R e ST " S S A SR L Sy now T G I ST TT I, - LT i S T T LT e

DERIVED PROBABILITY DENSITY FUNCTIONS Firs

If we wish to derive a joint 'DF, zay, forglz,y) and iz ), then
in step 1 we collect the probability

Pecaclgofa)  for all values of g, and hy

which represents the joint CDF for random variables g and . For

stop 2 we would perform the diferentiation

As the number of derived random variables increases, our method
heeomes unreasonnbly eumbersome; but more efficient techniques exist
for particular types of problems,

One further detail is relevant to the mechanics of the work
involved i carrying out sur two-step methed for denived distributions.
Our method invelves oo intepration (step 1) followed by a differentia-
tion (2tep 20, Although the integrations and differentiations are gen-
crally with respect to different variables, we may wish to differentiate
fiest before iprmally performing the integration.  For this purpose, it is
useiul 1o remember one very uzeful fornula and the picture fram which
it is obtained.

Iry working with o relation of the form
Ha)
Ria) = ]; oy Tl dr

we have anintegral over r whose lower lmit, upper limit, and integrand

dR{a)

are all fuactions of a,  If we desire 1o obtain the deri-r'al,iut“—-}?-“—

it 1= more efficient to use the fallowing Tormely directly than to first
perferm the integration with pespeet to r and then to diffcrentiate with
respect Lo o,

dRle) _ _
da

This relation is easy to remember if we keep in mind the picture from
whivh 1t may be obtained

Haatan] “-’%”J + Habla)] ‘E—f'i-? + [ ‘}m"g‘a‘” di

L e
Rl_r;].-f riee x)ds

alal
— The dotfed lones repratent
changes i r (o, 1) ard
fhe Bty of the wmbegral
due o smal changes e

L




78

RANDOM VARIABLES

The reader will have many opportunities to benefit from the

1R (o)

. 1
above expression for dx

in obtaining derived distributions. For

instance, in Prob. 2,30 at the end of this chapter, this expression is used
in order to obtain the desired PDF in a useful form,

2-15 Examples Involving Continuous Random Varlables

However simple the concepts may secm, no reader should assume that
he hes a working knowledge of the matertul in this chapter until he has
successfully mastered many problems like those at the end of the chap-
ter. Two examples with solutions follow, but we must realize that
these examples are necessarily a narrow representation of a very large
class of problems. Our Arst cxample gives a straightforward drill on
notation and procedures. The second example i3 more physicaily
motivated.

example 1 Random varinbles z, y, and z are described by the compound prob-

ability density function,

HO <2, €1,0< 4 <1,0<2, €1
otherwise

feslzonzn) = | 720 T S0

Determine the quantities:

(a) p:<(3) (b) Srulxoto)
(C) ng.ys.ag(l,z,zo) (d) fx(zﬂ)
(e) L(zy) 0 Ey|=

a I'rom the statement of the compound PDF, note that the experimental

value of random variable x can never be greater than unity. Since we
are asked to determine the probability that this experimental value is
less than or cqual to 3.0, we can immediately answer

p:<(3) = 1.0

b When determining cxpressions for PDI”s and CDF’s we must always

remember that the proper expressions must be listed for all values of
the arguments.

<2 £L,0< e <1

1
frulzny0) = j:;—odz“(zozﬂ + 3yozd)
o 0 otherwise

which simplifies to

o + 3y0) H0<z<1,0<y <1
0 otherwise

Se(zo,i0) = [

ORI T

T e S P T R T P A N e T e T . o [ TS W e e TR T T Y e
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¢ Because of the given ranges of possible experimental values of r and

-

y, we note that -

Pecwcacti2,20) = pac(20)

O Zp S 0
z 1 1

Pac(2d) = j::-o dzy j:—p-n dzo j;o--o dya{zozo + 3y2o) 0<z <1

1 1< 2
which simplifies to

0 Zg S 0
Pec(zo} = { 2¢* 0<z <1

1 1 <z

which has all the essential properties of a CDF,

Since we have already found f, ,(zs,40), we can determine the marginal
PDI f.{zs) by integrating over yo. Jor 0 < z¢ < 1, we have

fuleo) = [ duob(as + 390) = (hm + D

and we know that f.(zo) is zero elsewherc.

fa) = (D <m <

otherwise

Whenever possible, we perform simple checks on our answers to see
whether or not they make any sense. For instance, here we'd check to

sec that j;:_. _ o Je(x0) dzo is unity.  Happily, it is.

1 1
E(zy) = L.-o dzo j;._odyu:coyofx.v(-ro,yu) =3

This result is at least compatible with reason, since zy is always between
zero and unity.

Blyla) = [ vofuislal z2) dye
— 1 ft-'-‘(xﬂly )
= Jumo i
§(xo + 3yo)
7+ 1

for all possible x,

- ['
o w-ﬁyo

IS S 3
dyo T3 j;uo {(zayo + 3u0®) dyo

. Io+2
_2170+3

For any possible value of x,, our E(y | z) does result in a conditional
expectation for y which is always between the smallest and largest
possible experimental values of random variable y.
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example 2 [iach day as he leaves home for the local easino, Osear spins a
biased wheel of fortune todetermine how much money totakewith him,
He tunkes exactly £ hundred dollars with him, where ¢ is a continuous
random variable described hy the probability density function

fix,)

T

— z, (hundreds of dollars)

As a matter of convenience, we wre assuming that the currency is
infinitely divisible. {Rounding off to the nearest penny wouldn't mat-
ter much.)

Oscar has a lot of experience at this.  All of it is bad. Decades
of experience have shown that, over the course of an evening, Oscar
never wins, In fact, the amount with which he returins home on any
particular night is uniformiy distributed between zero and the amount
with which he started out.

l.et random variable y represent the amount (in hundreds of
dollars) Osear brings home on any particular night.

{a)} Determine [, ,(xe.5s), the joint 'DI for his original wealth = and
his terminal wealth ¥ on any evening.

{b) Determine f,(ye), the marginal probability density function for the
amount Oscar will bring home on o randomly sclected night.

(c) Determine the expected value of Oscar’s loss on any particular
night.

{d) On one particular night, we learn that Oscar returned home with
less than $200. [For that night, determine the conditionul proba-
bility of each of the [ollowing events:

{i) He started out for the casino with less than $200.
{i1) His loss was less than $100.
(iii) His loss that night wns exactly 375.
a FFrom the example statement we obtain

hiaty i)
y
1 ey cx <a
! (ARENESEE ,
T 0 otherwise
a
0 ¥ —>%

VAT ey

T
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The definition of conditional probability is used with the given fi(x,)
to determine

Io l 1 -
—— = = if 0 S Y .S x s 4
f:.u(-’fu:yo) = f‘(xa)f“'(ya l IU) - 08 - ’ 0 0

otherwise

and this result may be displayed in an xo,%, event space,

lerminat capial in

’0 ( hyndreds of dottars. )
o
‘ B .
Jaint PDF is equal to 1/8 inside this iriangle
and rero elsewhere. A quick check shaws
{hat lhe cakculated PDF does integrate to
unity over the entire avent space,
S x impal capatal tn
o 4 < 70\ hundreds of dollany
b
Y
i

Event: y, <y Sy, +dy,

0 a vl

For 0 < yo < 4,

Jlye) = j_-. dxo fip{To, o) = j

Te=ys

And we can sketch this PDF as

Y odred = 4 — vo)

flx)

The £, {y,) POF does integrate to
unity and, as was obvious from the
above sketch (s:ince the joint PDF
was constant nside the triangle},

1t is hnearly decreasing from a
maximum at Yo=0to zerc at y,=4

Q5

a : A
0 4.0 %

¢ E(z—u) = [ [ (0= yofuulzays) dzadyo

We must always be earcful of the limits on the integrals when we
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substitute actunl expressions for the compound PDE,  We'll integrate
over z, first,

Ba—y) = 1 dy [0 dza bz — o) = $133.33

where again we are using the convention that the successive integrals
are o be performed in order from right to left. By changing & sign in
the proof in Sec. 2-7, we may prove the relation

E{z — y) = E(x) — Ely}

Sinee we already have the marginal PDF's, this relation allows us ta
oblain E{zx — y) by another route,

Blo) — B = [ __sddaddne = [T vehive) dye

= [ r-gdn - :y."——s—!"!dy. = $133.33

d Given that Oscar returned home with less than $200, we work in the
appropriate conditional sample space. At all points consistent with
the condilioning event, the conditional PDF is equal to the original
joint PDF scaled up by the raciprocal of the o priori probability of the
conditioning event.

f,—rmm'hlmmmhﬂm
$200.° The & pron probabelty of this event is
....... / equad 1o the indegral of the & poorni jount
A POF gwer this evenl which is egual i

—{%-I-I-—i-!-?)-%

' 5 .‘ .: *1I ﬁ_—-’
Value of yrint PDE \—lu'u representing
o s of interest condibaning soent

Thus, the conditional joint PDF js equal to §/§ = & in the region where
it is nonzero. Now we may answer all questions in this conditional
space,
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i
-

The event - "he started out weih less than 52007

i
A P(~)a 1{1-. 2.2y
"R T [ \
Condshonal pore POF Area representing
o 3 of interest eveat of interest
L]
A W
.! ¥y~ Fy
|r : =y=1
/ .
2% ot The event ‘s loss was less than $100°
|
Plwi=t = {1-2)=1
L wr & —— 3

4 T £ f.-"
Condstional jount PDF -
in ared of interest

Lkﬂ represenling
avent of interest
We realize that, in general, we would have to integrate the
conditional PDF over the appropriate events to obtain their proba-
bilities, Only because the conditional PDF is a constant have we been
able to reduce the integrations o simple multiplications.

i As Jong as we allow the currency to be infinitely divisible, the cop-
ditional probability menssure associated with the event z — y = 75
iz equal to zero.  The integral of the compound PDF [, (xs,1,) over
the line representing this event in the xy, e event space is equal to
2erd.

PROBLEMS

2.01 The geometric PMF for discrete random variable K js defined Lo be

0l = PRt ifKo= 1,23, .0nd0 < P <1
o

Pr(Ko) = for all other values of Ky

a Determine the value of C.

b Lot N be a positive inleger. Determine the probsbility that an
experimental value of K will be greater than N.

¢ Given that un experimental value of mndom varinble K is greater
thon integer N, what is the conditional probability that it is also
larger than 2X7 (We shall discuss this special result in Chap. 4.)
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E d What is the probability that an experimental value of K is equal to
= an integer multiple of 37

% g p

; 2.02 The probability that any particular bulb will burn out during its
= Kth mounth of use is given by the PAIT for K,

E:—

= px(Ko) = ()51 K, =1,2,3,. ..

= ['our bulbs are life-tested simultancously.  Determine the probability
= that

= a None of the four bulbs fails during tts first month of use.

= b Exactly two bulbs have failed by the ond of the third month.

= ¢ Exactly onc bulb fails during cach of the first three months.

= d Exactly one bulb has failed by the end of the second month, and
=

exactly two bulbs are still working at the start of the fifth month.

2.03 The Poisson PMVF for random varinble K is defined to be

#ﬂ'og—#
R . (and u > 0)

0 for all other values of K,

px{Ko) = if Ko =0,1,2, ..

a Show that this PMT sums to unity.

% b Discrete random variables R and § are defined on the sainple spaces
= of two different, unrelated experiments, and these random variables
= ;

= have the PMT7s

=

= Heg—m

= PelRe) = S5 Ra=0,1,2 . .

5 ASeg—>

-%—:1 ps(So) = S, Se=0§72 ...

= Use an RSy sample space to determine the I'MI pr(7%), where
= discrete random variable T is defined by T = B + 8.

= ¢ Random variable W is defined by W = ¢R, where ¢ is a known
= nonzera constant. Determine the PMF pu(W;) and the expected
= value of IV, How will the ath central moment of W change if ¢
= .

= is doubled?

= 2.04 Discrete random variable z is described by the PMF

Fa .
K -= ifrg =0,1,2
pelxo) = 12 ’
0 for all other values of zy
Let dy, ds, . . ., dx represent N successive independent experimental

values of random variable =,
a Determine the numerical value of K.

T

PROBLEMS 85

b Determine the probability that d\ > da.

¢ Determine the probability that d; + ds + - -

d Definer = max(d,,d:) and § = min{(d,,ds).
PM]I's for all values of their arguments:

i pa(so) i pos(ra| 0)

i p,.{ros)  iv plt), with & = (1 + d)/(1 + s)

e Determine the expeeted value and variance of random variable s
defined above,

f Given d, + d, < 2.0, determine the conditional expected value and
conditional variance of random variable s defined above.

- dy 1.0
Determine the following

2.05 Discrete random variable z is described by the PMT p.(z;). Before
an exporiinent is performed, we are required to guess n valued.  After
an experimental value of x is obtained, we shall then be paid an amount,
A — B(x — d)% dollars.

a What value of d should we use to maximize the expected value of our
financial gain?

b Determine the value of A such that the expected value of the gain
is zero dollars,

e AL

2.06 Consider an experiment in which a fair four-sided die (with faces
lubeled 0, 1, 2, 3} is thrown once to determine how many times a fair
coin is to be flipped. In the sample space of this experiment, random
vartables n and & are defined by
n = down-face value ont the throw of the tetrahedral die
k = total number of heads resulting from the coin flips

Determine and sketch each of the following functions for all
values of their arguments:
a pa(no) b pij.(ke | 2) ¢ paelnof 2) d pi(ke)
e Also determine the conditional PMF for random variable n, given
that the experimental value of k is an odd number,

TR P P

2.07 Joe and Helen each know that the a priori probability that her
mother will be hotne on any given night is 0.6. However, Helen can
determiine her mother's plans for the night at 6 p.x., and then, at
6:15 r.M., she has only one chance each evening to shout one of two
code words across the river to Joe, He will visit her with prohability
1.0 if he thinks Helen's message means “3a will be away,” and he will
stay home with probability 1.0 if he thinks the message means “Ala
will be home,”

But Helen has a mieek voice, and the river is channcled for
heavy barge traffic.  Thus she is faced with the problemn of coding for
a noisy channel. She has decided to usc¢ a code containing only the
code words A and B,

e A
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The channel is deseribed by
Pla|d)=% P@|B) =t POIAH=% PH|B=%

and these events are defined in the following sketch:

a is évent "loe thinks
message is A"

B b b is event “Joe thinks
L_ﬁ:h/ message is B°
T Noisy channel T
input words Oultput words

a In order Lo minimize the probability of error between transmitted
and received messages, should Helen and Joe agrec to use code I or
code 1I?

Code 1 Code 11
A = Mn away A = Ma home
B = Ma home B = Ma away

b Helen and Joc put the following cash values (in dollars) on all possible
outcomes of a day:

Ma home and Joe comes -30
Ma home and Joe doean’t come 0
Ma away and Joe comes + 30
Ma away and Joe doean't come -5

Joe and Helen make all their plans with the objective of maximizing
the expected value of each day of their continuing romance.  Which
of the above codes will maximize the expected cash value per day of
this romance?

¢ Clara isn't quite so attractive as Helen, but. at least she lives on the
same side of the river. What would be the lower limit of Clara's
expected value per day which would make Joe decide to give up
Helen?

d What would be the maximum rate which Joe would pay the phone
company for n noiseless wirec to Helen’s house which he could use
once per day at 6:15 pa?

e How much is it worth to Joe and Helen to double her mother's
probability of being away froin home? Would this be a better or
worse investment than spending the same amount of money for a

PROBLEMS |7

telephone line (to be used once a day at 6:15 p,x.) with the following
properties:

PlalA) = P(b|B) =09  P(|4) = Pla|B) =01

2,08 A frazzle is equally likely to contain zero, one, two, or three defects.
No frazzle has more than three defects.  The cosh price of each frazzle
is set at 8(10 — K?), where K is the number of defects in it. Gummed
labels, each representing $1, are placed on each frazzle to indicate its
cash value {one label for a 81 frazzle, two labels for & $2 frazzle, ete.),

What is the probability that a randomly selected label (chosen
from the pile of labels at the printing plant} will end up on a frazzle
which has exactly two defects?

2,09 A pair of fair four-sided dice is thrown once, Each die has faces
labeled 1, 2, 3, and 4. Discrete random variable z is defined to be
the preduct of the down-face values, Determine the conditional vari-
ance of x* given that the sum of the down-face values is greater than
the product of the down-face values,

2,10 Discrete random variables x and y arc defined on the sample space
of an experiment, and g(z,¥) is a single valued function of its argument.
Use an event-space argument to establish that

Elgz)] = 3 3, 0(x0,y0)Pea(To,50)

3 ke
N

and :
E(g) = Z?opv(yo)
ol

are cquivalent expressions for the expected value of g{z,y).

2,11 At a particular point on a husy one-way single-lane road, o study
is made of the distribution of the interarrivai period T between suc-
cessive car arrivals. A reasonable quantization of the data for a chain
of 10,001 éars results in the following tabulation:

T, aeconds ' 2 4 6 8 12

Number of oceurrences 1,000 2,000 4,000 2,000 1,000

(Consider the cars to be as wide os the road, but very short.)
a A young wombat, who never turns back, requires five seconds to
eross the street. Determine the probability that he survives if:
i He starts immediately after a car has passed.
il He starts at a random time, selected without any dependence
on the state of the traflic.

e A M
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b Ia the safer method of the zbove problem always safer, no matter
what data are given?

2,12 The life span of a particular mechanical part is a random variable
described by the following PDT:

;)
~
— > + I - -+ ly(manths}

If three such parts are put into service independently at ¢ = 0, determine

a The probability that the first failure will not have occurred before
time 4y (0 < 4 < o)

b E(l)

majority of the parts will have failed.

2.13 Continuous random variables w, z, ¥, and z are described by the
compound I’'DT f,, . .(04,70,l0,20). Determine a simple expression for
the probability of the event z = max(w,z,y,2).

2.14 Random variables  and y deseribed by the PDI°

_ | K fzg+ypy<landxzg>0andyy >0
Seulznyn) = 0 otherwise

a Are z and y independent random variables?

b Are they conditionally independent given max(z,y) < 0.57

¢ Determine the expected value of random variable v, defined by r = zy.
d If we define events A and B by

Event A:2(y —z) 2 y+ = Event B:y > 1

obtain the numerical values of P(4), P(B), P(A'R), P[(A’B’)’], and
determine and piot the conditional probability density function
Separa(xo] A'BY.

2.15 Onec of two wheels of fortune, 4 and B, is selected by the flip of a fair
coin, and the wheel cbosen is spun once to determine an experimental
value of random variable z.  Random variable y, the reading obtained
with wheel A, and random varinble w, the reading obtained with wheel
B, arc described by the PDI7s

¢ A simple expression for the expected value of the time until the -

0 LA 2L
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1 ifFO <y <1

if0 < wy <3
Silya) = [0 otherwise

3
Jelwo) = 0 otherwise

If we-arc told the experimental value of x was less than %, what is the
condigional probability that wheel A was the one selected?

ifl < we < 2and

2.16 TFour random variabics are described by the probability density
1l <z <2and
L €y < wy < 2and

function )
E 2
A (‘L*”“) log 22
YoZo Yo
1 S Za S 2

0 otherwise

fw.x.v.x(wmxﬂlymzﬂ) =

Determine and discuss the conditional probability density funection
fxlw.v.l(xﬂ l wﬂ.ymzo)-

2.17 Random variables x and y are independent and are described by the
probability density functions f.(zs} and f,(ya),

£ lx,} I,( Yo!
-
1 1
4 N Y x,{ hours } —_ p |‘ ¥ (hours)

Stations 4 and B are connected by two parallel message chan-
nels. A message from 4 to B is sent over both channels at the same
time. Random variables £ and y represent the message delays over
parzllel channels I and IT, respeetively.

A message is considered ‘‘received”’ ng snon us it arrives on any
one channel, and it is considered ““verified” as soon as il has arrived
over both channels. .

a Determine the probability that a message is received within 15
minutes after it is sent.

b Determine the probability that the message is recetved but not veri-
fied within 15 minutes after it is sent.

¢ Lcet 4 represent the time (in hours) between transmission at 4 and
verification ot B, Determine the cumulative distribution function
Puc(ua), and then differentiate it Lo obtain the PDF f.{u).

d If the attendant at B goes home 15 minutes after the message is
received, what is the prohability that he is present when the message
should be verified?

e If the attendant at B leaves for a 15-minute coffee break right after
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the message is received, whal is the probability that he is present at
the proper time for verifieation?

f The management wishes to have the maximum probability of having
the attendant present for both reception and verification. Would
they do betier to let him take his coffee break as deseribed above or
simply allow him to go home 45 minutes after transmission?

2.18 The data for an experiment that could be performed only once con-
sist of experimental values of random variables x and y, which are
deseribed by the a priori probability density function:

Azi?ye  HO L (o +Y) <1, 220, =20
0

Seu(zaye) = otherwise

But the experimental data were lost.  All the experimenter remembers
is that the experimental value of x was either 0.4 or 0.6, and he decides
that he observed one or the other of these values with equal probability.

Based on the above information, determine the experimenter’s
probability density funetion for his experimental value of random
varisble y.

2.19 The exponential PDF for random varieble z is given by
Sfelze) = Ae s for zp > 0.

a Determine the probability that an experimental value of z will be
greater than E(x).

b Suppose the lifetime of a bulb is given by the above PDF and we are
toid that the bulb has already been on for T units of time; determine
the PDF for the remaining lifetitne ¥y = 2 — T of the bulb. (This
special result will be discussed in Chap. 4.)

¢ Assume that each bulb is replaced -as soon as it burns out. Over a
very long period; determine the fraction of this interval for which
illumination is supplied by those bulbs whose lifetimes are longer
than E(z).

2.20 2 For three spins of a fair wheel of fortune, what is the probability
that none of the resulting experimental values is within +30° of any
other experimental velue?

b What is the smallest number of spins for which the probability tbhat
at least one other reading is within +30° of the first reading is at
least 0,97

2,21 Random variable z is deseribed by a PDI which is constant betwcen
xy = 0 and 7, = 1 and which is zero elsewhere. K independent sue-
cessive experimental values of this random variable are labeled

L
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dy, dz, . . ., dg. Define the random variabies
r = second largest of &), dy . . . , dx
s = second smallest of &y, ds, . . . , dx

and determine the joint probability density function f, ,{re,8.) for all
values of ro and g,

2.22 The probability density funetion for continuous random varinble =
‘ is a constant in the range a < r < b and zero elsewhere.

a Determine o,, the standard deviation of random variable z.

b Determine the eonditional standard deviation of x, given that
Iz — E(z}| > o

¢ If y = cx + d, determine E(y) and g, in terms of E(x) and ¢.. Do
your results depend on the form of the PDF for random variable z?

223 Random variable z is described by the PDF

_jou if0 <z <100

fi(z) = [O otherwise

Another random variable, y, isdefined byy = — Inz. Determine the
PDF f.(0).

2.24 Random variables = and y are distributed according to the joint

probebility density function

_ | Ax, ifl Sz <y <2
Sew(To,yo) = '0.0 otherwise

8 Evaluate the constant A.

b Determine the marginal probability density function £, (y.).

¢ Determine the expected valueof 1/x, given that y = §.

d Raodom variable z is defined by z == y — z. Determine the proba-
bility density function f,{z,).

2.25 Random variables z and y are described by the joint density function

_ K 0SSy L2
f!.v(‘to:yo) = lO otherwise

Random variable z is defined by
z = max(z,2y)

Determine and sketch f,(zo), the probability density function for random
variable z.

2.26 Mlelvin Fooch, a student of probability theory, has found that the
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hours he spends working (10} and sleeping (s} in preparation for a final
exam are random variables deseribed by

 onsy = (K U100t s <20, 0<uy, 0 <
Fealtndo) = 1 o otherwise

What poor Melvin doesn’t know, and even his best fricnds won't tell
him, is that working only furthers his confusion and that his grade, g,
ean be described by

g = 2.50(s - w) + 50.0

a Evaluate constant K,

b The instructor has decided to pass Melvin if, on the exan, he nchieves
g > 75.0, What is the probubility that this will oecur?

¢ Make a neat and fully labeled sketeh of the probability density
funetion f,{go).

d Melvin, true to form, got a grade of exactly 750 on the exam.
Determine the conditional probabitity that he spent less than one
bour working in preparation for this exam.

2.27 Each day Wyatt Uyrp shoots one "game’ by firing at o target with

the following dimenstons and scores for each shot:

The score on any shat
depends only on its
distarice from the
center of the target

His pellet supply isn’t too predictable, and the number of shots for any
day's game is cqually likely to be one, two, or three. [Furthermore,
Wyatt tires rapidly with each shot. Given that it is the kth pellet in
a particular game, the valuc of » (distance from target center to point
of impact)} for a pellet is a random variable with probability density
function

1 .
frlk('ru | ko) - }f_o if 0 S Ty S kl.l

0 otherwise

a Determine and plol the probability mass function for randem vari-
able g;, where 83 is Mr. Uyrp's score on a three-shot game.
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b Given only that a particular pellet was used during a three-shot
game, determine and sketeh the probability density function for »,
the distance from the target eenter to where it hit.

¢ Given that Wyatt scored a total of exactly six points on a game,
determine the probubility that this was a two-shot game,

d We learn that, in a randomly selected game, there was at least one
shot which scorcd exactly two points. Determine the conditional
expected value of Wyatt's Lotal score for that game.

e A barticular pellet, marked nt the facfory, was used eventually by
Wyatt. Determine the PM I for the number of points he scored on
the shot which consumed this pellet.

2.28 Rondom variables r and y are deseribed by the joint PDF

f1 0Lt 0Ky<t
JerlTnyo) = 0  otherwise

and random variable z is defined by z = zy.

Determine the conditional second moment of z, given that the
cquation 1* + 21 4+ y = 0 has real roots for ».

2.29 A target is located at the origin of an z,y cartesian eoordinate system.

One missile is fired at the target, and we assume that z and y, the coordi-
nates of the missile impact point, are independent random variables
cach described by the unit normal PDF,

fle) = @) = e —o << e

r

Determine the PDF for random vanable », the distance from the target
to the point of impact. Your answer should be an example of the
Rayleigh PDF,

o = ez

2,30 Consider independent random variables z and y with the marginal

PDF's

mm=mw=§§wm o C 7 < w

Determine the PDI for random variable ¢, defined by q = g Your
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§ answer should be a simple case of the Cauchy PDF,
E N T b Letw = y — z. Determine E(w) and E{w | A).
¢ What is the minimum vumber of races which Bo must agree to enter

such that the a priori probability that he will win at least one of the
raees is at lenst 0.997

= a
E Jolgo) = mat + (g0 — b)7

: 2.31 a Let r be a random variable with PDF fe{zq). Determine the
transformation y = g(z) such that y will have the uniform PDF
2.35 By observing the histogram of a particular random variable z, it

is noted that, if we define y = In (z — a), the behavior of y may be
approximated by a Gaussian density function,

if0 <y <1
otherwise

Let A be the event ““Al won the race.
a Determine the conditional probability density function fra(x. | 4).
=
! =
fv(yO) = 0 g

mummmmmmumuwmuﬂmmummwwmmwmmwmmmmnm .

b How could you use a set of experimental values of a uniformly
distributed random varisble to obtain experimental values described
by an arbitrary PDI f,(z0)?

e—(ﬁa—ﬂ)'f 2a,0

1
Sy(¥o) Vor
Determine the probability density function f.{zo).
. ; ? For instance 25
232 Isit generally truc that Efg(x)]s the same 85 oE@] ' = 2.36 Oscar has lost his dog in either forest A (with a priori probability
: 1/3) or forest B (with a priori probability 2/3). The probability that
the dog will survive any particular night in forest A is4/5 and in forest
B is 3/5.

If the dog is in A (either dead or alive) and Oscar spends a day
searching for him in A, the probability that he will find the dog that
day is 1/2. The similar detection probability for a day of search in
forest B is 2/5.

The dog cannot go from one forest to the other. {)scar can
search only in the daytime and ean travel from one forest to the other
only at night.

Coolheaded Oscar has established the following values (in

is K (l) the same as ——»«‘? Please remember your result and avoid
x

E(z)

£
'l*
E
one of the most common errors in probabilistic reasoning.
o

2.33 a Variable z*, the standardized random variable for random variable
x, ia given by z* — [z — E(z)]/¢,. Determine the cxpected value
and variance of z*.
b The correlation coefficient p, or normalized covariance, for two random
variables z and y is defined to be

w=E@*y*) = E [(“ ‘f(z)) (y —G”E(y))]

Determine the numerieal value of gy if: dollars):

l z=ay. Finding dog alive +80
Hz= —ay Eazch day {or part thereol) of aearch -3
il x and y are linearly independent. Finding dog dead 0
iv z and y are statistically iﬂdePe“dent’- Not finding dog —10
vz=aqy+b Additional cost if Oscar muat actually search in both forests -3

¢ For each pcrformance of the experiment, the expenmental value of
random variable y* is to be approximated by cz*. Prove that the
value of constant ¢ which minimizes the expect,ed nean square error,
E[(y* — cz*)?), for this approximation is given by ¢ = pn.

QOscar is ineapable of figuring it all out; so he decides that he
will search for just two deys—Ilooking in B on the first day and, if
necessary, looking in A on the second day.

a Determine the expected value of this poliey.

b Given that QOscar fails to find the dog on the first day, is the second
day of scarch a worthwhile investment? Explain,

¢ If only Oscar were a thinker, he would at least have considered the
following list of policies for possible two-day search efforts:

2.34 Al and Bo are the only participants in a race, and their elapsed times
may be considered to be the random variables z and y, respectively.

0.0 T < 1 0.0 yo < 1
Je{ze) = § 1O 1€z, L2 Srly) = 1 0.5 1<y £3
0.0 2< 3o 0.0 3<u

e T

S;: Search in A on 1st day; in B on 2d day if necessary.
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Sz:
Sa:
Sﬁ
SsZ
Ssi
Sz

Search in B on st day; in A on 2d day if necessary.
Search in A on Ist day; in A on 2d day if necessary.
Search in B on 1st day; in B on 2d day if necessary.
Search in A on Ist day; don’t search on 2d day.
Search in B on 1st day; don’t search on 2d day.
Don'’t search at-all!

Osecar would still have to choose his own decision criteria—in

fact he has already decided no dog is worth more than two days of

searching in mosquito-infested forests. However, to help Oscar

quantify his thinking, determine which of the above policies would:
i Maximize his expected gain (graduate student)

ii Minimize his maximum possible loss (coward)

iii Maximize his maximum possible gain (hero)

iv Maximize the probability that he will find his dog alive (idealist)



