
CHAPTER FOUR 

some 
basic 

probabilistic 
processes 

This chapter presents a few simple probabilistic processes and develops 
family relationships among the PMF's and PDF's associated with these 
processes. 

Although we shall encounter many of the most common PMF's 
and PDF's here, it is not our purpose to develop a general catalogue. 
A listing of the most frequently occurring PRfF's and PDF's and some 
of their properties appears as an appendix at  the end of this book. 



4-1 The 8er~ouil1 Process 

A single Bernoulli trial generates an experimental value of discrete 
random variable x, described by the PMF 

1-P xo-0 O l P l l  

xo= 1 

otherwise 

Random variable x, as described above, is known as a Bernoulli random 
variable, and we note that its PMF has the z transform 

The sample space for each Bernoulli trial is of the form 

Either by use of the transform or by direct calculation we find 

We refer to the outcome of a Bernoulli trial as a success when the ex- 
perimental value of x is unity and as a failure when the experimental 
value of x is zero. 

A Bernoulli process is a series of independent Bernoulli trials, 
each with the same probability of success. Suppose that n independent 
Bernoulli trials are to be performed, and define discrete random variable 
k to be the number of successes in the n trials. Random variable k is 
noted to be the sum of n independent Bernoulli random variables, so we 
must have 

There are several ways to determine pk(ko), the probability of 
exactly ko successes in n independent Bernoulli trials. One way would 

be to apply the binomial theorem 

to expand pkT(z) in a power series and then note the coefficient of zko in 
this expansion, recalling that any z transform may be written in the 
form 

pkT(~) = pk(0) + zpk(1) + z2pk(2) + ' ' 

This leads to the result known as the binomial PMF, 

where the notation is the common 

discussed in Sec. 1-9. 
Another way to derive the binomial PMF would be to work in a 

sequential sample space for an experiment which consists of n independ- 
ent Bernoulli trials, 

We have used the notation 

t success (;'') = Ifailure 1 on the nth trial 

Each sample point which represents an outcome of exactly ko suc- 
cesses in the n trials would have a probability assignment equal to 
1 - P n .  For each value of ko, we use the techniques of Sec. 1-9 

, . 
to determine that there are such sample points. Thus, we again (3 - .  
obtain 

for t h c  hinomial PMF. 
We earl determine the expected value and variance of the 

binomid rarulm variable ,le by any of three techniques. (One should 
always review his arsenal before selecting a weapon.) To evaluate 
B(k) and ok2 we may 



1 Perform the expected value'summationsdirectly. 
2 Use the moment-generating properties of the z transform, introduced 

in Sec. 3-3. 
3 Recall that the expected value of a sum of random variables is always 

equal to the sum of their expected values and that the variance of a 
sum of linearly independent random variables is equal to the sum of 
their individual variances. 

Since we know that binomial random variable k is the sum of n 
independent Bernoulli random variables, the last of the above methods 
is the easiest and we obtain 

Before moving on to other aspects of the Bernoulli process, let's 
look at  a plot of a binomial PMF. The following plot presents pk(ko) 
for a Bernoulli process, with P = + and n = 4. 

4-2 Interarrival Times for the Bernoulli Process 

It is often convenient to refer to the successes in a Bernoulli proc- 
ess as arrivals. Let discrete random variable ll be the number of 
Bernoulli trials up to and including the first success. Random variable 
l1 is known as the first-order in!erarrival time, and it can take on the 
experimental values 1, 2, . . . . We begin by determining the PhIF 
p ( 1 )  (Note that since we are subscripting the random variable there 
is no reason to use a subscripted dummy variable in the argument of 
the PAIF.) 

We shall determine pr,(l) from a sequential sample space for the 
experiment of performing independent Bernoulli trials until we obtain 
our first success. Using the notation of the last section, we have 

We have labeled each sample point with the experimental value of 
random variable l1 associated with the experimental outcome repre- 
sented by that point. From the above probability tree we find that 

and since its successive terms decrease in a geometric progression, this 
PAIF for the first-order interarrival times is known as the geometric 
PMF. The z transform for the geometric PMF is 

Since direct calculation of E(ll) and utI2 in an Z l  event space 
involves difficult summations, we shall use the moment-generating 
property of the z transform to evaluate these quantities. 

Suppose that we were interested in the conditional PMF for the 
remaining number of trials up to and including the next success, given 
that there were no successes in the first m trials. By conditioning the 
event space for ll we would find that the conditional PMF for y = 11-m, 
the remaining number of trials until the next success, is still a geometric 
random variable with parameter P (see Prob. 4.03). This is a result 
attributable to the "no-memory" property (independence of trials) of 
the Bernoulli process. The PMF ptl(l) was obtained as the PMF for 
the number of trials up to and including the first suocess. Random 
variable 11, the first-order interarrival time, represents both the waiting 
time (number of trials) from one success through the next success and 
the waiting time from any starting time through the next success. 

Finally, we wish to consider the higher-order interarrival times 
for a Bernoulli process. Let random variable 5, called the rth-order 
interarrival time, be the number of trials up to and including the rth 
success. Note that I, is the sum of 1. independent experimental values 



- - 
- - - 

of random variable lI; so we must have equaIs the probability that the rth success will occur on the Zth trial. 
Any success on the lth trial must be the first, or second, or third, ete., 
success after 1 = 0. Therefore, the sum of ptr(l) over r simply repre-
sents the probability of a success on the lth trial. From the definition 

There are several ways we might attempt to take the inverse of of the Bernoulli process, this probability is equal to P. 
this transform to obtain prr(l) ,the PMF for the ith-order interarrival Our results for the Bernoulli process are pummarized in the fol-
time, but the following argument seems both more intuitive and more lowing section. 
efficient. Since plr(l) represents the probability that the rth success in 
a Bernoulli process arrives on the Zth trial, plr(l) may be expressed as 4-3 Summary of the Bernoulli Process 

conditional probability of hav-
ing rth success on the Zth trial, Each performance of a Bernoulli trial generates an experimental value 

given exactly r - 1 successes of the Bernoulli random variable x described by 

in the previous 1 - 1 trials -
m 

The fint term in the above product is the binomial PMF eval- 1 - P XQ = 0 (a "failure") 
m 

= muated for the probability of exactly r - 1 successes in 1 - 1 trials. pz(x0) 
, L xo = I (a "successf') -

-i-Since the outcome of each trial is independent of the outcomes of all mp Z T ( z ) = 1 - P f z P  E ( x ) = P  c z 2 = P ( l - P )  ---
other trials, the second term in the above product is simply equal to -
P, the probability of success on any trial. We may now substitute ---
for all the words in the above equation to determine the PMF for the A series of identical independent Bernoulli trials is known as a
rth-order interarrival time (the number of trials up to and including Bernoulli process. The number of successes in n trials?random variablethe rth success) for a Bernoulli process k, is the sum of n independent Bernoulli random variables and is 

described by the binomial PA4F 

Of course, with r = 1,this yields the geometric PMF for E l  and 
thus provides an alternative derivation of the PMF for the first-order 
interarrival times. The PMF pl,(l) for the number of trials up to and 
including the rth success in a Bernoulli process is known as the Pascal 

The number of trials up to and including the first success isPMF. Since 1, is the sum of r independent experimental values of 11, 
described by the PMF for. random variable 11, called the first-order 

we have 
interarrzual (or waiting) time. Random variable 11has a geometric PMF 

The negatiue binomial PXF,a PMF which is very closely related 
to the Pascal PMF, is noted in Prob. 4.01. 

As one last note regarding the Bernoulli process, we recognize 
that the relation 

The number of trials up to and including the rth success, 5, is 
called the rlh-order interarrival time. Random variable I,, the sum of 

is always true. The quantity pr,(l), evaluated for any value of 1. r independent experimental values of E l ,  has the Pascal PMF 



We conclude with one useful observation based on the definition 
of the Bernoulli process. Any events, defined on nonoverlapping sets 
of trials, are independent. If we have a list of events defined on a 
series of Bernoulli trials, but there is no trial whose outcome is relevant 
to the occurrence or nonoccurrence of more than one event in the list, 
the events in the list are mutually independent. , This result, of course, 
is due to the independence of the individual trials and is often of value 
in the solution of problems. 

4-4 An Example 

We consider one example of the application of our results for the 
Bernoulli process. The first five parts are a simple drill, and part (f) 
will lead us into a more interesting discussion. 

Fred is giving out samples of dog food. He makes calls door to 
door, but he leaves sample (one can) only on those calls for which the 
door is answered and a dog is in residence. On any call the probability 
of the door being apswered is 3/4, and the probability that any house- 
hold has a dog is 2/3. Assume that the events "Door answered" and 
"A dog lives here" are independent and also that the outcomes of all 
calls are independent. 
(a) Determine the probability that Fred gives away his first sample on 

his third call. 
(b) Given that he has given away exactly four samples on his first 

eight calls, determine the conditional probability that Fred will 
give away his fifth sample on his eleventh call. 

(c) Determine the probability that he gives away his second sample on 
his fifth call. 

(d) Given that he did not give away his second sample on his second 
call, .determine the conditional probability that he will leave his 
second sample on his fifth call. 

(e) We shall say that Fred "needs a new supply" immediately after the 
call on which he gives away his last can. If he starts out with two 
cans, determine the probability that he completes a t  least five calls 
before he needs a new supply. 

(I) If he starts out with exactly rn cans, determine the expected value 
and variance of dm, the number of homes with dogs which he passes 
up (because of no answer) before he needs a new supply. 

We begin by sketching the event space for each call. 

Door is 
answered 

Door not 
answered 

< No dog 

P(*)  

. d  12 Success 

. 3  r2 Failure 

Failure 

-4- Failure 

For all but the last part of this problem, we may consider each,call to 
be a Bernoulli trial where the probability of success (door answered 
and dog in residence) is given by P = B C = 4. 

a Fred will give away his first sample oi t& third call if the first two 
calls are failures and the third is a success. Since the trials are 
independent, the probability of this sequence of events is simply 
(1 - P)(1 - P)P = 1/8. Another way to obtain this answer is to 
realize that, in the notation of the previous section, we want pr,(3) 
which is (1 - P)2P = 1/8. 

b The event of interest requires failures on the ninth and tenth trials and 
a success on the eleventh trial. For a Bernoulli process, the outcomes 
of these three trials are independent of the results of any other trials, , 

and again our answer is (1 - P)(1 - P)P = 1/8. 
c We desire the probability that l , ,  the second-order interarrival time, 

is equal to five trials. We know that pl,(l) is a Pascal PMF, and we 
have 

d Here we require the conditional probability that the experimental value 
of I2 is equal to 5, given that it is greater than 2. 

As we would expect, by excluding the possibility of one particular 
experimental value of 2 2 ,  we have increased the probability that the 
experimental value of 12 is equal to 5 .  The PMF for the tota1,number 
of trials up to and including the rth success (since the process began) 
does, of course, depend on the past history of the process. 

e The probability that Fred will complete at  least five calls before he 



needs a new supply is equal to the probability that the experimental 
value of l 2  is greater than or equal to 5. 

f Let discrete random variable f, represent the number of failures before 
Fred runs out of samples on his mth successful call. Since 1, is the num- 
ber of trials up to and including the mth success, we havef, = 1, - m. 
Given that Fred makes I ,  calls before he needs a new supply, we can 
regard each of the f, unsuccessful calls as trials in another Bernoulli 
process where P', the probability of a success (a disappointed dog), 
is found from the above event space to be 

P' = Prob(dog lives there I Fred did not leave a sample) 

We define x to be a Bernoulli random variable with parameter P'. 
The number of dogs passed up before Fred runs out, dm, is equal 

to the sum of f, (a random number) Bernoulli random variables each 
with P' = 1/3. From Sec. 3-7, we know that the z transform of pdm(d) 
is equal to the r transform of pfm(f), with z replaced by the z transform 
of Bernoulli random variable x. Without formally obtaining ~d.~(z) , 
we may use the results of Sec. 3-7 to evaluate E(dm) and udm2. 

! E(d,) = E ( f , ) E ( 4  from set. 3-7 

We substitute these expected values into the above equation for E(d3 ,  
the expected value of the number of dogs passed up. 

expected value of no. of. dogs 
m 

E(dm) = m !-I-!! P' = m = - = passed up before Fred gives 
P + 3  awaymthsample 

We find the variance of dm by 

cd; = E(j,)a? + [E(x)I2u, from Sec. 3-7 

urm2 = ulm2 I 

Since fm = 1, - m, the PMF for f, is simply the PLMF for 1, shifted to 
the left by m. Such a shift doesn't affect the spread of the PXF about 
its expected value. 

(1 - P) from properties of Pascal PMF noted in previous 
(Tim2 = m - P2 section 

We may now substitute into the above equation for ud2, the variance 
of the number of dogs passed up. 

Although the problem did not require it, let's obtain the z 
transform of pdm(d), which is to be obtained by substitution into 

We know that pZT(z) = 1 - P' + P'z = + &z, and, using the 
fact that fm = 1, - m, we can write out plmT(z) and pjmT(z) and note a 
simple relation to obtain the latter from the former. 

From these expansions and our results from the Pascal process we have 

pfmT(z) = ~-mptmT(~) = Pm[l - z(1 - P)]- 
and, finally, 

Since the z transform for the PMF of the number of dogs 
passed up happened to come out in such a simple form, we can find the 
PMF pdm(d) by applying the inverse transform relationship from Sec. 
3-2. We omit the algebraic work and present the final form of pdm(d). 

For instance, if Fred starts out with only one sample, we have m = 1 
and 

pd,(d) = d = 0 , l 7 2 ,  

is the PMF for the number of dogs who were passed up (Fred called 
but door not answered) while Fred was out making calls to try and give 
away his one sample. 

4-5 The Poisson Process 

We defined the Bernoulli process by a. particular descrip- 
tion of the "arrivals" of successes in a series of independent identical 
discrete trials. The Poisson process will be defined by a probabilistic 



description of the behavior of arrivals a t  points' on a continuous line. 
For convenience, we shall generally refer to this line asif i t  were 

a time (t) axis. From the definition of the process, we shall see that 
a Poisson process may be considered to be the limit, as At --+ 0 of a 
series of identical independent Bernoulli trials, one every At, with the 
probability of a success on any trial given by P = X At. 

For our study of the Poisson process we shall adopt the some- 
what improper notation: 

@(k,t)== the probability that there are exactly k arrivals during any 
interval of duration t 

This notation, while not in keeping with our more aesthetic habics 
developed earlier, is compact and particularly convenient for the types 
of equations to follow. We observe that @(k,k,t) is a PMF for random 
variable k for any fixed value of parameter t. In  any interval of length 
t, with t 2 0, we must have exactly zero, or exactly one, or exactly two, 
etc., arrivals. Thus we have 

We also note that @(k,t) is not a PDF for I. Since @(k,tl) and @(k,tt) 
are not mutuatly exclusive events, we can state only that 

0 5 L:, @(kt) dt i 

The use of random variable k to count arrivals is consistent with our 
notation for counting successes in a Bernoulli process. 

There are several equivalent ways to define the Poisson process. 
We shall define it directly in terms of those properties which are most 
useful for the analysis of problems based on physical situations. 

Our definition of the Poisson .process is as follows: 

1 Any events defined on nonoverlapping time intervals are mutually 
independent. 

2 The following statements are correct for suitably small values of At: 

The first of the above two defining properties establishes the 
no-memory 'attribute of, the Poisson process. As an example, for a 

Poisson process, events A, B, and C, defined on the intervals shown 
below, are mutually independent. 

These x's represent one 
possible history of arrivals 

Event A :  Exactly kl arrivals in interval T1 and exactly ka arrivals in 
interval T 3  

Event B: More than kz arrivals in interval T2 
Event C: No arrivals in the hour which begins 10 minutes after the 

third arrival following the end of interval Ta 

The second defining property for the Poisson process states that, 
for small enough intervals, the probability of having exactly one arrival 
within one such interval is proportional to the duration of the interval 
and that, to the first order, the probability of more than one arrival 
within one such interval is zero. This simply means that @(k,At) can be 
expanded in a Taylor series about At = 0, and when we neglect terms of 
order (At)2 or higher, we obtain the given expressions for @(k,At). 

Among other things, we wish to determine the expression for 
@(k,t) for t > 0 and for k = 0, 1, 2, . . . . Before doing the actual 
derivation, let's reason out how we would expect the result to behave. 
From the definition of the Poisson process and our interpretation of i t  
as a series of Bernoulli trials in incremental intervals, we expect that 

@(O,t) as a function of t should be unity a t  t = 0 and decrease mono- 
tonically toward zero as t increases. (The event of exactly zero 
arrivals in an interval of length t requires more and more suc- 
cessive failures in incremental intervals as t increases.) 

@(k,t) as a function of t, for k > 0, should start out a t  zero for t = 0, 
increase for a while, and then decrease toward zero as t gets 
very large. [The probability of having exactly k arrivals (with 
k > 0) should be very small for intervals which are too long or 
too short.] 

@(k,O)as a function of k should be a bar graph with only one nonzero 
bar; there will be a bar of height unity at  k = 0. 

We shall use the defining properties of the Poisson process to 
relate @(k, t + At) to @(k,t) and then solve the resulting differential 
equations to obtain 6(k,t). 

For a Poisson process, if At is small enough, we need consider 
only the possibility of zero or one arrivals between t and t + At. Taking 
advantage also of the independence of events in nonoverlapping time 



intervals, we may write 

@(k, t -I- At) = @(k,t)@(O,At) + B(k - 1, t)@(l,At) 

The two terms summed on the right-hand side are the probabilities of 
the only two (mutually exclusive) histories of the process which may 
lead to having exactly k arrivals in an interval of duration t + At. 
Our definition of the process specified @(O,At) and @(l,At) for small 
enough At. We substitute for these quantities to ob&n 

@(k, t + At) = @(k,t)(l - X At) + P(k - 1, t)h At 

Collecting terms, dividing through by At, and taking the limit as 
At --, 0, we find 

which may be solved iteratively for k = 0 and then for k = 1, etc., 
subject to the initial conditions 

The solution for @(k,t) ,  which may be verified by direct substitution, is 

And we find that @(k,t) does have the properties we anticipated earlier. 

Letting fi = At, we may write this result in the more proper 
notation for a PMF' as 

(At) k~e-Xt pkw-fl 
pk(ko) = ------- = - 

ko! ko! 
p = Xt;  ko = 0, 1,2,  . . . 

This is known as the Poisson PMF. Although we derived the Poisson 

PMF by considering the number of arrivals in an interval of length t for 
a certain process, this PMF arises frequently in many other situations. 

To obtain the expected value and variance of the Poisson PMF, 

we'll use the z transform 

Thus the expected value and variance of Poisson random variable k are 
both equal to p. 

We may also note that, since E(k) = At, we have an interpreta- 
tion of the constant X used in 

as part of the definition of the Poisson process. The relation E(k) = At 
indicates that X is the expected number-of arrivals per unit time in a 

, 

Poisson process. The constant X is referred to as the average arrival 
rate for the process. 

' Incidentally, another way to obtain E(k) = Xt is to realize that, 
for sufficiently short increments, the expected number of arrivals in a 
time increment of length At is equal to 0 (1 - X At) + 1 . X A1 = A At. 
Since an interval of length t is the sum of t/At such increments, we 
may determine E(k) by summing the expected number of arrivals in 

t each such increment. This leads to E(k) = h At - = ht. 
At 

4-6 tnterarrival Times for the Poisson Process 

Let Zr be a continuous random variable defined to be the interval of 
time between any arrival in a Poisson process and the rth arrival 
after it. Continuous random variable l,, the rth-order interarrival time, 
has the same interpretation here as discrete random variable 1, had for 
the Bernoulli process. 

We wish to determine the PDF's 

And we again use an argument similar to that for the derivation of the 
Pascal PMF, 



For small enough A1 we may write 

Prob(1 < I, < I + Al) = fl,(l) A1 

where A = probability that there are exactly r - 1 arrivals in an 
interval of duration 1 

B = conditional probability that 7th arrival occurs in next A1, 
given exactly r - 1 arrivals in previous interval of dura- 
tion I 

Thus we have obtained the PDF for the rth-order interarrival time 

which is known as the Erlang family of PDF's. (Random variable 1, is 

said to be an Erlang random variable of order r.) 
The first-order interarrival times, described by random variable 

11, have the PDF 

fr,(l) = p-l(l  - O)Xe-Xl 

which is the exponential PDF. We may obtain its mean and variance 
by use of the s transform. 

Suppose we are told that it has been r units of time since the last 
arrival and we wish to determine the conditional PDF for the duration 
of the remainder ( 1 1  - r )  of the present interarrival time. By con- 
ditioning the event space for 11, we would learn that the PDF for the 
remaining time until the next arrival is still an exponential random 
variable with parameter X (see Prob. 4.06). This result is due to the 
no-memory (independence of events in nonoverlapping intervals) prop- 
erty of the Poisson process; we discussed a similar result for the Bernoulli 
process in Sec. 4-2. 

Random variable 1, is the sum of r independent experimental 
Therefore we have values of random variable I l .  

The following is a sketch of some members of Erlang family of PDF's: 

We established that the first-order interarrival times for a Poisson 
process are exponentially distributed mutually independent random 
variables. Had we taken this to be our definition of the Poisson process, 
we would have arrived at identical results. The usual way of determin- 
ing whether it is reasonable to model a physical process as a Poisson 
process involves checking whether or not the first-order interarrival 
times are approximately independent exponential random variables. 

Finally, we realize that the relation 

holds for reasons similar to those discussed at  the end of Sec. 4-2. 

4-7 Some Additional Properties of Poisson Processes 
and Poisson Random Variables 

Before summarizing our results for the Poisson process, we wish to note 
a few additional properties. 

Consider diicrete random variable w,the sum of two independent 
Poisson random variables s and  y, with expected values E(x) and E(y) .  
There are at least three' ways to establish that p,(wo) is also a Poisson 
PAIF. One method involves direct summation in the XO,yo event space 
(see Prob. 2.03). Or we may use z transforms as follows, 

w = x + y x, y independent ' 

which we recognize to be the z transform of the Poisson PMF 

- [E(x)+ E (y) ]woe- [ E ( z ) + E ( y )1 
pUl(w0) -

wo! Wo = 0,1, . . . 



A third way would be to note that w = x + y could represent the 
total number of arrivals for two independent Poisson processes within 
a certain interval. A new process which contains the arrivals due 
to both of the original processes would still satisfy our definition of 
the Poisson process with h = h1 + X I  and would generate experimental 
values of ,random variable w for the total number of arrivals within the 
given interval. 

We have learned that the arrival process representing all the 
arrivals in several independent Poisson processes is also Poisson. 

Furthermore, suppose that a new arrival process is formed by 
performing an independent Bernoulli trial for each arrival in a Poisson 
process. With probability P, any arrival in the Poisson process is also 
considered an arrival at  the same time in the new process. With prob- 
ability 1 - P, any particular arrival in the original process does not 
appear in the new process. The new process formed in this manner 
(by "independent random erasures") still satisfies the definition of a 
Poisson process and has an average arrival rate equal to hP and the 
expected value of the first-order interarrival time is equal to (XP)-l. 

If the erasures are not independent, then the derived process has 
memory. For instance, if we erase alternate arrivals in a Poisson 
process, the remaining arrivals do not form a Poisson process. It is 
clear that the resulting process violates the definition of the Poisson 
process, since, given that an arrival in the new process just occurred, 
the probability of another arrival in the new process in the next At is 
zero (this would require two arrivals in At in the underlying Poisson 
process). This particular derived process is called an Erlang process 
since the first-order interarrival times are independent and have (sec- 
ond-order) Erlang PDF's. This derived process is one example of how 
we can use the memoryless Poisson process to model more involved 
situations with memory. 

4-8 Summary of the Poisson Process 

For convenience, assume that we are concerned with arrivals which 
occur at points on a continuous time axis. Quantity m(k,t) is defined 
to be the probability that any interval of duration t will contain exactly 
k arrivals. A process is said to be a Poisson process if and only if 

. , .  

1For suitably small At, 6 ( k , A t )  satisjes i--

1 - h A t  k = O  -
k = l  ZZEE 

k > 1  zzzEz 

-2 Any events defined on nonoverlapping intervals of time are mutually -
independent. ----

-== --
An alternative definition of a Poisson process is the statement 

that the first-order interarrival times be independent identically dis- 
tributed exponential random variables. 

Random variable k, the number of arrivals in an interval of 
duration t ,  is described by the Poisson PMF 

The first-order interarrival time 11 is an exponential random 
variable with the PDF 

The time until the rth arrival, L, is known as the rth-order 
waiting time, is the sum of r independent experimental values of 11, and 
is described by the Erlano PDF 

The sum of several independent Poisson random variables is also 
a random variable described by a Poisson PMF. If we form a new 
process by including all arrivals due to several independent Poisson 

processes, the new process is also Poisson. If we perform Bernoulli 
trials to make independent random 'erasures from a Poisson process, 
the remaining arrivals also form a Poisson process. 



4-9 Examples 

The ~oisson process finds wide application in the modeling of proba- 
bilistic systems. We begin with a simple example and proceed to 
consider some rather structured situations. Whenever it seems infor- 
mative, we shall solve these problems in several ways. 

example 1 The PDF for the duration of the (independent) interarrival times 
between successive cars on the Trans-Australian Highway is given by 

where these durations are measured in seconds. 
(a) An old wombat requires 12 seconds to cross the highway, and he 

starts out immediately after a car goes by. What is the probability 
that he will survive? 

(b) Another old wombat, slower but tougher, requires 24 seconds to 
cross the road, but it take$ two cars to kill him. (A single car 
won't even slow him down.) If he starts out a t  a random time, 
determine the probability that he survives. 

(c) If both these wombats leave at  the same time, immediately after 
a car goes by, what is the probability that exactly one of them 
survives? 

a Since we are given that the first-order interarrival times are independ- 
ent exponentially distributed random variables, we know that the 
vehicle arrivals are Poisson, with 

Since the car-arrival process is memoryless, the time since the most 
recent car went by until the wombat starts to cross is irrelevant. The 
fast wombat will survive only if there are exactly zero arrivals in the 
first 12 seconds after he starts to cross. 

Of course, this must be the same as the probability that the wait until 
the next arrival is longer than 12 seconds. 

@(0,12) = /* e-tIL2 dt = 0.368 
t=12 

b The slower but tougher wombat will survive only if there is exactly 
zero or one car in the first 24 seconds after he starts to cross. 

c Let 1::) be the number of cars in the 12 seconds after the 
I 

wombats start out. It will be helpful to draw a sequential event space 
for the experiment. 

N2 - 0 Both survive 

Prob(exact1y one wombat survives) = Prob(Nl = 0, N 2  2 2) 

+ Prob(N1 = 1, N 2  = 0) 
Quantities Nl and N 2  are independent random variables because they 
are defined on nonoverl'apping intervals of a Poisson process. We 
may now colIect the probability of exactly one survival from the above 
event space. 

~ rob (exac t1~  1 wombat survives) = @(0,12)[1 - @(0,12) - @(1,12)] 

+ @(1,12)@(0,X2) 
Prob(exact1y 1 wombat survives) = e-l(l - 2e-I) 

, + e-2 = rf - e-2 =: 0.233 

example 2 Eight light bulbs are turned on at  t = 0. The lifetime of any 
particular bulb is independent of the lifetimes of all other bulbs and is 
described by the PDF . 

Determine the mean, variance, and s transform of random variable y, 
the time until the third failure. 

We define t i j  to be a random variable representing the time from 
the ith failure until the jth failure, where tol is the duration from 
t = 0 until the first failure. We may write 

The length of the time interval during which exactly 8 - i bulbs are on 
is equal to tici+1,. While 8 - i bulbs are on, we are dealing with the sum 
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of 8 - i independent Poisson processes and the probability of a failure 
in the next At is equal to (8 - i)X At. Thus, from the properties of the 
Poisson process, we have 

the waiting time until the first arrival in a Poisson process with average ' 
arrival rate XNF. The probability that his total waiting time t will 
be between toand to + dto is 

Given that the experimental value of Joe's waiting time is exactly to 
Knowledge of the experimental value of, for instance,. t o 1  does , hours, the conditicnal PMF for K is simply the probability of exactly 

not tell us anything about t t2. Random variable tI2 would still be KOarrivals in an interval of duration to for a Poisson process with 
an exponential random variable representing the time until the next average arrival rate X F N .  
arrival foi a Poisson process with an average arrival rate of 7X. Random 
variables t o l ,  t l r ,  and t l r  are mutually independent (why?), and we have 

The experiment of Joe's waiting for the next NF bus and observ-
-

ing the number of wrong-way buses while he waits has a two-dimensional 
event space which is discrete in K and continuous in t. 

This has been one example of how easily we can obtain answers for many 
questions related to Poisson models. A harder way to go about it  etc. 

would be to determine first the PDF for q, the third smallest of 
eight independent identically distributed exponential random variables. 

For instance, this sample point 
would represent the experimental 
outcome "he had to wait exactly to 
hours and he saw exactly three 

I FN buses while he waitedp 
II 

K O - 2  I 
II 

example 3 Joe is waiting for a Nowhere-to-Fungleton (NF) bus, and he 

knows that, out where,he is, arrivals of buses may be considered We obtain the probability assignment in this event space, ft,r(to,ko). 
\ I 

independent Poisson processes with average arrival rates of ["N} busesXNF 
ft,~(to,Ko)= f t ( t~)p~l t (Ko) to) 

per hour. Determine the PMF and the expectation for random varia-
ble K, the number of "wrong-way" buses he will see arrive before he 
boards the next NF bus. The marginal PMF P K ( K ~ )may be found from 

We shall do this problem in several ways. 

Method A 

We shall obtain the compound PDF for the amount of time he waits By noting that 

and the number of wrong-way buses he sees. Then we determine 
pK(Ko)by integrating out over the other random variable. We know 
the marginal PDF for his waiting time, and it is simple to find the PMF 
for K conditional on his waiting time. The product of these proba-
bilities tells us all there is to know about the random variables of interest. 

The time Joe waits until the first right-way ((NF)bus is simply 

would integrate to unity over the range 0 _< to m (since it is an 
Erlang PDF of order KO,+I), we can perform the above integration 
by inspection to obtain (with XNFIXFN = P ) ,  



If the average arrival rates X N F  and ApN are equal ( p  = I) ,  we note that 
the probability that Joe will see a total of exactly KO wrong-way buses 
before he boards the first right-way bus is equal to (+)KO+'. For this 
case, the probability is 0.5 that he will see no wrong way buses while he 
waits. 

The expected value of the number of FN buses he will see arrive 
may be obtained from the z transform. 

This answer seems reasonable for the cases p > > 1 and p < < 1. 

Method B 

Regardless of when Joe arrives, the probability that the next bus is a 
wrong bus is simply the probability that an experimental value of a 
random variable with PDF 

fi(xO) = X F N e - X ~ ~ 2 0  Xt.0 2 0 

is smaller than an experimental value of another, independent, random 
variable with PDF 

fu(yo) = X N ~ e - A ~ r g o  Yo 2 0 

So, working in the xo,yo event space 

Event: the next bus Joe sees 
after he arrives is a 
wrong way bus 

As soon as the next bus does come, the same result holds for the fol'lowing 
bus; so we can draw out the sequential event space where each trial 
corresponds to the arrival of another bus, and the experiment termi- 
nates with the arrival of the first NF bus. 
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This again leads to 

Method C 

Consider the event space for any adequately small At, 

A m 4 
A wrong-way bus arrives in this At 

. A bus of the type Joe is waiting for 
comes in this At 

We need be interested in a At only if a bus arrives during that At; 
so we may work in a conditional space containing only the upper two 
event points to obtain 

Prob (any particular bus is FN) = X P N  
X F N  + ANF 

Prob (any particular bus is NF) = X N F  
AFN + XNF 

This approach replaces the integration in the x,y event space for the 
previous solution and, of course, leads to the same result. 

As a final point, note that N, the total number of buses Joe 
would see if he waited until the Rth NF  bus, would have a Pascal PMF. 
The arrival of each bus would be a Bernoulli trial, and a success is 
represented by the arrival of an NF bus. Thus, we have 

where N is the total number of buses (including the one he boards) seen 
by Joe if his policy is to board the Rth right-way bus to arrive after he 
gets to the bus stop. 



4-10 Renewal Processes 

Consider a somewhat more general case of a random process in 
which arrivals occur at points in time. Such a process is known as a 
renewal process if its first-order interarrival times are mutually inde- 
pendent random variables described by the same PDF. The Bernoulli 
and Poisson processes are two simple examples of the renewal process. 
In this and the following section, we wish to study a few basic aspects of 
the general ren.ewa1 process. 

To simplify our discussion, we shall assume in our formal work 
that the PDF for the first-order interarrival times (gaps) jz(xo) is a 
continuous PDF which does not contain any impulses. [A notational 
change from fi,(l) to &(so) will also simplify our work.] 

We begin by determining the conditional PDF for the time until 
the next arrival when we know how long ago the most recent arrival 
occurred. In the next section, we develop the consequences of begin- 
ning to observe a renewal process at  a random time. 

If it is known that the most recent arrival occurred exactly T 

units of time ago, application of the definition of conditional probability 
results in the following conditional PDF for x, the total duration of the 
present interarrival gap: 

If we let random variable y represent the remaining time in the present 
gap, y = x - r, we obtain the conditional PDF for y, 

As an example, suppose that we are burning light bulbs one at a 
time and replacing each bulb the inst.ant i t  fails. If the lifetimes of the 
bulbs are independent random variables with PDF fi(xo), we have a 
renewal process in which the points in time at  which bulb replacements 
occur are the arrivals. Let's use the results obtained above to work 
out one example with a particularly simple form for fz(xo). 

f $ O )  

Let this be the PDF for x,  the total 

This is the conditional PDF for the 
total lifespan of a bulb,given that it 
has already been in use for exactly 
T units of time without failing 

*o 

> 7 ( y 0 1 x ,?) 

This is the conditional PDF for y, the 
remaining lifespan of a bulb which 
has already been in use for exactly 
7 units of time without failing 

(1-7) yo 

We learned earlier that the first-order interarrival times for a 
Poisson process are independent random variables with the P D F  
f,(xo) = Xe-Xzo for xo 2 0. For a Poisson process we can show by direct 
substitution that the conditional PDF for the remaining time until the 
next arrival, ful,,,(yo I x > T),does not depend on 7 (Prob. 4.06) and is 
equal to fz(yo), the original unconditional PDF for the first-order inter- 
arrival times. For the Poisson process (but not for the more general 
renewal process) the time until the next arrival is independent of when 
we start waiting. If the arrivals of cars at  a line across a street con-
stituted a Poisson process, it would be just as safe to start crossing 
the street a t  a random time as it would be to start crossing immediately 
after a car goes by. 

4-11 Random Incidence 

Assume that a renewal process, characterized by the PDF of its 
.first-order interarrival times, f,(zo), has been in progress for a long time. 
We are now interested in random incidence. The relevant experiment 
is to pick a time randomly (for instance, by spinning the hands of a clock) 
and then wait until the first arrival in the renewal process after our randomly 
selected entry time. The instant of the random entry must always be 
chosen in a manner which is independent of the actual arrival history of 
the process. 

We wish to determine the PDF for random variable y, the waiting 
time until the next arrival (or the remaining gap length) following 
random entry. Several intermediate steps will be required to obtain the 
unconditional PDF f,(yo). 

First we shall obtain the PDF for random variable w, the total 
duration of the interarrival gap into which we enter by random inci- 



dence. Random variable w describes the duration of an interval where the denominator is the required normalization 'factor. 
which begins with the most recent arrival in the renewal process prior For the particular example given above, we obtain the PMF for 
to the instant of random incidence and which terminates with the first the total duration of the gap into which a random entry falls, 
arrival in the process after the instant of random incidence. 

Note that random variables w and x both refer to total inter-
arrival-gap durations for the renewal process, but the experiments on 
which they-are defined are different. An experimental value of w is 
obtained by determining the total duration of the interarrival gap into 
which a randomly selected instant falls. An experimental value of x is 
obtained by noting the duration from any arrival in the renewal process 
until the next arrival. 

After obtaining fw(wo),we shall then find the conditional PPDF 
for the remaining time in the gap, y, given the experimental value of the 
total duration of the gap, w. Thus, our procedure is to work in a 
wo,yo event space, first obtainingf,(wo) andfvlw(yoI wo). We then use 
the relations A random entry, for this example, is ten times as likely to fall into a 

ten-second gap as a one-second gap, even though a gap length is 
equally likely to be of either kind. 

Extending the general form of pw(wO)to the continuous case, we 
to obtain the unconditional PDF &(yo) for the waiting time from our have the desired fw(wo) 

7.randomly selected instant until the next arrival in the renewal process. --To determine the PDF f,(wo), let's begin by considering an 
=S= 
_I -
-P -

example where the first-order interarrival times of the renewal process 
fw(w0) = wofz(w0) = wofz(w0) =T==L: 

have the discrete PMF Iw0 ~ W O  ' ( x )  
-----WO~&O) 
=I=-

where f,(.) i s  the PDF for the first-order interarrival times for the renewal EzsE 
= 

process and f,(wo) i s  the PDF for the total duration of the interarrival gap ESSE 
__5_entered by random incidence. = -

==S -

In reasoning our way to this result, we have made certain assumptions 
Although any interarrival time is equally likely to be either 1 or 10 about the relation between the probability of an event and the fraction 
seconds long, note that each 10-second gap consumes 10 times as much of a large number of trials on which the event will occur. We speculated
time as each 1-second gap. The probability that a randomly selected on the nature of this relation in Sec. 3-6, and the proof will be given in 
instant of time falls into a 10-second gap is proportional to the fraction Chap. 6. 
of a11 time which is included in 10-second gaps, Given that we have entered into a gap of total duration wo by 

The fraction of all time which is included in gaps of duration xo random incidence, the remaining time in the gap, y, is uniformly dis-
should be, in general, proportional to p,(xo) weighted by xo,since ~ ~ ( $ 0 )  tributed between 0 and wo with the conditiona1 PDF 
is the fraction of the gaps which are of duration xo and each such gap 
consumes xo seconds. Recalling that random variable w is to be the 
total duration of the interarrival gap into which our randomly selected 
instant falls, we have argued that 

because a random instant is as likely to fall within any increment of a 
wo-second gap as it is to fallwithin any other increment of equal dura-
tion within the wo-second gap. 

v 



Now we may find the joint PDF for random variables w and y, and we use 

To determine !,(yo), the PDF for the time until the next arrival after to obtain 
the instant of random incidence,we need only integrate (carefully) over 
wo in the w0,yo event space. Note that w, the total length of the gap 
entered by random incidence, must be greater than or equal to y, the 
remaining time in that gap; so we have 

This is.the PDF for the remaining 
duration of the interarrival gap 

-- entered by random incidence 

-

=== yo -

1_;Si ---1 - pzs (YO) - I t  is interesting to note that the expected value of the remaining

/b'(~o)= E(%) 
--.------ duration of the gap entered by random incidence, E(y), may be greater -

where fv(go)is  the PDF for the duration of the interval which begins at a than, equal to, or less than the "expected gap length" given by E(x) .- In fact, we have already learned that E(x) = E(y) for a Poisson process.
"random" time and terminates with the next arrival for a renewal process 

_I_ - Thus, for instance, if car interarrival times are independent-with firsborder interarrival times described by  random variable X. ----- random variables described by fi(xo), the expected waiting time until- the next car arrives may be greater if we start to cross at  a random time--
than if we start right after a car goes by! . If we understand the different 

We apply these results to the problem introduced in the previous experiments which give rise to E (x) and E(y), this seems entirely reason-

section. Let the PDF for the first-order interarrival times be able, since we realize that random incidencefavors entry into large gaps. 
We should realize that statements about average values or 

expected values of a random variable are meaningless unless we have a 
Let this be the PDF for the full description of the experiment on whose outcomes the random varia-
first-order interarrival times ble is defined. In  the above discussion, E(x) and E(y) are generallyof a renewal process 

different, but each is the "expected value of the time until the next 
arrival." The experiments of "picking a gap" and "picking an instant 

xo 
of time" may lead to distinctly different results. (Probs. 2.08, 2.11, 

Now, first we apply the relation and 3.10 have already introduced similar concepts.) 

to obtain P R O B L E M S  

4.01 The PMF for the number of failures before the rth success in a 
f,( wo ) Bernoulli process is sometimes called the negative binomial PMF. 

Derive it and explain its relation to the Pascal PMF.
This is the PDF for the total duration 
of the interarrivalgap entered by 
random incidence. Obviously, random 4.02 A channel contains a series flow of objects, each of fixed length L. 
incidence favors entry into longer gaps All objects travel at constant velocity V. Each separation S between 

successive objects is some integral multiple of L, S = nL, where the n 
wo 
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for each separation is an independent random variable described by 
the probability mass function 

a Find the average flow rate, in objects per unit time, observable at '  
some point in the channel. 

b Calculate what additional flow can exist under a rule that the result- 
ing arrangements of objects must have at  least a separation of L 
from adjacent objects. 

c As seen by an electric eye across the channel, what fraction of all 
the gap time is occupied by gaps whose total length is greater than 
2L? A numerical answer is required. 

4.03 Let x be a discrete random variable described by a geometric PMF. 
Given that the experimental value of random variable x is greater 
than integer y, show that the conditional PMF for x - y is the same 
as the original PMF for c. Let r = x - y, and sketch the following 
PMF's: 
a pz(x0) b pz,z,,(xo l z > y) c p4ro) 

4.04 We are given two independent Bernoulli processes with parameters 
PI  and PI. A new process is defined to have a success on its kth trial 
(k = 1, 2, 3, . . .) only if exactly one of the other two processes has a 
success on its kth trial. 
a Determine the PMF for the number of trials up to and including 

the rth success in the new process. 
b Is the new process a Bernoulli process? 

4.05 Determine the expected value, variance, and z transform for the total 
number of trials from the start of a Bernoulli process up to and including 
the nth success after the mth failure. 

4.06 Let x be a continuwzs random variable whose PDF f,(xo) contains 
no impulses. Given that x > T, show that the conditional PDF for 
r = x - T is equal to f.(ro) if fz(xo) is an exponential PDF. 

4.07 To cross a single lane of moving traffic, we require at  least a duration 
T .  Successive car interarrival times are independently and identically 
distributed with probability density function fi(t0). If an interval 

between successive ears is longer than T, we say that the interval 
represents a single opportunity to cross the lane. Assume that car 
lengths are small relative to intercar spacing and that our experiment 
begins the instant after the zeroth car goes by. 

Determine, in as simple a form as possible, expressions for the 
probability that: 
a We can cross for the first time just before the Nth car goes by. 
b We shall have had exactly n opportunities by the instant the Nth 

car goes by. 
c The occurrence of the nth opportunity is immediately followed by 

the arrival of the Nth car. 

4.08 Consider the manufacture of Grandmother's Fudge Nut Butter 
Cookies. Grandmother has noted that the number of nuts in a cookie 
is a random variable with a Poisson mass function and that the 
average number of nuts per cookie is 1.5. 
a What is the numerical value of the probability of having at  least 

one nut in a randomly selected cookie? 
b Determine the numerical value of the variance of the number of nuts 

per cookie. 
c Determine the probability that a box of exactly M cookies contains 

exactly the expected value of the number of nuts for a box of N 
cookies. ( M  = 1, 2, 3, . . . ; N = 1, 2, 3, . . .) 

d What is the probability that a nut selected at random goes into a 
cookie containing exactly K nuts? 

e The customers have been getting restless; so grandmother has 
instructed her inspectors to discard each cookie which contains 
exactly zero nuts. Determine the mean and variance of the number 
of nuts per cookie for the remaining cookies. 

A woman is seated beside a conveyer belt, and her job is to remove 
certain items from the belt. She has a narrow line of vision and can 
get these items only when they are right in front of her. 

She has noted that the probability that exactly k of her items 
will arrive in a minute is given by 

and she assumes that the arrivals of her items constitute a Poisson 
process. 
a If she wishes to sneak out to have a beer but. will not allow the 

expected value of the number of items she misses to be greater than 
5, how much time may she take? 

b If she leaves for two minutes, what is the probability that she will 
miss exactly two items the first minute and exactly one item the 
second minute? 

c If she leaves for two minutes, what is the probability that she will 
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miss a total of exactly three items? 
d The union has installed a bell which rings once a minute with pre- 

cisely one-minute intervals between gongs. If, between 'two suc- 
cessive gongs, more than three items come along the belt, she will 
handle only three of them properly and will destroy the rest. Under 
this system, what is the probability that any particular item will be 
destroyed? 

ble ri is defined by 

If we eliminate arrivals number rl, r2, ra, . . . in a Poisson process, do 
the remaining arrivals constitute a Poisson process? 

Cigars Boxes of cigars
Al 00 . 

X Y 

A1 makes cigars, placing each cigar on a constant-velocity conveyer 
belt as soon as i t  is finished. Bo packs the cigars into boxes of four 
cigars each, placing each box back on the belt as soon as i t  is filled. 
The time A1 takes to construct any particular cigar is, believe i t  or 
not, an independent exponential random variable with an expected 
value of five minutes. 
a Determine pA(k,T), the probability that A1 makes exactly k cigars 

in T minutes. Determine the mean and variance of k as a function 
o f T .  k = 0 , 1 , 2 , , .  . . ; O < T <  a. 

b Determine the probability density functionf,(ro), where r is the inter- 
arrival time (measured in minutes) between successive cigars a t  point 
X. 


c Determine ps(r,T), the probability that Bo places exactly r boxes of 
cigars back on the belt during an interval of T minutes. , 

d Determine the probability density function ft(to), where t is the inter- 
arrival time (measured in minutes) between successive boxes of 
cigars a t  point y. 

e If we arrive a t  point y a t  a random instant, long after the process 
began, determine the PDF f7(ro), where r is the duration of our wait 
until we see a box of cigars a t  point g. 

4.13 Dave is taking a mu-ltiple-choice exam. You may assume that the 
number of questions is infinite. Simultaneously, but independently, his 
conscious and subconscious facilities are generating answers for him, 
each in a Poisson manner. (His conscious and subconscious are always 
working on different questions.) 

Average rate a t  which conscious responses are generated 
= Xc responses/min 

Average rate a t  which subconscious responses are generated 

Each conscious response is an independent Bernoulli trial with proba- 
bility p, of being correct. Similarly, each subconscious response is an 
independent Bernoulli trial with probability pa of being correct. 

Dave responds only once to each question, and you can assume 
that his time for recording these conscious and subconscious responses 
is negligible. 
a Determine pk(ko), the probability mass function for the number of 

conscious responses Dave makes in an interval of T minutes. 
b If we pick any question to which Dave has responded, what is the 

probability that his answer to that question: 
i Represents a conscious response 
ii Represents a conscious correct response 

c If we pick an interval of T minutes, what is the probability that in 
that interval Dave will make exactly Ro conscious responses and 
exactly So subconscious responses? 

d Determine the s transform for the probability density function for 
random variable x, where x is the time from the start of the exam 
until Dave makes his first conscious response which is preceded by 
a t  least one subconscious response. 

e Determine the probability mass function for the total number of 
responses up to and including his third conscious response. 

f The papers are to be collected as soon as Dave has completed exactly 
N responses. Determine: 
i The expected number of questions he will answer correctly 
ii The probability mass function for L, the number of questions he 

answers correctly 
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-------= g Repeat part (f) for the case in which the exam papers are to be col--------- lected at  the end of a fixed interval of T minutes. 
-----
-- 4.14 Determine, in an efficient manner, the fourth moment of a continuous%----
=-- random variable described by the probability density function-

3 


--E-- 4.15 The probability density function for L, the length of yarn purchased
----- by any particular customer, is given by-= 

--------- A single dot is placed on the yarn at  the mill. Determine the------- expected value of r, where r. is the length of yarn purchased by that=-----
= customer whose purchase included the dot.------=-----
sz 4.16 A communication channel fades (degrades beyond use) in a random---------- manner. 'The length of any fade is an exponential random variable------ with expected value A-I. The duration of the interval between the end e
--
---- of any fade and the start of the next fade is an Erlang random variable 
=---- with PDF 

a If we observe the channel at  a randomly selected instant, what is 
the probability that it will be in a fade at  that time? Would you 
expect this answer to be equal to the fraction of all time for which the 
channel is degraded beyond use? 

b A device can be built to make the communication system continue to 
operate during the first T units of time in any fade. The cost of the 
device goes up rapidly with T. What is the smallest value of T 
which will reduce by 90% the amount of time the system is out of 

----
-=- 4.17 The random variable t corresponds to the interarrival time between ----= consecutive events and is specified by the probability density function--

---
= Interarrival times are independent.-----
--- a Determine the expected value of the interarrival time x between the----- 11th and 13th events. 

b Determine the probability density function for the interarrival time 
y between the 12th and 16th events. 

c If we arrive at  the process at  a random time, determine the proba-
bility density function for the total length of the interarrival gap 
which we shall enter. 

d Determine the expected value and the variance of random vajriable 
r, defined by r = s + y. 

4.18 Bottles arrive at  the Little Volcano Bottle Capper (LVBC) in a 
Poisson manner, with an average arrival rate of X bottles per minute. 
The LVBC works instantly, but we also know that it destroys any 
bottles which arrive within 1/5X minutes of the most recent successful 
capping operation. 
a A long time after the process began, what is the probability that a 

randomly selected arriving bottle (marked at  the bottle factory) 
will be destroyed? 

b What is the probability that neither the randomly selected bot4le 
nor any of the four bottles arriving immediately after it will be 
destroyed? 

---
- 4.19 In the diagram below, each dk represents a communication link.------= Under the present maintenance policy, link failures may be considered-------- independent events, and one can assume that, a t  any time, the proba------
-=- bility that any link is working properly is p.--------

a If we consider the system at a random time, what is the probability 
that : 
i A total of exactly two links are operating properly? 
ii Link g and exactly one other link are operating properly? 

b Given that exactly six links are not operating properly at  a particular 
time, what is the probability that A can communicate with B? 

c Under a new maintenance policy, the system was put into operation 
in perfect condition at  t = 0, and the PDF for the time until failure 
of any link is 

f t ( to )  = Ae-xto to 2 0 
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Link failures are still independent, but no repairs are to be made 
until the third failure occurs. At the time of this third failure, the 
system is shut down, fully serviced, and then "restarted" in perfect 
order. The down time for this service operation is a random variable 
with probability density function 

i What is the probability that link g will fail before the first service 
operation? 

ii Determine the probability density function for random variable 
y, the time until the first link failure after t = 0. 

iii Determine the mean and variance and s transform for w, the 
time from t = 0 until the end of the first service operation. 

interarrival times (gaps) between the arrivals of successive 
at  points in time are independent random variables with PDF, 

a What fraction of time is spent in gaps longer than the average gap? 
b If we come along a t  a random instant. after the process has been 

proceeding for a long time, determine 
i The probabiiity we shall see an arrival in the next (small) At 
ii The PDF for I, the time we wait until the next arrival 

c Find any ft(to) for which, in the notation of this problem, there 
would result E(1) > E(t). 

4.21 Two types of tubes are processed by a certain machine. Arrivals of 

type I tubes and of type II tubes form independent Poisson processes 
with average arrival rates of hl and h2 tubes per hour, respectively. 
The processing time required for any type I tube, XI,is an independent 
randbm variable with P D F  

1 i f O _ < x s i  
z x = { 0 otherwise 

The proc&sing time required for iny  typeI1 tube, x2, is also a uniformly 
distributed independent random variable 

{ 0.5 i f O L x S 2  
hdx)  otherwise (, = 

a Let be the time between successive tube arrivals (regardless of 
type and regardless of whether the machine is free). Determine 
S,(!h), E ( d ?and flu2. 

b Given that a tube arrives when the machine is free, what is the 
probability that the tube is of type I? 

c Given that the machine starts to process a tube at  time To, what is 
the I'DF for the time required to process the tube? 

d If we inspect the machine at  a random time and find it  processing a 
tube, what is the probability that the tube we find in the machine is 
type I? 

e Given that an idle period of the machine was exactly T hours long, 
what is the probability that this particular idle period was terminated 
by the arrival of a type I tube? 

4.22 The first-order interarrival times for cars passing a checkpoint are 
independent random variables with PDF 

where the interarrival times are measured in minutes. The successive 
experimental values of the durations of these first-order interarrival 
times are recorded on small con~puter cards. The recording operation 
occupies a negligible time period following each arrival. Each card 
has space for three entries. As soon as a card is filled, i t  is replaced by 
the next card. 
a Determine the mean and the third moment of the first-order inter- 

arrival times. 
b Given that no car has arrived in the last four minutes, determine the 

PJIF for random variable K, the number of cars to arrive in the next 
six minutes. 

c Determine the PDP, the expected value, and the s transform for the 
total time required to use up the first dozen computer cards. 

d Consider the following two experiments: 
i Pick a card a t  random from a group of completed cards and note 

the total time, &, the card was in service. Find &'(ti) and oti2. 
ii Come to the corner a t  a random time. When the card in use at 

the time of your arrival is completed, note the total time it  was in 
service (the time from the start of its service to its completion). 
Call this time 1,. Det.ermine E(tj), and q t j 2 .  

e Given that the computer card presently in use contains exactly two 
If any tube entries and also that it has been in service for exactly 0.5 minute,The machine can process only one tube at  a time. 

arrives while the machine is occupied, the tube passes on to another 
machine station, 

determine arid sketch the 1'DF for the remaining time until the card 
is completed. 


