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An understanding of the concepts and applications of transform theory
will contribute in several ways to our later work. Transforms are,
useful for the establishment of valuable general theorems, the deter-
mination of moments of random variables, the study of certain proba-
bilistic processes, and the analysis of sums of independent random
'variables.

Some important applications are introduced in this chapter.
However, an appreciation of the power of transform techniques will,
for the most part, be developed as we study more advanced topics in
later chapters. '
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3-1 The s Transform

Let fi(zo) be any PDF. The exponeniial transform (or s transform)
for this PDF, f,7(s), is defined by

17(6) = Be™) = [ e (zo) dao

We are interested only in the s transforms of PDF’s and not of arbitrary
functions. Thus, we need note only those aspects of transform theory
which are relevant to this special case.

As long as f.(z,) is a PDF, the above integral must be finite at
least for the case where s is a pure imaginary quantity (see Prob. 3.01).
Furthermore, it can be proved that the s transform of a PDF is unique
to that PDF.

Three examples of the calculation of s transforms follow: First,
consider the PDF

—\zy >
fz(zo) = [Se ::) 2 g = p(zo — O)he= —o Lz < @
@ L A
T — —8Z, —_ —3 Az - —
f.T(s) = f_” e~ =of (29) dxg = /(; Aeszog—Az0 g TN
[The unit step function u_;(z¢ — a) is defined in Sec. 2-9.] For a
second example, we consider the uniform PDF
_J1 0Lz, <1 _ o _
fz(zo) = {0 otherwise = p_1(zo — 0) s—1(To 1)
—o K< ™
© 1 1] —e
156) = [7 e fu(en) doo = [ ermedzy = ——F

Our third example establishes a result to be used later. Consider the
PDT for a degenerate (deterministic) random variable z which always
takes on the experimental value a,

J2(0) = po(xo — @) —0 <2< ©

1:T(s) = [_ﬂ e *%oug(zo — a) dzo = e~

The PDF corresponding to a given s transform, f.7(s), is known
as the tnverse transform of f,7(s). The formal technique for obtaining
inverse transforms is beyond the scope of the mathematical prerequisites
assumed for this text. For our purposes, we shall often be able to
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obtain inverse transforms by recognition and by exploiting a few simple
properties of transforms. A discussion of one simple procedure for
attempting to evaluate inverse transforms will appear in our solution
to the example of Sec. 3-8.

3-2 The 2z Transform

Once we are familiar with the impulse function, any PMF may be
expressed as a PDF. To relate the PMTF p.(zo) to its corresponding
PDF f,(x,), we use the relation

fz(zo) = E px(a)l-lc(xo — a)

As an example, the PMF p,(x) shown below

P:(‘o)
N
050 050 xo=1
P (xy) =025 =24
025 0.00 otherwise
[ I I x,
0 1 2 3 4 770
may be written as the PDF f,(x,),
f.(x)

[ (xg) = 0.501y(x—1) + 02514 (x5~2) + 025, (x,~4)

o0 o0 o0
0.50 0.25 0.25
: x
0 1 2 3 4 0

The s transform of this PDF is obtained from

77(s) = [_'_' e f,(20) dzo = 0.506—* + 0.25¢=2* + 0.25¢—4
where we have made use of the following relation from Sec. 2-9
f_: #o(Zo — a)g(x0) dzo = g(a)

The above s transform could also have been obtained directly from the
equivalent (expected value) definition of f,7(s),
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f7(s) = E(e*=} = 0530~ + 0.25¢7% 4 0.25¢ 4+

Although the s transform is defined for the PDI of any random
variable, it is convenient to define one additional type of transform
for a certain type of PAMF.  If p.(z;) is the PMF for a discrete random
variable which can take on only nonnegative infeger experimental values
{xo = 0,1, 2, . . .), we define the discrefe {ransform (or z lrangform) of
p:(xy) to be p,7(2), given by

p.T(z) = E(z7) = 3 2%p«(z0)

Tem(}

We do not find it particularly useful to define & z transform for PAT's
which allow noninteger or negative experimental values. In practice,
2 large number of diserete random variables arise from a count of
integer units and from the quantization of a positive gquantity, and it
is for cases like these that our nonnegative integer constraint holds.

The PAMF at the start of this section allows only nonnegative
integer values of its random variable. As an example, we obtain the
z transform of this PME,

p.T(z) = ) zpi{xo) = 0.30z + 0.252* 4 0.252*
=0

Note that the z transform for o PME may be obtained from the g
transform of the equivalent ’DF by substituting z = ¢~

The 2z transform can be shown to be finite for at least |z} < 1
itnd to be unique to its PA1,  We shall normally go back to a PMIF
from its transform by recognition of u few familiar transforms. How-
ever, we can note from the definition of p,7(z),

2:.7(2) = pA0) + 2p(1) + 2 (2) + 2'p(B) + - - -

that it is possible to determine the individual terms of the PMF from
p:"(2) by

L [de _
pelzo) = PR [(F i (-2)]’_0 =012 ..

3-3 Moment-generating Properties of the Transforms

Consider the nth derivative with respect to s of f,7(3),

5w = [T e dao ‘f%(“'—) = [ (rayenda) d,

f7(ma = 1 E@@) = — [ﬂiﬂ]

ot = Blle = B = B — [B@p = (250 - (420
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The right-hand side of the last equation, when evaluated at s = 0,
may be recognized to be equal to {(—1)"F(x"}. Thus, once we obtain
the s transform for o PDIF, we can find all the moments by repeated
differentiation rather than by performing other integrations.

IFrom the above expression for the nth derivative of f.7(s), we
muy establish the following useful results:

B(z?) = [di{;;(a) ],_u

s=0

ds? ds

Of course, when certain monments of a PDT do not exist, the correspond-
ing derivatives of f,7(s} will be infinite when evaluated at 5 =
As one example of the use of these relations, consider the PDI

L(xo) = p_y(zs — O)he~*w, for which we obtained f,T{s) = A/(s + A) in

Sec. 3-1.  We may obtain £(z) and ¢, by use of the relations

R b T

ol T ] 2
B = ( 1)[ o ]‘_u—[-(s +>~)a].-o'>u

ot = EG) — EQ@F = o

The moinents for a PMF may also be obtained by differentiation
of its 2 transform, although the resulting equations are somewhat dif-
ferent from those obtained above. Beginning with the definition of the
z transform, we have

P = ) zop.(x)

=0
dp,T -
(22| = [ =emmie] = B
dp,7 =
[ ?:iz:(z)]z-l = [ Zo xu(.‘cu -— 1)2"_’1?:(30) ]‘Fl_—_ E(Ii) — E(J:)
In general, forn = 1,2,. . ., we have
drp, T -
‘%zn(—z) N ZO Zo(zo — 1)(z0 = 2) =+ - (%0 — 0 + 1)z"7pa(z0)
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dip,T
pI(@lr =1 E(z) = [M].-. B = [ 10,7(z)

ot = |5 P& + 5 P72 ~ [% p‘r(z)]’] -1
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The right-hand side of this last equation, when evaluated at 2 = 1, is
equal to some linear combination of E(z"), E@zvY, ..., Ff'(x’), and
FE(z). What we are accomplishing here is the determination of all
moments of a PMF from a single summation (the caleulation of the
transform itself) rather then attempting to perform a separate sum-
mation directly for each moment. This saves quite a bit of work for
those PMF’s whose z transforms may be obtained in closed form. .We
shall frequently use the following relations which are easily obtained
from the above equations:

dz?

dps"(2)
+ dz ]l— I

dz

d? d

We often rccognize sums which arise in our work to be similar
to expressions for moments of PMI"s, and then we may use z tra'ns-
forms to carry out the summations. (Examples of this procedure arise,
for instance, in the solutions to Probs. 3.10 and 3.12.)

As an example of the moment-generating properties of the z
transform, consider the geometric PMF defined by

P(1 =Pyt  ifze=123,... ‘1
Pel0) = {0 otherwise 0<P
We shall use the z transform to obtain E(x), E(z?), and o.%
pTle) = B@) = ) #pilz) = ) Pen(l = Pyl = r— o py

xy=0 ream)
After a calculation such as the above we may check [p:7(2)]=1 < 1.

B = [ger0)| =5

2 2—-P
B = (i + go@ | =T

[Try to evaluate E(z?) directly from the definition of expectation!]

1—-P
ot = E(z‘l) - [E(I)]! = P?
In obtaining p.7(2), we used the relation
1 —_ a’:+l
l+a+at+ - +a"= la] <1

1 -~

YT T

e
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A similar relation which will be used frequently in our work with z
transforms is

al

at .
sitpt s

2
1+a._+g~,'+ —w <a< w

3.4 Sums of Independent Random Varlables; Convolution

The properties of sums of independent random variables is an impor-
tant topic in the study of probability theory. In this section we
approach this topic from a sample-space point of view. A transform
approach will be considered in Sec. 3-5, and, in Sec. 3-7, we extend
our work to a matter involving the sum of a random number of random
variables. Sums of independent random variables also will be our
main concern when we discuss limit theorems in Chap. 6.

To begin, we wish to work in an z,¥. event space, using the
method of Sec. 2-14, to derive the PDF for w, the sum of two random
variables z .and y. After a brief look at the general case, we shall
specialize our results to the case where x and y are independent.

‘We are given f,,(%q,50), the PDT for random variables z and .
With w = z + y, we go to the z,,y, event space to determine p. <(wy).
The derivative of this CDI is the desired PDF, £, (tvo).

Pug(wo) = j' T dz f w:—_"_ Yo frp(Zory0)

ful0) = o peglwe) = [ LT g funtzono)]

@5 —
pm— d‘wo L

We may use the formula given in Sce. 2-14 to differentiate the quantity
in the brackets to obtain

fu(wo) = f. " dxof;..(-l‘o, Wy ~— o)

= —

In general, we can proceed no further without spe;:iﬁc knowledge of the
form of f, ,(ze,ya}. TFor the special case where  and y are independent
random variables, we may write
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. dzo f2(xo)fy(wo — o)
for w = z + y and z,y independent

This operation is known as the convolution of fx(xo) ajnd f,(yo). Had
we integrated over z, first instead of yo in obtammg. Pug(Wo), We
would have found the equivalent expression with zo and yo interchanged,

fulwo) = [ dyo fwn)fe(oo = w0

The convolution of two functions has a simple, and often useful,
graphical interpretation. If, for instance, we wish to convolve f:(zo)
and f,(yo) using the form

fetw) = [ deo a0 — 20)

we would require plots of f.(zo) and f,(wo — %o), each plotted as a
function of z,. Then, for all possible values of w, these two curves
may be multiplied point by point. The resulting p.roduct curve Is
integrated over z, to obtain f,(wo). Since convolutiqn is o{ten easier to
perform than to describe, let’s try an example which requires the con-
volution of the following PDF’s: o

(%) f,03)
5 1ok
05
N 1 1 \y
0 20 2.2 o 0 05 10 15 0

We are asked to find the PDF for w = z + y, given that z and
y are independent random variables. To obtain the desired plot‘ of
fu(wo — %) as a function of Zo, we first “flip” f,(yo) about the line
Yo = 0 to get

fy(—yo)
~1.0
0.5
| ! i { | \yo
-15 -10 -05 0 0.5 1.0 1.5

T

TR T

TR T MR ST T S AT P | M TR T

-
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We next replace variable yo by zo and then plot, along an z, axis, the
flipped function shifted to the right by we.

£, (wy—x4)
This picture is drawn for
r1e the case w,=0.75
‘,__“’L_,
1 th 1 1 s S x
-15 -10 -05 0 05 10 15 e

We can now present f,(wy — xo) on the same plot as f,(z,) and perform
the integration of the product of the curves as a function of wo.

f ()
oL . x"o"\.

This sketch is drawn

4l for the case wy=2.7,
and from it we can
s integrate the product

of these curves to
obtain £,,(2.7) =05

,'; (wo—xo)
. wo r
1 1 1 ] —t ! L | - ) x
15 -10 -05 0 05 10| 15 20 | 25 | 30 3 70
1.2 2.2 2.7

Our final step is to plot the integral of the product of these two func-
tions for all values of we. We obtain

F(wy)

20 22 25 30 32 f
Thus, by graphical convolution, we have determined the PDF for
random variable w, which, you may recall, was defined to be the sum of
independent random variables r and y. Of course, we check to see
that f.(wo) is nonzero only in the range of possible values for sums of
zand y (2.0 < w, < 3.7) and that this derived PDF integrates to unity.
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We are now familiar with two equivalent methods to obtain the
PDF for the sum of the independent random variables z and y. One
method would be to work directly in the zo,y, event space; an alterna-
tive is to perform the convolution of their marginal PDF’s. In the
next section, a transform technique for this problem will be introduced.

For the special case where we are to convolve two PDIs, each of
which contains one or more impulses, a further note is required. Our
simplified definition of the impulse does not allow us to argue the
following result from that definition; so we shall simply define the
integral of the product of two impulses to be

S (@0 — @uo(zo — b) dzo = uo(a — b)

Thus, the convolution of two impulses would be another impulse, with
an area equal to the product of the areas of the two impulses.

A special case of convolution, the discrete convolution, is intro-
duced in Prob. 3.17. The discrete convolution allows one to convolve
PMF’s directly without first replacing them by their equivalent PDI"s.

3-5 The Transform of the PDF for the Sum of Independent
Random Variables

Let w = z + y, where z and y are independent random variables
with marginal PDF’s f.(2,) and f,(yo). We shall obtain f,7(s), the s
transform of f,(w,), from the transforms f,7(s) and f,7(s).

fwT(s) = E(e_"") = E(e—"("'+7))
- L:= ad /v:=~—a eP‘”ﬂe‘—w"f:u:.v(-’130;?/0) dz, dyo

The compound PDI factors into f.(z0)f,(y0) because of the independ-
ence of z and y, to yield

1) = [ ernfao) dno [

Zo=

o €Sy (yo) dyo

for w = 2+ y and
x,y statistically independent

JoT(8) = ST ()T (8)

We have proved that the transform of the PDF of a random
variable which is the sum of two independent random variables is the
product of the transforms of their PDF’s.

The proof of the equivalent result for discrete random variables
which have z transforms,

TR NN AT T3S FEETKT WA

TR T el A TR S A T LT L T T AR

el _manl L
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P (2) = p."(2)p,"(2)  forw = z + y and

z,y statistically independent

is entirely similar to the above.
Let’s do one example for the discrete case, using z transforms.
Independent variables = and y are described by the PMIs

pe(x;)

py(y,)

1
pr()=3(arst) ol (2) = L(142)

Wi

x
0 1 2 0 0

Yo

1 2 3

The PMT for random variable w, given that w = z + y, has the 2
transform

PuT(2) = pT(@)p,T(2) = }(1 + 22 + 22* + 23)

and since we know p,7(z) = 2 Pu(wo)2*, we can note that the coeffi-
. . » wo=0

cient qf 2" in p,”(2) is equal to p,(wo). Thus, we may take the inverse

transform of p,7(z) to obtain

Puf wo)

1

§ w;=03
2 2
6 Pulwy) = § w=12
1
6 0 otherwise
0 1 2 3 wo

The read.er is encouraged to either convolve the PMTF’s or work the
problem in an x,,y, sample space to verify the above result,.

3-6 A Further Note on Sums of Independent Random Variables

For any random variables z and y, we proved

=

E(z +y) = E(z) + E(y)
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in Sec. 2-7. Thus, the expected value of a sum is always equal to the
sum of the expected values of the individual terms.

We next wish to note how variances combine when we add
independent random variables to obtain new random variables. Let
w = x + y; we then have, using the above relation for the expected
value of a sum,

ot = Bilw — B} = Eilz +y — B(@) — E@I")

= Ellz — E@) +y — EW]Y)
E{lz — E@)]?} + E{ly — E@)]?} + 2E{[x — E@)lly — EW)]}
= 0.2 + 0,2 + 2E[zy — zB(y) — yE(z) + E@)E(Y)]

For z and y independent, the expected values of all products in the last
brackets are equal. In fact, only linear independence is required for
this to be true and we obtain the following important expression for
the variance of the sum of linearly independent random variables:

forw = z + y and 2,y linearly independent

An alternative derivation of this relation for statistically independent
random variables (using transforms) is indicated in Prob. 3.14.

We now specialize our work to sums of independent random
variables for the case where each member of the sum has the same PDI".
When we are concerned with this case, which may be considered as a
sum of independent experimental values from an experiment whose
outcome is described by a particular PDT, we speak of independent
identically distrtbuled random variables.

Let r be the sum of n independent identically distributed random
variables, each with expected value E(z) and variance¢.*. We already
know that

E(r) = nE(z) or = \V/1no:

For the rest of this section we consider only the case E(x) > 0 and
w > 0.2 > 0. The E(z) > 0 condition will simplify our statements
and expressions. Our reasoning need not hold for ¢,? = o, and any
PDF which has 0,2 = O represents an uninteresting deterministic
quantity.

If we are willing to accept the standard deviation of r, o;, as a
type of linear measure of the spread of a PDF about its mean, some
interesting speculations follow. 5

As n increases, the PDF for r gets “wider” (as v/n) and its
expected value increases (asn). The mean and the standard deviation
both grow, but the mean increases more rapidly.

o, = no,?

— Ty TN

w

-

:

f7(s) = [f.T(s)]* where r is the sum of n (statistically) independent
experimental values of
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This would lead us to expect that, for instance, as n goes to
infinity, the probability that an experimental value of r falls within a
certain absolute distance d of E(r) decreases to zero. That is,

lim Prob([r — E(r)l < d] =0

n— o

(we think)

We reach this speculation by reasoning that, as the width of f,(») grows
as \/n, the height of most of the curve should fall as 1/4/7 to keep its
area equal to unity. If so, the area of f,(ry) over a slit of fixed width
2d should go to zero.

Our second speculation is based on the fact that F(r) grows
faster than o,. We might then expect that the probability that an
experimental value of » falls within + A4 ¢, of Z(+) grows to unity as n
goes to infinity (for A 5 0). That is,

. |r — E(r)| Al .
’!Ln: Prob [—-E‘(*TT-— < mﬁ =1 for A >0 (we thmk)

We might reason that, while the height of the PDI" in most places ncar
E(r) is probably falling as 1/4/7n, the interval of interest, defined by

A
Ir = B0 < 155 B0
grows as n.  Thus the area over this interval should, as n — «, come
to include all the arca of the PDT f,(ry).

For the given conditions, we shall learn in Chap. 6 that these
speculations happen to be correct.  Although proofs of such theorems
could be stated here, we would not have as sutisfactory a physical inter-
pretation of such-limit theorems as is possible after we become familiar
.with the properties of several important PMF's and PDI’s.

3-7 Sum of a Random Number of Independent Identically Distributed
Random Variables

Let 2z be a random variable with PDI" f,(xo) and s transform f,7(s).
If » is defined to be the sum of n independent experimental values of
random variable z, we know from the results of Sec. 3-5 that the trans-
form for the PDF f,(ro) is

We now wish to consider the situation when #n is also a random variable
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[with PMF p.(ne)]. We are interested in the sum of a random (but ! 79,79 event space, and then we take the s transform on both sides of the
integer) number of independent identically distributed random equation.

variables.
z Pu(n0) fr1u (10 | 220)

i

Tor instance, if f,(z,) were the PDT for the weight of any indi- Jr(r0)
vidual in an elevator, if the weights of people in the clevator could be
considered to be independent random variables, and if p,(n) were the £,7(s) /"’ et Z Pa(0) fopn (ro | 10) dro
PMT for the number of people in the elevator, random variable r - o
would represent the total weight of the people in the elevator. Owr _ z ® el (n i
work will also require that x and n be independent. In owr example, the t L Pn (o) /—m e~ frpn(ra | ma) dro
PDF for the individual weights may not depend on the number of
people in the clevator.

If n can take on the experimental values 0, 1,2, . . . , N, the
sample space for cach performance of our experiment is of N + 1
dimensions, since cach performance generates one experimental value
of n and up to N cxperimental values of random variable z. Tt is
usually difficult to obtain the desired PDT f,(r¢) dircctly, but its s
transform is derived quite easily. Although it may be difficult to get
back to f.(r) in a useful form from f,7(s), it is a simple matter to
evaluate the moments and variance of random variable ».

We may determine the s transform for f,(r) by working in an
event space for random variable n (the number of independent experi-
mental values of z in the sum) and » (the value of the sum). This event
space, perhaps a strange choice at first sight, consists of a set of parallel
lines in one quadrant and one point at the origin of the ro,n, plane.

Y pa(rolf ()]

We recognize the last cquation for £,7(s) to be the z transform of PMT
Pn(n0), with the transform evaluated at z = £,7(s). We now restate
this problem and its solution.

FLet n and x be independent random variables, where n is described by
the PMF p,(no) and x by the PDF [,(x,). Define r lo be the sum of n
independent experimental values of random variable v. The s transform
Jor the PDF f,.(r¢) is LT (8) = paT[f.7(s)]

We may use the chain rule for differentiation to obtain the cxpectation,
second moment, and variance of 7.

B - — [ A6 [dpaTILT(s) dfT(s)
Every event point representing ds 2==0 d{f. =7 (s)) ds 50

4 a possible outcome i_s either on

3 ;):ee :'f' gt':fse heavy lines or at ] To evaluate the first term in the right-hand brackets, we proceed,
{dpnr[fzr(s)l — dpnr(z) _ E R

2 TG f amo & |y = E®

1 The first step in the equation immediately above made use of the fact

- afs"
o N .that [f"(8)}imo = 1. To solve for E(r), we use [___f ds(S) ]‘_ = —E(z)
,o ro+dr, in the expression for E(r) to obtain

Along cach heavy line, there applies a conditional PDT f,1.(7 | 7o)

which is the PDT for r given the experimental value of n. We know

that f,ja(70 | no) is that PDT which describes the sum of n, independent i

experimental values of random variable z. As we noted at the start of } =

this section, PDF f,(x(r0 | no) has the s transform [f,7(s)]". L A second chain-rule differentiation of £,7(s) and the use of the
We use these observations to collect f,(7() as a summation in the -{ relation for o,? in terms of /:T(s) leads to the further result

E() = E(n)E(z)
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ot = E(n)o.? + [E(z)]%0,?

We may note that this result checks out correctly for the case where n
is deterministic (¢, = 0) and for the case where z is deterministic
(0:* = 0, [E()]* = 7).

If we had required that z, as well as », be a discrete random
variable which takes on only nonnegative integer experimental values,
we could have worked with the PMI p.(zo) to study o particular case
of the above derivations.  The resulting z transform of the PMI® for
discrete random variable » is

p.7(2) = pa"[p."(2)]
and the above expressions for () and o,2 still hold.

An example of the sum of a random number of independent
identically distributed random variables is included in the following
section.

3-8 An Example, with Some Notes on Inverse Transforms

As we undertake the study of some common probabilistic processes
m the next chapter, owr work will include numerous examples of
applications of transform techniques.  One problem is =olved here
to review some of the things we learned in this chapter, to indicate one
new application, and [in part (¢)] to lead us into a discussion of how we
may attempt to go back fron an s transform to its PIDI°.  There are,
of course, more general methods, which we shall not discuss.
Let discrete random variable & be deseribed by the PMF

8k

p,‘(ko) = QT-H }Co = 0, 1, 2, PP

(a) Determine the expected value and variance of random variable k.

(b) Determine the probability that an experimental value of & is even.

(¢) Determine the probability that the sum of n independent experi-
mental values of & is even.

(d) Let random variable & represent the number of light bulbs we
happen to have on hand at time 7.  IFurthermore, let x, the life-
time of each bulb, be an independent random variable with PDI

Jr(2o) = poa(xe — Q)NeP=

We turn on one bulb at time T, replacing it immediately with
another bulb as soon as it fails. This continues until the last of
the k bulbs blows out. Determine the s transform, expectation,
and variance for random variable 7, the time from Ty until the
last bulb dies.

T
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(e) Determine the PDF f,(ro) from the s transform f-7(s) obtained in
part (d).

a Rather than attempt to carry out some troublesome summations

directly, it seems appropriate to employ the z transform.

ko=0

»T(2) = E(2F) =

Making a quick check, we note that p,7(1) is equal to unity.

W = [Zero] -

=1

d? d d z
o = | Garo + g o - (Far@)] =72

b We shall do this part two ways. First, for our particular PMF we

can evaluate the answer directly. Let A represent the event that the
experimental value of k is even.

P(4) = Y pk(ko)=%(1+§2+g—:+g—:+ . )

ko even
_ 19 9
P(4) T 1-—64/81 17

The. monotonically decreasing PMF for random variable k makes it
obvious that P(4) > 0.5, since p«(0) > pi(1), pe(2) > px(3), ete.
Another approach, which is applicable to a more general problem

where we may not be able to sum z pi(ko) directly, follows:

ko even

P(4) = k) = 3| Y pulko) (1)t ) (=1
nlt) = 5[ 3 putka oy SXCIEY

ko even ko

P(4) = {1 + p7(-1)]

For our example we have P (2) = (9 — 82)~L, pT(~1) = £, resultin
in P(4) = 9/17. ‘ o ¢

¢ Let r be the sum of n independent experimental values of random

variable k. In Sec. 3-5, we learned that
1@ = [T ()]

which we simply substitute into the expression obtained in (b) above,
to get

Prob(exper. value of r is even) = 41 + p,7(—1)] = {1 + (&)"]

As we might expect on intuitive grounds, this probability rapidly
approaches 0.5 as n grows.

d This part is concerned with the sum of a random number of independent
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identically distributed random variables. Continuous random variable
7 is the sum of % independent experimental values of random variable z.
From Sec. 3-7, we have

78 = plf7(9)] = (D7 (@))emraren
For f.(xo), the exponential PDF, we have

sz(S) B [,,:;0 e_"'o)\e—uo d.’l?o - - i -
which results in
8\ ' _ s+
T(e) — - _ . B
17(5) (9 L A) ESN Y

We may substitute E(k), ox%, E(z), and ¢, into the formulas of Sec. 3-7
to obtain E(r) and ¢,?, or we may use the relations

_ d s+ @ s+
o= =[G w6

-[aG)]
ds \93 + A/ Jemo
We'll use the former method, with
Ek) =8
o =172

from part (a) of this example and
B@) =5

1
Uzz = A_z
(from the example in Sec. 3-3), which, in the expressions of Sec. 3-7 for
the expectation and variance of a sum of a random number of inde-

pendent identically distributed random variables, yields

ot = E®ost + [E@at = 5

E@) = E(E() = ;
The expected time until the last bulb dies is the same as it would be if
we always had eight bulbs. But, because of the probabilistic behavior
of k, the variance of this time is far greater than the value 8/\? which
would describe 0,2 if we always started out with exactly eight bulbs.
. . , Az be alist of mutually exclusive collectively exhaus-
tive events. Assume that there is a continuous random variable y
which is not independent of the A/s. Then it is useful to write

Jy(yo) = E P(A)fyayo | A2)

T T

bt
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And, from the definition of the s transform, we note that f,7(s) would
be the weighted sum of the transforms of the conditional PDF’s
Salyol 45). If we define

Fha(s) = fﬁ e~ufy1a(yo | As) dyo = E(e™v | A)

Yyo=—o0

we have

7G) = 3 PANT ()

When we wish to take inverse transforms (go back to a PDF from a
transform), we shall try to express the s transform to be inverted,
£,7(s), in the above form such that we can recognize the inverse trans-
form of each f7) ,(s).

In our particular problem, where the PMF for k is of the form

Pilko) = (1 — P)P*k ke=0,12...; 1>P>0
and the PDF for z is the exponential PDF
fo(®o) = Ap_i(mo — Q)er=

it happens that we may obtain f,(r,) from f,7(s) by the procedure dis-
cussed above. We begin by using long division to obtain

sHN _ 1.8 M9
9s4+XN 9 " 9s4A/9
which is of the form

(8 = §54(8) + §54(5)

From the examples carried out in Sec. 3-1, we note that
ffafs) =1

has the inverse transform f4,(ro | 4;) = po(ro — 0), and also

fziA,(S) = 5‘%/%/*9

JI(s) =

has the inverse transform frj4,(ro | A3) = u_y(ro — 0) %e—m/s

and, finally, we have the PDF for the duration of the interval during
which the lights are on.

f,—(‘l’o) = %‘ﬂO(TO — 0) + g.”,__l(-ro —_ 0) % e~/

The impulse at 7o = 0 in this PDF is due to the fact that, with proba-
bility 4, we start out with zero bulbs. Thus our PDF f,(r,) is a mized
PDF, having both a discrete and a continuous component. Wecon-
clude with a sketch of the PDF f,(r)
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The reader should recall that
the scale height of the
impuise is arbitrary

3-9 Where Do We Go from Here?

w N

We are already familiar with most of the basic concepts, methods,
and tools of applied probability theory. By always reasoning in an
appropriate sample or event space, we have had little difficulty in
going from concepts to applications.

Three main areas of study are to follow:
Probabilistic processes (Chaps. 4 and 5)
Limit theorems (Chap. 6)
Statistical reasoning (Chap. 7)

Although we shall consider these topics in the above order, this
does not necessarily reflect their relative importance in the world of
applied probability theory. Further study of the consequences of the
summation of a large number of random variables (limit theorems) is
indeed basic. Many probabilicists work solely at attempting to make
reasonable inferences from actual physical data (statistical reasoning).

Our choice of the order of these topics is based on the contention
that, if we first develop an understanding of several processes and
their properties, we may then begin a more meaningful discussion of
limit theorems and statistics. The following two chapters are con-
cerned with those probabilistic processes which form the most basic
building blocks from which models of actual physical processes are
constructed.
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= 3.01 A sufficient condition for the existence of an integral is that the
integral of the magnitude of the integrand be finite. Show that, at
least for purely-imaginary values of s, s = jw, this condition is always
= satisfied by the s transform of a PDF.

3.02 If we allow s to be the complex quantity, s = a + jw, determine for
which values of s in the a,w plane the s transforms of the following

PDF’s exist:
_ | Xe= 202> 0 _ ] 2y >0
3 falo) ‘0 20 <0 b fu(zo) = ‘ A&z 2 <0
| 0.5xe 220
€ fo(m) = ’ 050 2, <0
3.03 Express the PMF p.(z,) = (1 ~ P)P»,z, = 0,1,2,. . . ,asaPDF.

04 If z can be the complex number z = o + j8, determine for which
values of z in the a,8 plane the z transform of the PMF of Prob. 3.03
will exist.

g 3.05 All parts of this problem require numerical answers.
a If f,7(s) = K/(2 + s), evaluate K and E(y?).

g b If p.7(z) = (1 + 22)/2, evaluate p,[E(z)] and o..

= ¢ If .7(s) = 2(2 — e7*/2 — ¢~*)/3s, evaluate E(e2?).

= dIp7() = AQ + 32)%, evaluate E(?) and p.(2).

=

=

3.06 Determine whether or not the following are valid z transforms of a
PMF for a discrete random variable which can take on only nonnega-
tive integer experimental values:
azt422—2 b2-—=2 c (2 — 2!

3.07 Show that neither of the following is an s transform of a PDF:
a (1l —ed/s b 7(4 + 35)!

3.08 Let ! be a discrete random variable whose possible experimental
values are all nonnegative integers. We are given

_ 14 + 5z — 32?
PzT(z) = K [_—.8—(2—"——2)_-}

Determine the numerical values of E(l), p,(1) and of the conditional
expected value of ! given I # 0.

= 3.09 Use the expected-value definition of the s transform to prove that,
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if z and y are random variables with y = az + b, £,7(s) = e f,T(as).
(This is a useful expression, and we shall use it in our proof of the
central limit theorem in Chap. 6.)

.10 For a particular batch of cookies, k, the number of nuts in any

cookie is an independent random variable described by the probability
mass function

prlke) = 3B* ke =0,1,2,3,. ..

Human tastes being what they are, assume that the cash value

of a cookie is proportional to the third power of the number of nuts in

the cookie. The cookie packers (they are chimpanzees) eat all the

cookies containing exactly 0, 1, or 2 nuts. All series must be summed.

a What is the probability that a randomly selected cookie is eaten by
the chimpanzees?

b What is the probability that a particular nut, chosen at random from
the population of all nuts, is eaten by the chimpanzees?

¢ What is the fraction of the cash value which the chimpanzees
consume? .

d What is the probability that a random nut will go into a cookie
containing exactly R nuts?

3.11 The hitherto uncaught burglar is hiding in city 4 (with a priorl

probability 0.3) or in city B (with a priori probability 0.6), or he has
left the country. If he is in city A and N4 men are assigned to look
for him there, he will be caught with probability 1 — f¥a. If beis in
city B and N 3 men are assigned to look for him there, he will be caught
with probability 1 — f¥=. If he has left the country, he won’t be
captured.

Policemen’s lives being as hectic as they are, N4 and Np are
independent random variables described by the probability mass
functions ’

9N

pruN) = =7 N=012 ...

pws(NY = (P¥ N =123...

a What is the probability that a total of three men will be assigned
to search for the burglar? .

b What is the probability that the burglar will be caught? (All series
are to be summed.)

¢ Given that he was captured in a city in which exactly X men had
been assigned to look for him, what is the probability that he was
found in city 4?

LA
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.12 The number of “leads” (contacts) available to a salesman on any
given-day is a Poisson random variable with probability mass function

kog—n
pi(ko) = “kj! ko=0,1,2, ...

The probability that any particular lead will result in a sale is 0.5.

If your answers contain any series, the series must be summed.

a What is the probability that the salesman will make exactly one sale
on any given day?

b If we randomly select a sales receipt from his file, what is the proba-
bility that it represents a sale made on a day when he had a total of
R leads?

¢ What fraction of all his leads comes on days when he has exactly one
sale?

d What is the probability that he has no sales on a given day?

3.13 The probability that a store will have exactly k, customers on any
given day is

pelko) = 3" ko=0,1,2,. . .

On each day when the store has had at least one customer, one
of the sales slips for that day is picked out of a hat, and a door prize is
mailed to the corresponding customer. (No customer goes to this store
more than once or buys more or less than exactly one item.)

a What is the probability that.a customer selected randomly from the
population of all customers will win a door prize?

b Given a customer who has won a door prize, what is the probability
that he was in the store on a day when it had a total of exactly ko
customers?

S

3.14 Independent random variables z and y have PDF’s whose s trans-
forms are f,7(s) and f,7(s). Random variable r is defined to be
r =z +y. UsefT(s) and the moment generating properties of trans-
forms to show that E(r) = E(z) + E(y) and ¢,2 = ¢,? + ¢,%

I

.15 Let z and y be independent random variables with

_ | ae=m 2020 _|o Yo > 0
folwo) = 0 20 < 0 Fowo) = 1\ ¥y <0
Random variable r is defined by » = x» + y.

Determine:

a £.7(s), £,7(s), and J,7(s).
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b E(r) and 0,2
c fr(ro)'
d Repeat the previous parts for the case » = az + by.

3.16 Consider the PDF f.(z)) = p_1(zo — 0) — p—1{zo — 1). Random
variable y is defined to be the sum of two independent experimental
values of x. Determine the PDF f,(y0):

a In an appropriate two-dimensional event space
b By performing the convolution graphically
¢ By taking the inverse transform of f,T(s) (if you can)

3.17 a If z and y are any independent discrete random variables with
PMF’s p.(z) and p,(y,) and we define » = z 4y, show that
pe(re) = Z P=(zo)py(ro — x0) = E 2, (yo)p=(ro — yo). These summa-

tions are saxd to represent the dzscrete convolution. Show how you
would go about performing a discrete convolution graphically.

b For the case where z and y are discrete, independent random varia-
bles which can take on only nonnegative-integer experimental values,
take the z transform of one of the above expressions for p.(ro) to
show that p,7(z) = p.T(2)p,7(2).

3.18 Random variable z has the PDF f.(zo), and we define the Mellin
transform f,M(s) to be

f:M(s) = E@*)

a Determine E(z) and ¢.? in terms of f,¥(s).
b Let y be a random variable with

fu(Wo) = Kyof(yo)

i Determine K.
ii Determine f,™(s) in terms of f¥(s).
lit Evaluate f,#(s) and f,#(s) for

fu(zo) = 1 if0<'$u_<_l
27710 otherwise

and use your results to determine E(y) and o,.
¢ Let w and r be independent random variables with PDF’s f.,(wo)
and f.(r) and Mellin transforms f,*(s) and f.*(s). If we define
1 = wr, find f,¥(s) in terms of the Mellin transforms for w and r.

3.19 A fair wheel of fortune, calibrated infinitely finely from zero to unity,
is spun k times, and the resulting readings are summed to obtain an
experimental value of random variable ». Discrete random variable &

Ao
has the PMF pk(ko) = -—kT’ ko = 0, l, 2, e e
0!

I
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Determine:
a The probability that at least one reading is larger than 0.3
b f,7(s)
c E(r?)

3.20 Widgets are packed into cartons which are packed into crates. The
weight (in pounds) of a widget is a continuous random variable with

PDF
f,(xoj = Ae~ M o2 0

The number of widgets in any carton, K, is a random variable with the
PMF

uoes
K,!

The number of cartons in a crate, N, is a random variable with PMF
pN(No) = PN‘—I(I it P) No = 1,2, 3, e

Random variables z, K, and N are mutually independent.
Determine:

a The probability that a randomly selected crate contains exactly one
widget .

b The conditional PDF for the total weight of widgets in a carton given
that the carton contains less than two widgets

¢ The s transform of the PDF for the total weight of the widgets in a
crate

d The probability that a randomly selected crate contains an odd num-
ber of widgets

pr(Ko) = Ky=0,1,2, .

3.21 The number of customers who shop at a supermarket in a day has
the PMF

Akog—A
Dr (k 0) = kO ]

k=012 ..

and, independent of k, the number of items purchased by any customer
has the PMF

plo
) =5 L=0,1,2 ...
Two ways the market can obtain a 109 increase in the expected value
of the number of items sold are:
a To increase u by 109,
b To increase A by 10%
Which of these changes would lead to the smaller variance of the total
items sold per day?



