CHAPTER FOU

some
basic
probabilistic
processes

This chapter presents a few simple probabilistic processes and develops
family relationships among the PMF’s and PDF’s associated with these
processes.

Although we shall encounter many of the most common PMF’s
and PDF’s here, it is not our purpose to develop a general catalogue.
A listing of the most frequently occurring PMF’s and PDF’s and some
of their properties appears as an appendix at the end of this book.
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4-1 The Bernoulli Process

pelxy) =

A single Bernoulli irial generates an experimental value of discrete
random variable z, described by the PMF

e (%)

1-P =0
P xy=1
0 otherwise

Random variable z, as described above, is known as a Bernoulli random
variable, and we note that its PMF has the 2 transform

pzr(z) = Ez"p,(xu) = zo(l ~P)42P=1—P+42P
The sample space for each Bernoulli trial is of the form

xg=1

x,=0

Either by use of the transform or by direct calculation we find
E@x)y=P E@)=P o¢2?=P1—-P)

We refer to the outcome of a Bernoulli trial as a success when the ex-
perimental value of z is unity and as a failure when the experimental

value of x is zero.

A Bernoulli process is a series of independent Bernoulli trials,
each with the same probability of success. Suppose that n independent
Bernoulli trials are to be performed, and define discrete random variable
k to be the number of successes in the #n trials. Random variable k is
noted to be the sum of n» independent Bernoulli random variables, so we

must have
T (2) = [p.T(@)" = (1 — P + zP)*

There are several ways to determine pi(k,), the probability of
exactly ko successes in n independent Bernoulli trials. One way would
be to apply the binomial theorem

~ 2~
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@+ b = 20 (’l‘) atbr-t

to expand p:”(2) in a power series and then note the coefficient of z% in

tt:his expansion, recalling that any z transform may be written in the
orm

P(2) = pr(0) + 2pe(l) + 22pp(2) + - - -
This leads to the result known as the binomial PMF,

n
Pa(ko) = (ko) Ph(l =Py ks =10,1,2,...,n

where the notation is the common

(n‘ _ n!
ko) — (n — ko) lko!

discussed in Sec. 1-9.

Another way to derive the binomial PMF would be to work in a
sequential sample space for an experiment which consists of n independ-
ent Bernoulli trials,

8,7

P
Sl/ ~
\pF/

" We have used the notation

e
g é ‘S,.] _ {success

F. failure , on the nth trial

IXPF/

20

Each s.ample pOiI.lt which represents an outcome of exactly ko suc-
;eksses in the n trials would have a probability assignment equal to

*(1 — P)»*, For each value of ko, we use the techniques of Sec. 1-9
to determine that there are (]:; ) such sample points. Thus, we again
obtain

Pelks) = (,:‘) Pa(l — P)=h  ky=0,1,2,...,n

for the hinomial PMF,
‘ .Wc can determine the expected value and variance of the
binomial random variable k by any of three techniques. (One should

a'lways review his arsenal hefore selecting a weapon.) To evaluate
E(k) and 04 we may
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P, (k) W\ 1o ik
2
= ) ()" (5)
2 ky
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Perform the expected value summations-directly.

Use the moment-generating properties of the z transform, introduced
in Seec. 3-3.

Recall that the expected value of a sum of random variables is always
equal to the sum of their expected values and that the variance of a
sum of linearly independent random variables is equal to the sum of
their individual variances.

Since we know that binomial random variable k is the sum of n
independent Bernoulli random variables, the last of the above methods
is the easiest and we obtain
E(k) = nE(z) = nP ot = no2 = nP(1 — P)

Before moving on to other aspects of the Bernoulli process, let’s
look at a plot of a binomial PMF. The following plot presents pi(ko)
for a Bernoulli process, with P = § and n = 4.

24
a1
0, =JnP(1-P)= 78 0943
8
81 L
| I @8! | |
1 \ 2 3 4 5 6 ky
E(k)=nP =3

Interarrival Times for the Bernoulli Process

It is often convenient to refer to the successes in a Bernoulli proc-
ess as arrivals. Let discrete random variable [; be the number of
Bernoulli trials up to and including the first success. Random variable
l; is known as the first-order inlerarrival time, and it can take on the
experimental values 1, 2, . . . . We begin by determining the PMF
p, (). (Note that since we are subscripting the random variable there
is no reason to use a subscripted dummy variable in the argument of
the PMT".)

We shall determine py, () from a sequential sample space for the
experiment of performing independent Bernoulli trials until we obtain
our first success. Using the notation of the last section, we have

WS T
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l=1 =2 =3

° . °

S, S, S,
P P P

/ etc.
F,

1-P t 1-P 2 1-P 3

We have lapeled each sample point with the experimental value of
random variable [, associated with the experimental outcome repre-
sented by that point. From the above probability tree we find that

() =P1-P)'  [=12,...

and since its successive terms decrease in a geometric progression, this
PMF for the first-order interarrival times is known as the geometric
PMF. The z transform for the geometric PMF is

mIe) = ) mb7 = ,Z, PU = P = i

=0

. Since direct calculation of E(l;) and 0,2 in an I, event space
involves difficult summations, we shall use the moment-generating
property of the z transform to evaluate these quantities.

E@) = [a% le"(z)] =1P

gl

a: d d 2 -
o, = {gz—z P + 7P — [a; p,lT(z)] }‘_l = 1—Pz_P

Suppose that we were interested in the conditional PMF for the
remaining number of trials up to and including the next success, given
that there were no successes in the first m trials. By conditioning the
event space for [, we would find that the conditional PMF fory = |, — m,
the remaining number of trials until the next success, is still & geometric
random variable with parameter P (see Prob. 4.03). This is a result
attributable to the ‘“no-memory” property (independence of trials) of
the Bernoulli process. The PMF p,(l) was obtained as the PMF for
the number of trials up to and including the first success. Random
v‘ariable l,, the first-order interarrival time, represents both the waiting
time (number of trials) from one success through the next success and
the waiting time from any starting time through the next success.

Finally, we wish to consider the higher-order interarrival times
f_or a Bernoulli process. Let random variable /,, called the rth-order
interarrival time, be the number of trials up to and including the rth
success. Note that [, is the sum of » independent experimental values
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of random variable l;; so we must have

P r
pr@) = [P @F = [T:—z%r:‘p“)]

There are several ways we might attempt to take thfa invers'e of
this transform to obtain p; (1), the PMF for the rth-order interarrival
time, but the following argument seems both more intuitive and more
efficient. Since pi,(I) represents the probability that the rth success in
a Bernoulli process arrives on the ith trial, p., (1) may be expressed as

conditional probability of hav-

exactly 7 — 1 successes given exactly r — 1 successes

) (probability of having) % ing rth success on the lth trial,
p() =

p, () =

in the first [ — 1 trials in the previous [ — 1 trials

The first term in the above product is the binomial PMF e:‘ral-
uated for the probability of exactly r — 1 successes in I — 1 trials.
Since the outcome of each trial is independent of the outcomes of all
other trials, the second term in the above product is simply equf).l to
P, the probability of success on any trial. We may now substitute
for all the words in the above equation to determine the PMF for t.;he
rth-order interarrival time (the number of trials up to and including
the rth success) for a Bernoulli process

[(lr - i) P11 — P)H—<~—v] P

(l—'i)P'(l—P)l-' l=T,r+lyr+2:-'-; 75172137"
ro—

Of course, with r = 1, this yields the geometric PMF for Iy and
thus provides an alternative derivation of the PMF for Fhe first-order
interarrival times. The PMF p, (I) for the number of trials up to and
including the rth success in a Bernoulli process is l.mown as the Pascal
PMF. Since [, is the sum of r independent experimental values of b,
we have

”
E(lr) = TE(l;) = ﬁ
The negative binomial PMF, a PMTF which is very closely related

to the Pascal PMF, is noted in Prob. 4.01. . '
As one last note regarding the Bernoulli process, we recognize

that the relation
Zp;,(l)=P 1=12...
r=1

is always true. The quantity p.(0), evaluated for any value of I

T T
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equals the probability that the rth success will occur on the Ith trial.
Any success on the /th trial must be the first, or second, or third, etec.,
success after I = 0. Therefore, the sum of p, (I) over r simply repre-
sents the probability of a success on the Ith trial. From the definition
of the Bernoulli process, this probability is equal to P.

Our results for the Bernoulli process are summarized in the fol-
lowing section.

4-3 Summary of the Bernoulli Process

Each performance of a Bernoulli trial generates an experimental value
of the Bernoulli random variable z described by

(o) = 1—-P 7o = 0 (a “failure”)
Peo) P 2o = 1 (a “success”)

p.T(z) =1 — P+ zP E(z)=P o2 =P — P)

Bernoulli process. 'The number of successes in » trials, random variable
k, is the sum of n independent Bernoulli random variables and is
described by the binomial PMF

==
=

Pe(ko) = (;0) Pa(l — Pyt ky=0,1,2,...,n

pT() = (1 — P+ 2P)» E(k) =nP o =nP(l ~ P)

The number of trials up to and including the first success is
described by the PMF for random variable [, called the first-order
inlerarrwal (or waiting) time. Random variable I, has a geometric PMF

() =P —-—P)F' =12 ...
zP 1 1-P

nT(2) = T=z0 =P El,) = P a,? = —pi

The number of trials up to and including the rth success, {,, is
called the rth-order interarrival time. Random variable [,, the sum of
r independent experimental values of /;, has the Pascal PMF
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pz,(l)=(i::)P'(l—-P)"' l=rr+l,...; r=12 ...
_ 2P . _r _rd —-P)
7 (2) = [1 —Z(1 = P)] El) = P o, = P?

We conclude with one useful observation based on the definition
of the Bernoulli process. Any events, defined on nonoverlapping sets
of trials, are independent. If we have a list of events defined on a
series of Bernoulli trials, but there is no trial whose outcome is relevant
to the occurrence or nonoccurrence of more than one event in the list,
the events in the list are mutually independent. This result, of course,
is due to the independence of the individual trials and is often of value
in the solution of problems.

4.4 An Example

We consider one example of the application of our results for the
Bernoulli process. The first five parts are a simple drill, and part (f)
will lead us into a more interesting discussion.

Fred is giving out samples of dog food. He makes calls door to
door, but he leaves a sample (one can) only on those calls for which the
door is answered and a dog is in residence. On any call the probability
of the door being apswered is 3/4, and the probability that any house-
hold has a dog is 2/3. Assume that the events “Door answered”’ and
“A dog lives here” are independent and also that the outcomes of all
calls are independent.

(a) Determine the probability that Fred gives away his first sample on
his third call.

(b) Given that he has given away exactly four samples on his first
eight calls, determine the conditional probability that Fred will
give away his fifth sample on his eleventh call,

{¢) Determine the probability that he gives away his second sample on
his fifth call.

(d) Given that he did not give away his second sample on his second
call, determine the conditional probability that he will leave his
second sample on his fifth call.

(e) We shall say that Fred “needs a new supply”’ immediately after the
call on which he gives away his last can. If he starts out with two
cans, determine the probability that he completes at least five calls
before he needs a new supply. ,

(f) If he starts out with exactly m cans, determine the expected value
and variance of d,., the number of homes with dogs which he passes
up (because of no answer) before he needs a new supply.

We begin by sketching the event space for each call.

FEE IR e
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P(e)
2 D o5
3 og e 5 Succes
3 Door is 12 ?
3 answered
' 3
% No dog ° 5 Failure
2 2
; 3 Dog * 5 Failure
i Door not
answered
1
1 No dog 5 Failure

For all but the last part of this problem, we may consider each call to
be a Bernoulli trial where the probability of success (door answered
and dog in residence) is given by P=4¢-3=1
a Fred will give away his first sample on the third call if the first two
f:alls are failures and the third is a success. Since the trials are
independent, the probability of this sequence of events is simply
ﬁ:aazfigll t— _P)f;l = 1/8.. Another way to obtain this answer is to
o . .
e ) | u}) ¥ ; :otla)igf)n of the previous section, we want 2,(3)
b The event of interest requires failures on the ninth and tenth trials and
a success on the eleventh trial. For a Bernoullj process, the outcomes
of these three trials are independent of the results of any other trials
and again our answer is (1 ~ P)1 ~ P)P = 1/8. ,
¢ We desire the probability that l;, the second-order interarrival time,

ﬁ; equal to five trials. We know that pi,(0) is a Pascal PMF, and we
ave

5 -1 4
@ = (37 ]) P —pr 2L
2 1) P - P = 5 =2
d Here'we require the conditional probability that the experimental value
of I; is equal to 5, given that it is greater than 2.

__ P pu(5)
Prob(l; > 2) ~ 1T —p,(2)

5—1 5~2
(2~1)P2(1_P) /8 1

=1—-(§:})P2(1—P)°—:m_6

Putn>o(6 (1, > 2) = 1=3,4,5, ..

As we would expect, by excluding the possibility of one particular
experllmental value of I, we have increased the probability that the
expe‘rlmental value of l; is equal to 5. The PMF for the total number
of trials up to and including the rth success (since the process began)
does, of course, depend on the past history of the process.

e The probability that Fred will complete at least five calls before he
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needs a new supply is equal to the probability that the experimental
value of I, is greater than or equal to 5.

e (1=1Y\ p, s 5
> 5) = 1 ~ Prob(l; < 4) = 1—;(2_1)19(1 - Pyt = o
Let discrete random variable f.. represent the number of failures before
Fred runs out of samples on his mth successful call. Since L, is the num-
ber of trials up to and including the mth success, we have f,, = I, — m.
Given that Fred makes ,, calls before he needs a new supply, we can
regard each of the f. unsuccessful calls as trials in another Bernoulli
process where P/, the probability of a success (a disappointed dog),
is found from the above event space to be

P’ = Prob(dog lives there | Fred did not leave a sample)
_ (1/4)(2/3)
@/49)(1/3) + (1/9)(2/3) + (1/4)(1/3)

We define z to be a Bernoulli random variable with parameter P’.

The number of dogs passed up before Fred runs out, dn., is equal
to the sum of f, (a random number) Bernoulli random variables each
with P’ = 1/3. From Sec. 3-7, we know that the z transform of pq4,(d)
is equal to the z transform of p,, (f), with 2 replaced by the 2z transform
of Bernoulli random variable z. Without formally obtaining pg4,7(z),
we may use the results of Sec. 3-7 to evaluate E(d.) and 04,2

from Sec. 3-7

E(dw) = E(fn)E()
B(f) = EQw—m) = 5~ m = ng—’i E@) = P’

_ 1
-3

We substitute these expected values into the above equation for E(d,),
the expected value of the number of dogs passed up.
expected value of no. of dogs

E(d,) = ml——£ P =m il _m_ passed up before Fred gives
P +3 3
away mth sample
We find the variance of d,. by
04, = E(fn)e.? + [E(x))%,, 2 from Sec. 3-7

Since f,, = ln — m, the PMF for f. is simply the PMF for [, shifted to
the left by m.  Such a shift doesn’t affect the spread of the PMF about
its expected value.
) (1 —-P) from properties of Pascal PMF noted in previous
a; = m .
" p? section

We may now substitute into the above equation for ¢4,% the variance
of the number of dogs passed up.
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1—-P
)25

1-P
04,2 = ’”TP(I = P) + (P

1 2 1\? 4
=mZ.2.2 (1 = m
1’337 (3) "iTY
Although the problem did not require j ’ i
roble quire it, let’s obtain the 2
transform of py_(d), which is to be obtained by substitution into

21 (p="(2)]
We know that p,7(z) = 1 — p’ + P’z = § + §2, and, using the

f act that £, = ln — m, We can write out p,,7(2) and p,,7(z) and note a
simple relation to obtain the latter from the former.

= [0 e

PLI(E) = pr(m)z™ + p (m + em+t 4 py (m + 2)em+2 4 -

Pl (@) = P ()2 + po,(m + 1)2* + py_(m + 222 + -

From these expansions and our results from the Pascal process we have
Prl(2) = z"pLT(2) = Pl — 5(1 ~ P)fm

and, finally,

Pa.(2) = pr7(p.7(2)] = Pr{l — (1 — P/ + zP’)(1 — P)}-m

(-

Since the z transform for the PMF
of the number of do
lp;a\zsed up happened tt_) come out in such a simple form, we can find tges
312 F pa (d) {)y applying t.he inverse transform relationship from Sec,
-2.  We omit the algebraic work and present the final form of p,_(d)
d o

@ = g | fanaro |

_ d+m — 1\ /3\" /1\¢
4 i) (3 m=1,23,...; d=0,1,2, ...

For instance, if F i
ror , red starts out with only one sample, we have m = 1

Po(d) = (D@* d=0,1,2 ...

is the PMF for the number of dogs who were passed up (Fred called

bu(': dOOl' nOl} allsweIEd) W]llle I led was out m.aklll C&“s to tty and 1ve
g g

4-5 The Poisson Process

tWe defﬁned ‘?he Berrt?ulli process by a particular probabilistic descrip-
dx.on 0 thg arrivals’” of successes in a series of independent identical
1screte trials.  The Poisson process will be defined by a probabilistic
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1 Any events defined on nonoverlapping time intervals are mutually
independent.
2 The following statements are correct for suitably small values of At:

®(k,Al) = { \ AL k=1
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description of the behavior of arrivals at points on a continu.m‘ls line.

For convenience, we shall generally refer to this line asif it were
a time (f) axis. From the definition of the process, we shall see that
a Poisson process may be considered to be the limit, as At —>'0 of a
series of identical independent Bernoulli trials, one every A, with the
probability of a success on any trial given by P = \ AL

For our study of the Poisson process we shall adopt the some-
what improper notation:

®(k,t) = the probability that there are exactly & arrivals during any
interval of duration ¢

This notation, while not in keeping with our more aesthetic habis
developed earlier, is compact and particularly convenient for the types
of equations to follow. We observe that ®(k,!) is a PMF for random
variable k for any fixed value of parameter t. In any interval of length
t, with ¢ > 0, we must have exactly zero, or exactly one, or exactly two,
etc., arrivals. Thus we have

2 okl = 1

k=0 .

We also note tfhat ®(k,t) is not a PDF for {. Since ®(k,t1) and ®(k,t2)
are not mutually exclusive events, we can state only that

0< ﬁ_o ek dt < =

The use of random variable k to count arrivals is consistent with our
notation for counting successes in a Bernoulli process.
There are several equivalent ways to define the Poisson process.
We shall define it directly in terms of those properties which are most
useful for the analysis of problems based on physical situations.
Our definition of the Poisson process is as follows:

—
]
1
_
=
=
e
P

1 —NA¢ k=0

0 k>1

The first of the above two defining properties establishes the
no-memory attribute of the Poisson process. As an example, for &

r—:r,x———r— T, vTﬁM : #Ta —Wj
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Poisson process, events A, B, and C, defined on the intervals shown
below, are mutually independent.

These x's represent one
possible history of arrivals

VUSIVUEAN
>t

Event A: Exactly k, arrivals in interval T and exactly k; arrivalsin
interval T';

Event B: More than k, arrivals in interval T,
Event C: No arrivals in the hour which begins 10 minutes after the
third arrival following the end of interval T,

The second defining property for the Poisson process states that,
Sor small enough tntervals, the probability of having exactly one arrival
within one such interval is proportional to the duration of the interval
and that, to the first order, the probability of more than one arrival
within one such interval is zero. This simply means that ®(k,At) can be
expanded in a Taylor series about A¢ = 0, and when we neglect terms of
order (Af)? or higher, we obtain the given expressions for ®(k,Af).

Among other things, we wish to determine the expression for
®(k,t) for t > 0 and for k = 0, 1, 2, . . . . Before doing the actual
derivation, let's reason out how we would expect the result to behave.
From the definition of the Poisson process and our interpretation of it
as a series of Bernoulli trials in incremental intervals, we expect that

®(0,t) as a function of ¢ should be unity at ¢ = 0 and decrease mono-
tonically toward zero as ¢ increases. (The event of exactly zero
arrivals in an interval of length ¢ requires more and more suc-
cessive failures in incremental intervals as ¢ increases.)

®(k,t) as a function of ¢, for £ > 0, should start out at zero for ¢ = 0,
increase for a while, and then decrease toward zero as ¢ gets
very large. [The probability of having exactly k arrivals (with
k > 0) should be very small for intervals which are too long or
too short.}

®(k,0) as a function of k¥ should be a bar graph with only one nonzero
bar; there will be a bar of height unity at k = 0.

We shall use the defining properties of the Poisson process to
relate ®(k, ¢ + Af) to ®(k,t) and then solve the resulting differential
equations to obtain ®(k,t).

For a Poisson process, if At is small enough, we need consider
only the possibility of zero or one arrivals between fand { + Af. Taking
advantage also of the independence of events in nonoverlapping time
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intervals, we may write
ek, t + A = ®k,)®0,40) + ¢k — 1, H®(1,A0)

The two terms summed on the right—ham.i side are the proba.b.lhitlles of
the only two (mutually exclusive) histongs of the process Yvhlc m:ty
lead to having exactly &k errivals in an interval of duration ¢+ 1.1
Our definition of the process specified ®(0,Af) and ®(1,A?) for sma

enough At. We substitute for these quantities to obtain

Ok, t + Al) = Ok, — XA + O — 1, DA At

Collecting terms, dividing through by At, and taking the limit as
At — 0, we find

L o) +20(f) = A0k = 1,1

which may be solved iteratively for k = 0 and then for k = 1, etc,,
subject to the initial conditions

|1 k=0
e®0 =10 k=0
The solution for ®(k,f), which may be verified by direct substitution, 18
Ak . _ _
G’(k,t)=()k! t>0; £t=0,1,2, ..

And we find that ®(k,¢) does have the properties-we anticipated earlier.

Pk, t)

/]\

k=0
k=1

t

Letting p = A, we may write this result in the more proper
notation for a PMF as

(NOkoe™ _ pkoe*

oxt ko=0,1,2 .. -
pk(ko) = %ol T Teq! g = A ko 0,1,

This is known as the Poisson PMF. Althopgh we derived the Pt(‘):is(ox;
PMF by considering the number of arrivals m'an interval of 1e:g n ,::-,
a certain process, this PMF arises frequent\y' in many othery s\ uan\ m'

To obtain the expected value and variance of the Poisson MY,

r

4-6
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we'll use the ¢ transform

- k
ka(z) = Z Pk(ka)2k° e B 2 (—';ci)'—-o = gr{c—1)
ko0 k=0

EG) = [ 4076 |

I

It

u

z=]
a? d d 2
0 = ‘@ pif(2) + %PkT(z) - [d_z Pk"’(z)] ]z-x =p
Thus the expected value and variance of Poisson random variable k are

both equal to u.

We may also note that, since E(k) = A, we have an interpreta-~
tion of the constant A used in

®(k,AL) = { A At k=1
0 k=23 ...

as part of the definition of the Poisson process. The relation E(k) = At
indicates that A is the expected number of arrivals per unit time in a
Poisson process. The constant \ is referred to as the average arrival
rate for the process,

Incidentally, another way to obtain E(k) = M\t is to realize that,
for sufficiently short increments, the expected number of arrivals in a
time increment of length Atisequalto 0 (1 — XN A?) + 1-X AL = X AL
Since an interval of length ¢ is the sum of ¢{/At such increments, we
may determine E(k) by summing the expected number of arrivals in

each such increment. This leads to E(k) = \ At ~ Ait = A

Interarrival Times for the Poisson Process

Let I, be a continuous random variable defined to be the interval of
time between any arrival in a Poisson process and the rth arrival
after it. Continuous random variable l,, the rth-order interarrival time,

has the same interpretation here as discrete random variable I, had for
the Bernoulli process.

We wish to determine the PDF’s
fu®d  1>0; r=1,2,3,...

And we again use an argument similar to that for the derivation of the
Pascal PMF,

jb li“-

FeT

! S
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For small enough Al we may write

Prob(l < I, < 1+ Al) = fi(1) Al

r—1,—~N
ol =oe—Lpaa =S A 120 r=12
v\;v T -

where A = probability that there are exactly » — 1 arrivals in an
interval of duration I
B = conditional probability that rth arrival occurs in next Al,
given exactly r — 1 arrivals in previous interval of dura-
tion {
Thus we have obtained the PDF for the rth-order interarrival time
)\rlr—le—-)\l
fl'(l)=(r—1)! 1>0;, r=1,2,...
which is known as the Erlang family of PDF’s. (Random variablel, is
said to be an Erlang random variable of order 1.)
The first-order interarrival times, deseribed by random variable

l,, have the PDF

fir) = poal — O™
which is the ezponential PDF. We may obtain its mean and variance
by use of the s transform.

76 = [T RO A=

B = - [£ 800, =3

8=

i = | B0 - [0 ]~ %

Suppose we are told that it has been r units of time since the last
arrival and we wish to determine the conditional PDF for the duration
of the remainder (I — ) of the present interarrival time. By con-
ditioning the event space for l;, we would learn that the PDF for the
remaining time until the next arrival is still an exponential random
variable with parameter \ (see Prob. 4.06). This result is due to the
no-memory (independence of events in nonoverlapping intervals) prop-
erty of the Poisson process; we discussed a similar result for the Bernoulli
process in Sec. 4-2.

Random variable I, is the sum of r independent experimental
values of random variable {;. Therefore we have

EQ,) = rE) ___; ol = roy? = Xri

B = UrO) = (s = h)'
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The following is a sketch of some members of Erlang family of PDF’s:

£, D

) —>1

We established that the first-order interarrival times for a Poisson
process are exponentially distributed mutually independent random
variables. Had we taken this to be our definition of the Poisson process
we would have arrived at identical results. The usual way of determin:
ing whet'her it is reasonable to model a physical process as a Poisson
process involves checking whether or not the first-order interarrival
times are approximately independent exponential random variables

Finally, we realize that the relation .

YaMdi=xdl 120
r=1
holds for reasons similar to those discussed at the end of Sec. 4-2.

4-7 Some Additional Properties of Poisson Processes
and Poisson Random Variables

Before summarizing our results for i
the Poisson process, we wi
a few additional properties. P e wish fomote
Consider discrete random variabl ;

. : e w, the sum of two tndependent
;"(})llsson random variables z'and y, with expected values E(z) and E(y).
p\;;‘e are at least thf'ee ways to establish that p,(wq) is also a Poisson

1 P One method involves direct summation in the zq,y, event space
(see Prob. 2.03). Or we may use z transforms as follows,
pzT(Z) = gE@ (1) pyT(Z) = gEW) (=D
w=x+y z, y independent
PuT() = PIDT(2) = elEOHEDIGD

which we recognize to be the z transform of the Poisson PMF

[E(z) 4+ E(y)]weE@+EW]
wo!

)}

pW(wO) =

wy=0,1, ...
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A third way would be to note that w = x + y could represent the

total number of arrivals for two independent Poisson processes within
a certain interval. A new process which contains the arrivals due
to both of the original processes would still satisfy our definition of
the Poisson process with A = A; + A; and would generate experimental
values of random variable w for the total number of arrivals within the
given interval.
We have learned that the arrival process representing all the
arrivals in several independent Poisson processes is also Poisson.
Furthermore, suppose that a new arrival process is formed by
performing an independent Bernoulli trial for each arrival in a Poisson
process. With probability P, any arrival in the Poisson process is also
considered an arrival at the same time in the new process. With prob-
ability 1 — P, any particular arrival in the original process does not
appear in the new process. The new process formed in this manner
(by “independent random erasures’) still satisfies the definition of a
Poisson process and has an average arrival rate equal to AP and the
expected value of the first-order interarrival time is equal to (AP)~!.

If the erasures are not independent, then the derived process has
memory. For instance, if we erase alternate arrivals in a Poisson
process, the remaining arrivals do not form a Poisson process. It is
clear that the resulting process violates the definition of the Poisson
process, since, given that an arrival in the new process just occurred,
the probability of another arrival in the new process in the next At is
zero (this would require two arrivals in At in the underlying Poisson
process). This particular derived process is called an Erlang process
since the first-order interarrival times are independent and have (sec-
ond-order) Erlang PDF’s. This derived process is one example of how
we can use the memoryless Poisson process to model more involved

situations with memory.

4-8 Summary of the Poisson Process

1 For suitably small At, ®(k,Af) satisfies

For convenience, assume that we are concerned with arrivals which
occur at points on a continuous time axis. Quantity ®(k,t) is defined
to be the probability that any interval of duration ¢ will contain exactly

k arrivals. A process is said to be a Poisson process if and only if

1—2AAt k=0
®k,At) = { \ At k=1
0 k> 1

—t
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2 Any events defined on iy A . =
independent. sined o 4 nonoverlapping intervals of time are mutually ==

=
=

hat hAn alternativ.e definition of a Poisson process is the statement
at the first-order interarrival times be independent identically dj
tributed exponential random variables. v
Random variable k, the nu i
_ : , mber of arrivals i i
duration ¢, is described by the Poisson PMF " an nterval of

(AL)kog=nt
pk(ko)=T 12>0; kh=0,1,2, ...

PT(2) = M) E(E) =

o1 = N

The first-order interarrival t i )
variablo with e pore ime I, is an ezponential random

1>0 =

o) = e

ﬁﬂw=sik

1
El) = N ol = %

- Tl.ne ti.me until the rth arrival, I, is known ag the rth-order
waiting .tzme, 13 the sum of 7 independent experimental values of ] d
is described by the Erlang PDF b

Arlr—le—)d

fl,@*m l20;7=1v2,--

0'1,2 . ?”a'zlz =

f17(s) = (H_LA) E@) = rB@) = 1

ﬂf

T . .
» rand he sum of severa! independent Poisson random variables is also
o n oxs v.arllal:ge described by a Poisson PMF. 1If we form a new
cess by including all arrivals d i
ue to several independent Po;
processes, the new process i i ; Bornoull
s also Poisson. If f i
el o nev. . we perform Bernoullj
ndependent random erasure i
m; : s from a Poisson pro
the remaining arrivals also form a Poisson process process
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i
|
i
4-9 Examples l L N, . first
P * ¢ Let { N, be the number of cars in the second| 12 seconds after the

The Poisson process finds wide application in the modeling of proba- wombats start out. It will b
o S . . e helpful to d i

bilistic systems. We begin with a simple example and proceed to for the experiment. prutto draw a sequential event space

consider some rather structured situations. Whenever it seems infor-

ive shall solve these ms in several ways.
mative, we shall solve these problems in several ways 12 Ny=0 @ Both sunive
9(1,12)

example 1 The PDF for the duration of the (independent) interarrival times N,=0 Nyel o Both sum
between successive cars on the Trans-Australian Highway is given by z oth survive

Toe /12 th>0 a 12) N,>2 ® Only the fast wombat survives
filto) =
0 th<O

—”_’M/Nz =0 ® Only the slow wombat survives
N,=1
190013 N,>0 e Both perish

® Both perish

where these durations are measured in seconds.

(a) An old wombat requires 12 seconds to cross the highway, and he |
starts out immediately after a car goes by. What is the probability
that he will survive?

(b) Another old wombat, slower but tougher, requires 24 seconds to
cross the road, but it takes two cars to kill him. (A single car
won’t even slow him down.) If he starts out at a random time,
determine the probability that he survives.

Prob(exactly one wombat survives) = Prob(N, = 0, N, > 2)
+ Prob(N, = 1, N, = Q)

(c) If both these wombats leave at the same time, immediately after Quantities N, and N, are in dependent random variables be "

a car goes by, what is the probability that exactly one of them are defined on nonoverlapping intervals of o Do procci\;:e “(z
survives? may now collect the probability of exactly o i '

a Since we are given that the first-order interarrival times are independ- , event space. y one survival from the above

- ent exponentially distributed random variables, we know that the

vehicle arrivals are Poisson, with Prob(exactly 1 wombat survives)

I

C00,12)[1 — @(0,12) ~ ¢(1,12)]
+ ®(1,12)0(0,12)

i

kpo—2/12 .
o = YT p 01,2, .5 120 Prob(exactly 1 wombat survives) = e=t(1 — 2¢-1)
o tet=¢'— e =0.233
Since the car-arrival process is memoryless, the time since the most ) )
recent car went by until the wombat starts to cross is irrelevant. The 1 example 2 Eight light bulbs are turned on at ¢ — 0. The lifetime of any

fast wombat will survive only if there are exactly zero arrivals in the P&!‘ti(?ular bulb is independent of the lifetimes of all other bulbs and is
first 12 seconds after he starts to cross. described by the PDF

Tr e

T e ) _ | Aen iftg >0
®(0,12) =~ = 7 = 0.368 it '0 otherwise
Of course, this must be the same as the probability that the wait until Determine the mean, variance, and s transform of ran i

i o : ) : dom variable y,
the next arrival is longer than 12 seconds. ) ‘ ) lrr;%urclimfli e falure.

€ define £; to be a random variable representin, i
' ’ . . _ ' g the time fro
s0.12) - £=12ﬁg—t‘ gl — 0.368 ] the ith f?.llure until the jth failure, where to1 is the duration fro::
t = 0 until the first failure. We may write

b The slower but tougher wombat will survive only if there is exactly
zero or one car in the first 24 seconds after he starts to cross.

0,—2 1,—2
®(0;24) + ®(1,24) = ZST + 2—16,— = 3¢~ = 0.406

Y = tos = toy + t1s + Lo

.The length of the time interval during which exactly 8 — 5 bulbs are on
Is equal to ;i . While 8 — 4 bulbs are on, we are dealing with the sum
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of 8 — ¢ independent Poisson processes and the probability of a failure
in the next At is equal to (8 ~ ¢)A At. Thus, from the properties of the
Poisson process, we have

B(y) = E(toy) + E(t1)) + E(tss) = EIX + % n _61_)‘

Knowledge of the experimental value of, for instance, t,, does
not tell us anything about ¢;;. Random variable ¢, would still be
an exponential random variable representing the time until the next
arrival for a Poisson process with an average arrivalrate of 7A. Random
variables fo1, ¢12, and t2; are mutually independent (why?), and we have

i 1 1
ROV GV GYE

J16) = fi(s) X&) X fL.60) = 5 i)\sx 8 -7+)\7x 8 36)\

2~ 2 2 2
Oy" = Oy + Tty + Tlys

This has been one example of how easily we can obtain answers for many
questions related to Poisson models. A harder way to go about it
would be to determine first the PDF for y, the third smallest of
eight independent identically distributed exponential random variables.

Fungleton

example 3 Joe is waiting for a Nowhere-to-Fungleton (NF) bus, and he

knows that, out where he is, arrivals of (gg} buses may be considered

. . . . A
independent Poisson processes with average arrival rates of l)‘;’: } buses

per hour. Determine the PMF and the expectation for random varia-
ble K, the number of “wrong-way” buses he will see arrive before he
boards the next N¥ bus.

We shall do this problem in several ways.

Method A

We shall obtain the compound PDF for the amount of time he waits
and the number of wrong-way buses he sees. Then we determine
pr(K,) by integrating out over the other random variable. We know
the marginal PDF for his waiting time, and it is simple to find the PMF
for K conditional on his waiting time. The product of these proba-
bilities tells us all there is to know about the random variables of interest.

The time Joe waits until the first right-way (NF) bus is simply -

) o

T
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the waiting time until the first arrival in a Poisson process with average

arrival rate Ayr. The probability that his total waiting time ¢ will
be between #, and 1, + dt, is

f;(!o) dto = )\Npe_x""'" dto

Given that the.e‘xperimenta.l value of Joe's waiting time is exactly ¢,
hours, the conditicnal PMF for K is simply the probability of exactly

K, arrivals in an interval of duration to for a Poisson process with
average arrival rate Apy.

(A rato)Kog=rrnto

pr(Ko | ) = Kol Kio=0,1,2, ...

. The experiment of Joe's waiting for the next NF bus and observ-
ing the number 9f wrong-way buses while he waits has a two-dimensional
event space which is discrete in K and continuous in ¢,

etc.
T For instance, this sample point

would represent the experimental
outcome "he had to wait exactly t
hours and he saw exactly three

N

FN buses while he waited"

L (U NN U

>t

~
o

We obtain the probability assignment in this event space, Sex(to ko).
Jox(to,Ko) = fi(to)pris(Ko | to)

_ XNpe—)‘”"‘“(XFNlo)K"e”""'“

Ko! to?_o, Ko=0,1,2,...

The marginal PMF py(K,) may be found from

0 Ko »
pK(KO) = ];onofl,x(to,Ko) dty = Avedew j: o toKog~rntinn)ty dty )

Ko! o =
By noting that

()\ FN + XNF)K°+’loK°€_0”’+’wP) to

K,!

would integrate to unity over the range 0 < ¢, < o (since it is an
Erlfmg P]?F of order K,.+ 1), we can perform the above integration
by inspection to obtain (with Avr/Nen = p),
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pr(Ko) = m—Prs Ko=0,1,2, ...

AT e
If the average arrival ratesa Ay » and Apy are equal {(p == 1), we note that
the probability that Joe will see a Lotal of exactly K, wrong-way buses
before he boards the first right-way bus is equal to (4)%+'. For this
case, the probability is 0.5 that he will see no wrong way buses while he
waits.
The expected value of the number of FN buses he will see arrive
may be obtained from the z transform.

_ PN L -
pxr(z)"‘ l_i_.px.z-o(l +P)K."‘P(1+P z')l

B0 =1 om0 = o

This answer seems reasonable for the cases p > > land p < < 1.

Method B

Regardless of when Joe arrives, the probability that the next busis a
wrong bus ia simply the probability that an experimental value of a
random variable with PDF

Ja(Ta) = Apnerraon >0

i3 smdller than an experimental value of another, independent, random
variable with PDF

Julye) = Aypetamm vo =0

So, working in the zo,y0 event space

Yo = Xp

—w————FEyent: the next bus Joe sees
after he arrives is a
wrong way tus

Prob (next busis an FN bus) = L -_0 dxqg L :_" dya Apnhy pe ey Tag=inrte

with p = ?—:%':-:

a1
Aew +Anr L+ p

As aoon as the next bus does come, the same result holds for the following
bus; so we can draw out the scquential event space where each trial
eorresponds to the arrival of another bus, and the experiment termi-
nates with the arrival of the first N¥ bus.
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=
-

i
1+p 1+p

—
+
T
+

w

This again Jeads to

pr{Kq) = il_-f-—’;?_)'im

Method C

Consider the event space for any adequately small A¢,

/ ® A wrong.-way bus arrives in this At
Aypdit
NF « A bus of the lype Joe is waiting for

comes in this At

I~{A, +4,.)4
wrt Rpy )8t e No bus arrives in this At
We need be interested in a A! only if a bus arrives during that Af;

S0 we may work ie a couditional space containing only the upper two
event points to obtain

Prob (any particular bus is FN) = ﬁ%‘
FN NF

Prob (any particular bus is NF) = _Mvr

Aev + Axr
Thislapproach. replaces the integration in the z,¥ event space for the
previous solution rnd, of course, leads to the same result,

As a final point, note that N, the fotal number of buses Joe
would see if he waited until the Rth N F bus, would have a Pascal PMF,
The arrival of each bus would he & Bernoulli trisl, and a success is
represented by the arrival of an NF bus, Thus, we have

No— 1 Mer N Ay \NeR
P(No) = ( ° )( xF ry
? B~ 1/ \hew F Axr Arr 4+ Anp

Ny=R,R+1,...: £=1,213, ...

where N is the total number of huses (including the one he boards) seen

by Joe if his policy is to board the Rth right-way bus to arrive after he
gets to the bus stop.
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4-10 Renewal Processes

Consider a somewhat more general case of a random process in
which arrivals occur at points in time. Such a process is known as a
renewal process if its first-order interarrival times are mutually inde-
pendent random variables described by the same PDF. The Bernoulli
and Poisson processes are two simple examples of the renewal process.
In this and the following section, we wish to study a few basic aspects of
the general renewal process.

To simplify our discussion, we shall assume in our formal work
that the PDF for the first-order interarrival times (gaps) fz(zo) is a
continuous PDF which does not contain any impulses. [A notational
change from f;,(1) to f.(zo) will also simplify our work.]

We begin by determining the conditional PDF for the time until
the next arrival when we know how long ago the most recent arrival
occurred. In the next section, we develop the consequences of begin-
ning to observe a renewal process at a random time.

If it is known that the most recent arrival occurred exactly 7
units of time ago, application of the definition of conditional probability
results in the following conditional PDF for z, the total duration of the
present interarrival gap:

f:(:to) — fz(zﬁ)
f:’ fa(20) do 1 = paclr)

lez)r(xo l T > T) = Zo >

If we let random variable y represent the remaining time in the present
gap, ¥ = ¢ — 7, we obtain the conditional PDF for y,

fx(?/o + T) - fz(yo + T)

f ®f@o) dey 1T Pe<(0) vo> 0

Juese(@ofz > 1) =

As an example, suppose that we are burning light bulbs one at a
time and replacing each bulb the instant it fails. 1f the lifetimes of the
bulbs are independent random variables with PDF f2(xo), we have a
renewal process in which the points in time at which bulb replacements
occur are the arrivals. Let’s use the results obtained above to work
out one example with a particularly simple form for fz(zo).

f,(xo)

Let this be the PDF for x, the total
lifespan of any individual bulb

T

Ty

—

—
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lx|x>r(‘o|x> 7)

This is the conditional PDF for the

total lifespan of a bulb, given that it
has already been in use for exactly
7 units of time without failing

IH

—
{
Y

x
0 T 1 0

fyens ()2 >7)

This is the conditional PDF for y, the
remaining lifespan of a bulb which
has already been in use for exactly
7 units of time without failing

L

0 (i-7) 1

Y

We learned earlier that the first-order interarrival times for a
Poisson process are independent random variables with the PDF
fz(xe) = Ae*=forxe > 0. For a Poisson process we can show by direct
substitution that the conditional PDF for the remaining time until the
next arrival, fyizs-(yo | > 1), does not depend on v (Prob. 4.06) and is
equal %0 f,(yo), the original unconditional PDF for the first-order inter-
arrival times. For the Poisson process (but not for the more general
renewal process) the time until the next arrival is independent of when
we start waiting. If the arrivals of cars at a line across a street con-
stituted a Poisson process, it would be just as safe to start crossing
the street at a random time as it would be to start crossing immediately
after a car goes by.

4-11 Random Incidence

Assume that a renewal process, characterized by the PDF of its
first-order interarrival times, f.(2,), has been in progress for a long time.
We are now interested in random incidence. The relevant experiment
is to pick a time randomly (for instance, by spinning the hands of a clock)
and then wait until the first arrival in the renewal process after our randomly
selected entry time. The instant of the random entry must always be
chosen in a manner which is independent of the actual arrival history of
the process.

We wish to determine the PDF for random variable y, the waiting
time until the next arrival (or the remaining gap length) following
randomentry. Several intermediate steps will be required to obtain the
unconditional PDF f,(yo).

First we shall obtain the PDF for random variable w, the total
duration of the interarrival gap into which we enter by random inci-
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dence. Random variable w describes the duration of an interval
which begins with the most recent arrival in the renewal process prior
to the instant of random incidence and which terminates with the first
arrival in the process after the instant of random incidence.

Note that random variables w and x both refer to total inter-
arrival-gap durations for the renewal process, but the experiments on
which they are defined are different. An experimental value of w is
obtained by determining the total duration of the interarrival gap into
which a randomly selected instant falls. An experimental value of x is
obtained by noting the duration from any arrival in the renewal process
until the next arrival.

After obtaining f,(w.), we shall then find the conditional PDF
for the remaining time in the gap, ¥, given the experimental value of the
total duration of the gap, w. Thus, our procedure is to work in a
wo,Yo event space, first obtaining f,,(wo) and fyju(¥o | wo). We then use
the relations

JosWoy0) = fowolfuw(yo| wo)  and  fy(yo) = fmfw.u(wo,yo) dwo

to obtain the unconditional PDF f,(y,) for the waiting time from our
randomly selected instant until the next arrival in the renewal process.

To determine the PDF f,(w,), let’s begin by considering an
example where the first-order interarrival times of the renewal process
have the discrete PMF

1 ! I | L L;__I_%seconds
2345675910x°()

Although any interarrival time is equally likely to be either 1 or 10
seconds long, note that each 10-second gap consumes 10 times as much
time as each l-second gap. The probability that a randomly selected
instant of time falls into a 10-second gap is proportional to the fraction
of all time which is included in 10-second gaps.

The fraction of all time which is included in gaps of duration z,
should be, in general, praportional to p.(z,) weighted by z,, since p.(z,)
is the fraction of the gaps which are of duration z, and each such gap
consumes z, seconds. Recalling that random variable w is to be the
total duration of the interarrival gap into which our randomly selected
instant falls, we have argued that

WP (o) — WoP=z(Wo)
E WoP2(wo) E(z)

Pu(wo) =

TR

L aee e L

TRy

o

PR

&.o..t.ﬁ oy
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where the denominator is the required normalization factor.
For the particular example given above, we obtain the PMF for
the total duration of the gap into which a random entry falls,

p,(wy)

A random entry, for this example, is ten times as likely to fall into a
ten—secon.d gap as a one-second gap, even though a gap length is
equally likely to be of either kind.

Extending the general form of p,(wo) to the continuous case, we
have the desired f,,(wo)

L , Wofz(wo) duy E(x)

where f(-) is the PDF for the first-order interarrival times for the renewal
process and fo(wo) s the PDF for the total duration of the interarrival gap
entered by random incidence.

fulwe) = Wof=(wo) _ wofz(ws)

In reasoning our way to this result, we have made certain assumptions
about the relation between the probability of an event and the fraction
of a large number of trials on which the event will occur, We speculated
on the nature of this relation in Sec. 3-6, and the proof will be given in
Chap. 6.

Given that we have entered into a gap of total duration w, by
random incidence, the remaining time in the gap, y, is uniformly dis-
tributed between 0 and w, with the conditional PDF

1 .
fvlw(yo | wo) = (5;)-0‘ if 0 < yo < wo
0 otherwise

because a random instant is as likely to fall within any increment of a

u{o—secgnd gap as it is to fall within any other increment of equal dura-
tion within the wo-second gap.
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Now we may find the joint PDF for random variables w and ¥,

wofz(wo) . L

fw.u(wwyo) = fw(wﬂ)vaW(yﬂ | wo) = _E_'—(—a_:)-— = 0 < yo < o < ®

To determine f,(yo), the PDF for the time until the next arrival after
the instant of random incidence, we need only integrate (carefully) over
wo in the we,yo event space. Note that w, the total length of the gap
entered by random incidence, must be greater than or equal to y, the
remaining time in that gap; so we have

© z 0 d 0
fv(yo) = }:" f“’-"(wo’yo) dwo = Lo-yn.i—(%%x)—w—

futyy = L2

where f,(yo) 13 the PDF for the duration of the interval which begins at a
“random”’ time and terminates with the next arrival for a renewal process
with first-order interarrival times described by random variable x.

We apply these results to the problem introduced in the previous
section. Let the PDF for the first-order interarrival times be

felxy)
Let this be the PDF for the
first-order interarrival times
1 of a renewal process
x
5 1 —> %

Now, first we apply the relation

fw(‘w‘;) = u_ﬁ%’l
to obtain
£ (wy)

This is the POF for the total duration
of the interarrival gap entered by
random incidence. Obviously, random
incidence favors entry into longer gaps

Wy

=

—prrr e
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and we use

1 — p.<(yo)
Ty(yo) = B
to obtain
£,(55)

2 .. ..
This is.the PDF for the remaining
duration of the interarrival gap

1 entered by random incidence

N
) 1 %

It is interesting to note that the expected value of the remaining
duration of the gap entered by random incidence, E(y), may be greater
than, equal to, or less than the “expected gap length’” given by E(z).
In fact, we have already learned that E(z) = E(y) for a Poisson process.

Thus, for instance, if car interarrival times are independent
random variables described by f.(z;), the expected waiting time until
the next car arrives may be greater if we start to cross at a random time
than if we start right after a car goes by! If we understand the different
experiments which give rise to E(z) and E(y), this seems entirely reason-
able, since we realize that random incidence favors entry into large gaps.

We should realize that statements about average values or
expected values of a random variable are meaningless unless we have a
full description of the experiment on whose outcomes the random varia-
ble is defined. In the above discussion, E(z) and E(y) are generally
different, but each is the “expected value of the time until the next
arrival.” The experiments of “picking a gap” and “picking an instant
of time” may lead to distinctly different results. (Probs. 2.08, 2.11,
and 3.10 have already introduced similar concepts.)

PROBLEMS

4.01 The PMF for the number of failures before the rth success in a
Bernoulli process is sometimes called the megative binomial PMF.
Derive it and explain its relation to the Pascal PMF,

4.02 A channel contains a series flow of objects, each of fixed length L.
All objects travel at constant velocity V. Each separation S between
successive objects is some integral multiple of L, S = nL, where the n



=
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for each separation is an independent random variable described by
the probability mass function

Palne) = a(l —~ @)1 ne=123...; 0<a<1

a Find the average flow rate, in objects per unit time, observable at
some point in the channel.

b Calculate what additional flow can exist under a rule that the result-
ing arrangements of objects must have at least a separation of L
from adjacent objects.

¢ As seen by an electric eye across the channel, what fraction of all
the gap time is occupied by gaps whose total length is greater than
2L? A numerical answer is required.

4.03 Let z be a discrete random variable described by a geometric PMF.
Given that the experimental value of random variable z is greater
than integer y, show that the conditional PMF for x — y is the same
as the original PMF for z. Letr =12z —1y, and sketch the following
PMF’s:

a pa(z0) B Paesy@ ]z >y) € pelro)

8,04 We are given two independent Bernoulli processes with parameters
P,and P;. A new process is defined to have a success on its kth trial
(k=1,2,3,...) only if exactly one of the other two processes has a
success on its kth trial.

a Determine the PMF for the number of trials up to and including
the rth success in the new process.
b Is the new process a Bernoulli process?

405 Determine the expected value, variance, and 2 transform for the total
number of trials from the start of a Bernoulli process up to and including
the nth success after the mth failure.

3.06 Let z be a continucus random variable whose PDF f.(zo) contains
no impulses. Given that z > T, show that the conditional PDF for
=z — T is equal to fo(ro) if fz(x0) is an exponential PDF.

4.07 To cross a single lane of moving traffic, we require at least a duration
T. Successive car interarrival times are independently and identically
distributed with probability density function fi(ts). If an interval
between successive cars is longer than T, we say that the interval
represents a single opportunity to cross the lane. Assume that car
lengths are small relative to intercar spacing and that our experiment
begins the instant after the zeroth car goes by.

AT
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Determine, in as simple a form as possible, expressions for the
probability that:
a We can cross for the first time just before the Nth car goes by.
b We shall have had exactly n opportunities by the instant the Nth
car goes by.
¢ The occurrence of the nth opportunity is immediately followed by
the arrival of the Nth car.

4.08 Consider the manufacture of Grandmother's Fudge Nut Butter

Qookies. Grandxflother has noted that the number of nuts in a cookie
is a random variable with a Poisson mass function and that the
average number of nuts per cookie is 1.5.

a What 1s.the numerical value of the probability of having at least
one nut in a randomly selected cookie?

b Determine the numerical value of the variance of the number of nuts
per cookie. :

¢ Determine the probability that a box of exactly M cookies contains
exact'ly the expected value of the number of nuts for a box of N
cookies. (M =1,2,3,...; N=1,2,3,...)

d Wha.t is the .probability that a nut selected at random goes into a
cookie containing exactly K nuts?

e fI‘he customers _have been getting restless; so grandmother has
instructed her inspectors to discard each cookie which contains
exactly zero nuts‘. Determine the mean and variance of the number
of nuts per cookie for the remaining cookies.

4.09 A woman is seated beside a conveyer belt, and her job is to remove

certain itgms from the belt. She has a narrow line of vision and can
get these items only when they are right in front of her,

. She 'has noted that the probability that exactly k of her items
will arrive in a minute is given by

2k°€_ 2

Prko) = Tl ke=10,1,23, ...

and she assumes that the arrivals of her items constitute a Poisson

process.

a If she wishes to sneak out to have a beer but will not allow the
(:,xpected value of the number of items she misses to be greater than
5, how much time may she take?

b If.she leaves for t\fvo minutes, what is the probability that she will
miss exactly two items the first minute and exactly one item the
second minute?

¢ If she leaves for two minutes, what is the probability that she will
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maiss a total of exactly three items?

d The union has installed a bell which rings once a minute with pre-
cisely one-minute intervals between gongs. If, between two suc-
cessive gongs, more than three items come along the belt, she will
handle only three of them properly and will destroy the rest. Under
this system, what is the probability that any particular item will be
destroyed?

4.10 Arrivals of certain events at points in time are known to constitute
a Poisson progess, but it is not known which of two possible _vah.les of
A, the average-arrival rate, describes the process. Our a priori estimate
is that A = 2 or A = 4 with equal probability.

We observe the process for 7 units of time and observe exactly
K arrivals. Given this information, determine the conditional proba-
bility that A = 2. Check to see whether or not your answer is reason-
able for some simple limiting values for K and T.

4.11 Independent experimental values of a geometric random variable are
obtained, and we label these values Ky, Ko, K3, . . . - Random varia-
ble r; is defined by

i=12 ...

If we eliminate arrivals number 7y, 72, 73, . . . in a Poisson process, do
the remaining arrivals constitute a Poisson process?

a.12 Cigars Boxes of cigars
Al Bo F___y_—_%
x

Al makes cigars, placing each cigar on a constant-velocity conveyer

belt as soon as it is finished. Bo packs the cigars into boxes of four

cigars each, placing each box back on the belt as soon as 1? is ﬁ'lled.

The time Al takes to construct any particular cigar is, believe it or

not, an independent exponential random variable with an expected

value of five minutes. ‘

a Determine ®4(k,T), the probability that Al makes exactly k cigars
in 7 minutes. Determine the mean and variance of k as a function
ofT.k=0,1,2,...;05Tsof>. _ '

b Determine the probability density function f.(ro), wherer is the mt_er—
arrival time (measured in minutes) between successive cigars at point
z.

¢ Determine ®5(r,T), the probability that Bo places exactly r boxes of

cigars back on the belt during an interval of T minutes.

—r—
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d Determine the probability density function f,(,), where ¢ is the inter-
arrival time (measured in minutes) between successive boxes of
cigars at point y.

e If we arrive at point y at a random instant, long after the process
began, determine the PDF f,(rq), where 7 is the duration of our wait
until we see a box of cigars at point y.

4.13 Dave is taking a multiple-choice exam. You may assume that the
number of questions is infinite. Simultaneously, but independently, his
conscious and subconscious facilities are generating answers for him,
eachin a Poisson manner. (His conscious and subconscious are always
working on different questions.)

Average rate at which conscious responses are generated

= ). responses/min
Average rate at which subconscious responses are generated

= A, responses/min

Each conscious response is an independent Bernoulli trial with proba-
bility p. of being correct. Similarly, each subconscious response is an
independent Bernoulli trial with probability p., of being correct.

Dave responds only once to each question, and you can assume
that his time for recording these conscious and subconscious responses
is negligible.

a Determine pi(ko), the probability mass function for the number of
conscious responses Dave makes in an interval of 7 minutes.

b If we pick any question to which Dave has responded, what is the
probability that his answer to that question:

I Represents a conscious response
ii Represents a conscious correct response

¢ If we pick an interval of T minutes, what is the probability that in
that interval Dave will make exactly R, conscious responses and
exactly S, subconscious responses?

d Determine the s transform for the probability density function for
random variable z, where z is the time from the start of the exam
until Dave makes his first conscious response which is preceded by
at least one subconscious response.

e Determine the probability mass function for the total number of
responses up to and including his third conscious response.

f The papers are to be collected as soon as Dave has completed exactly
N responses. Determine:

i The expected number of questions he will answer correctly
ii The probability mass function for L, the number of questions he
answers correctly
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9 Repeat part (f) for the case in which the exam papers are to be col-
lected at the end of a fixed interval of 7" minutes.

4.14 Determine, in an efficient manner, the fourth moment of a continuous
random variable described by the probability density function

43:”022—4:0
f:(xO) = 2
0 Ty < 0

.’L‘oZO

4,15 The probability density function for L, the length of yarn purchased

by any particular customer, is given by

A3L %Moo
2

A single dot is placed on the yarn at the mill. Determine the

expected value of 7, where r is the length of yarn purchased by that
customer whose purchase included the dot.

JulLo) = Ly >0

4.16 A communication channel fades (degrades beyond use) in a random

% manner. ‘The length of any fade is an exponential random variable
= with expected value A=1.  The duration of the interval between the end
= of any fade and the start of the next fade is an Erlang random variable
—| .

= with PDF

% 4f 3po—nut

= =R k2o

a If we observe the channel at a randomly selected instant, what is
the probability that it will be in a fade at that time? Would you
expect this answer to be equal to the fraction of all time for which the
channel is degraded beyond use?

b A device can be built to make the communication system continue to
operate during the first T units of time in any fade. The cost of the
device goes up rapidly with T. What is the smallest value of T
which will reduce by 90% the amount of time the system is out of
service?

The random variable ¢ corresponds to the interarrival time between
consecutive events and is specified by the probability density function
f;(to) = 41026_2“’ o Z 0

Interarrival times are independent.
a Determine the expected value of the interarrival time z between the
11th and 13th events.

4.17

-
Wt
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b Determine the probability density function for the interarrival time
y between the 12th and 16th events.

¢ If we arrive at the process at a random time, determine the proba-
bility density function for the total length of the interarrival gap
which we shall enter. ‘

d Determine the expected value and the variance of random variable
r, defined by r = z + ».

4,18 Bottles arrive at the Little Volcano Bottle Capper (LVBC) in a
Poisson manner, with an average arrival rate of A bottles per minute.
The LVBC works instantly, but we also know that it destroys any
bottles which arrive within 1/5X minutes of the most recent successful
capping operation.

a A long time after the process began, what is the probability that a
randomly selected arriving bottle (marked at the bottle factory)
will be destroyed?

b What is the probability that neither the randomly selected bottle
nor any of the four bottles arriving immediately after it will be
destroyed?

.19 In the diagram below, each —{|— represents a communication link.
Under the present maintenance policy, link failures may be considered
independent events, and one can assume that, at any time, the proba-
bility that any link is working properly is p.

a If we consider the system at a random time, what is the probability
that:
i A total of exactly two links are operating properly?
ii Link g and exactly one other link are operating properly?

b Given that exactly six links are not operating properly at a particular
time, what is the probability that A can communicate with B?

¢ Under a new maintenance policy, the system was put into operation
in perfect condition at ¢ = 0, and the PDF for the time until failure
of any link is

= fillo) = x4, >0
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Link failures are still independent, but no repairs are to be made
until the third failure occurs. At the time of this third failure, the
system is shut down, fully serviced, and then “restarted” in pe'rfect
order. The down time for this service operationisa random variable

with probability density function
fZ(xO) = plroe 2020

i What is the probability that link g will fail before the first service
operation? '
ii Determine the probability density function for random variable
y, the time until the first link failure after ¢ = 0.
iii Determine the mean and variance and s transform fo.r w, the
time from ¢ = 0 until the end of the first service operation.

4.20 The interarrival times (gaps) between the arrivals of successive

events at points in time are independent random variables with PDF,

if0 <t L1
otherwise

Jelto) = ‘(I){to(l —h)

a What fraction of time is spent in gaps longer than the average gap?
b If we come along at a random instant after the process has been
proceeding for a long time, determine
i The probabiﬁty we shall see an arrival in the next '(small) At
ii The PDF for [, the time we wait until the next arrival
¢ Find any fi(to) for which, in the notation of this problem, there

would result E() > E(1).

4,21 Two types of tubes are processed by a certain machine. Arrivals of

type 1 tubes and of type II tubes form independent Poisson processes
with average arrival rates of Ay and X, tubes per hf)ur, fespectwely.
The processing time required for any type I tube, z,, is an independent
random variable with PDF

1 fo<z<g |
fa(®) = { 0  otherwise
The processing time required for any type 11 tube, x», is also a uniformly
distributed independent random variable
0.5 ifo<z <2
2@ =\ otherwise

The machine can process only one tube at a time. If any tube
arrives while the machine is occupied, the tube passes on to another

machine station.

b
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a Let y be the time between successive tube arrivals (regardless of
type and regardless of whether the machine is free). Determine
Jv(Wo), E(y), and a,%.

b Given that a tube arrives when the machine is free, what is the
probability that the tube is of type I?

¢ Given that the machine starts to process a tube at time T', what is
the PDT for the time required to process the tube?

d If we inspect the machine at a random time and find it processing a
tube, what is the probability that the tube we find in the machine is
type I?

e Given that aun idle period of the machine was exactly T hours long,
what is the probability that this particular idle period was terminated
by the arrival of a type 1 tube?

8.22 The first-order interarrival times for cars passing a checkpoint are

independent random variables with PDT

_ 2" 6>0
A tr <0

where the interarrival times are measured in minutes. The successive
cxperimental values of the durations of these first-order interarrival
times are recorded on small computer cards. The recording operation
occupies a negligible time period following each arrival. Each card
has space for three entries. As soon as a card is filled, it is replaced by
the next card.

a Determine the mean and the third moment of the first-order inter-
arrival times,

b Given that no car has arrived in the last four minutes, determine the
PMY for random variable K, the number of cars to arrive in the next
six minutes.

¢ Determine the PDYF, the expected value, and the s transform for the
total time required to use up the first dozen computer cards.

d Consider the following two experiments:

i Pick a card at random from a group of completed cards and note
the total time, {;, the card was in service. Find E(¢;) and 0.2

ii Come to the corner at a random time. When the card in use at
the time of your arrival is completed, note the total time it was in
service (the time from the start of its service to its completion).
Call this time ¢, Determine E(¢;), and 0,2,

e Given that the computer card presently in use contains exactly two
entries and also that it has been in service for exactly 0.5 minute,
determine and sketch the PDI for the remaining time until the card
is completed.



