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The Bernoulli and Poisson processes are defined by probabilistic descrip-
tions of series of independent trials. The Markov process is one type
of characterization of a series of dependent trials.

We have emphasized the no-memory properties of the Bernoulli
and Poisson processes. Markov processes do have memory (events in
nonoverlapping intervals of time need not be independent), but the
dependence of future events on past events is of a particularly simple
nature.



Markov condition:

PIS;(n) | Sa(n — 1)Ss(n — 2)Se(n — 3) + - ]

the system is said to be a discrete-state discrete-transition Markov process.
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5-1 Series of Dependent Trials for Discrete-state Processes

Consider a system which may be described at any time as being in one
of a set of mutually exclusive collectively exhaustive states Sy, Ss,

., Sm. According to a set of probabilistic rules, the system may,
at certain discrete instants of time, undergo changes of state (or state
transitions). We number the particular instants of time at which
transitions may occur, and we refer to these instants as the first trial,
the second trial, ete.

Let Si(n) be the event that the system is in state S; immediately
after the nth trial. The probability of this event may be written as
P{Si(n)]. Each trial in the general process of the type (discrete state,
discrele transition) introduced in the above paragraph may be described
by transition probabilities of the form )

PlS;(n) | Sa(n — 1)Ss(n — 2)Se(n — 3) . . . ]

1<j,a,b¢ ...,<m; n=123, ...

These transition probabilities specify the probabilities associated with
each trial, and they are conditional on the entire past history of the
process. The above quantity, for instance, is the conditional prob-
ability that the system will be in state S; immediately after the nth
trial, given that the previous state history of the process is specified by
the event S,(n — 1)Sy(n — 2)S,(n — 3) + - - .

We note some examples of series of dependent trials in discrete-
state discrete-transition processes. The states might be nonnegative
integers representing the number of people on a bus, and each bus stop
might be a probabilistic trial at which a change of state may occur.
Another example is a process in which one of several biased coins is
flipped for each trial and the selection of the coin for each trial depends
in some manner on the outcomes of the previous flips. The number of
items in a warehouse at the start of each day is one possible state
description of an inventory. For this process, the state transition due
to the total transactions on any day could be considered to be the
result of one of a continuing series of dependent trials.

5-2 Discrete-state Discrete-transition Markov Processes

If the transition probabilities for a series of dependent trials satisfy the

= P[S;(n) | Se(n — 1)] for alln, 7, a, b, ¢, . . .
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If the state of the system immediately prior to the nth trial is known
th(.e.h.{arkov condition requires that the conditional transition prob:
al.:nhtles describing the nth trial do not depend on any additional past
hfstory of the process. The present state of the system specifies all
historical information relevant to the future behavior of a Markov
process.

We shall not consider processes for which th iti .
tion probabilities e conditional transi-
PSi(n) [ Si(n — 1)}

d.epend on t.hfe 'number of the trial. Thus we may define the state transi-
tion probabilities for a discrete-transition Markov process to be

P = PIS;(n) | Si(n — 1)) 1 <4,5 < m; p;independent of n

Quantity Dij s .the conditional probability that the system will be in
state S; 1mmed‘1ately after the next trial, given that the present state
;).f tth? ;:;rocess is .. We always have 0 < pii < 1, and, because the
15t ol states must be mutually exclusive and collectivel i

f it must also be true that Y exhastive

2p.-,-=1 fori =1,2,83 ..., m
7

rInt xsboft:enf convenient to display these transition probabilities as
members of an m X m transition matriz [p), for which p. i
in the ¢th row and jth column ’ P s the entry

P Pzt Pin
P21 Pa2 Doy

Pm1 Dme * Pmm

[p] =

1 We also define the k-step state transition prob. ility pi;(k),

conditional probability that proe-

ess will be in state S; after exactly

k more trials, given that present } P+ ) [8:m)
state of process is S;

pi;(k)

I

(1 1=7
P:5(0) = 0 2?5] pi(l) = Di;

Consider any integer I, subject to 0 < { < k. We may always write

Pis(k) = PS;(n + k) | Si(n)] = il PSi(n + B)Sa(n + k — 1) | Su(n))

=

which simply notes that the process had to be in some state immediately

4 after the (n + & — {)th trial. From the definition of conditional prob-

ability we have
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P[Si(n + E)S(n + k — 1) | Si(n)]
= P[S:(n + k — 1) | Si(m)] - P[S;(n + k) | S:(n + k& — 1)Si(n)]

For a discrete-state discrete-transition Markov process we may use the
Markov condition on the right-hand side of this equation to obtain

P(Si(n 4+ k) | Se(n + k& — DSi(n)] = PSi(n + k) | So(n + k& — 1)]
P[Si(n + k)Sz(n + k — 1) | Si(n)] = piux(k — Dpa;()

which may be substituted in the above equation for p;;(k) to obtain the

result
m

pi(k) = E pie(k — Dp=(1)
z=1
k=1,2,3...; 0<I1<k; 1<ij<m

This relation is a simple case of the Chapman-Kolmogorov equation, and
it may be used as an alternative definition for the discrete-state
discrete-transition Markov process with constant transition proba-
bilities. This equation need not apply to the more general process
described in Sec. 5-1.

Note that the above relation, with { = 1,

m
pi(k) = Y, pa(k — Dps

z=1
provides a means of calculation of the k-step transition probabilities
which is more efficient than preparing a probability tree for % trials
and then collecting the probabilities of the appropriate events (see
Prob. 5.02).

We consider one example. Suppose that a series of dependent-
coin flips can be described by a model which assigns to any trial con-
ditional probabilities which depend only on the outcome of the previous
trial. In particular, we are told that any flip immediately following an
experimental outcome of a head has probability 0.75 of also resulting
in a head and that any flip immediately following a tail is a fair toss.
Using the most recent outcome as the state description, we have the

two-state Markov process

S, : heads 075 025 0.25

S, tails 050 0.50 0.75 0.50

In the state-transition diagram shown above, we have made a picture of
the process in which the states are circles and the trial transition
probabilities are labeled on the appropriate arrowed branches.
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We may use the relation

Puk) = 3 il — Dp,

=1

ﬁrs.t fork = 2, then for k = 3, etc., to compute the following table (in
which we round off to three significant figures):

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

pulk) 0.750 0.688 0.672 0.668 0.667 0.667 0.667 0.667
k) 0.250 0.312 0.328 0.332 0.333 0. 333 0.333 0.333
pn(k) 0.500 0.625 0.656 0.664 0.666 0.667 0.667 0.667
pu(k) 0.500 0.375 0.344 0.336 0.334 0.333 0.333 0.333

Our table informs us, for instance, that, given the process is in state
Sy at any time, the conditional probability that the process will be in
§tate Ss exactly three trials later is equal to 0.328. In this example
1t appears that the k-step transition probabilities p;;(k) reach a limiting
value as & increases and that these limiting values do not depend on 3.
We shall study this important property of some Markov processes in
the next few sections.

If the probabilities describing each trial had depended on the
results of the previous ¢ flips, the resulting sequence of dependent trials
((;ould. st.ill be 'represented as a Markov process. However, the state
Pizti)r.l;;:ar;.mlght require as many as 2¢ states (for an example, see

It need not be obvious whether or not a particular physical
system can be modeled accurately by a Markov process with a finite
number. of states. Often this turns out to depend on how resourceful
we are In suggesting an appropriate state description for the physical
system.

5-3 State Classification and the Concept of Limiting-state Probabilities

We observed one interesting result from the dependent coin-flip example
near ?he end of Sec. 5-2. As k — «, the k-step state transition prob-
abilities pi;(k) appear to depend neither on k nor on i.

. If we let P{S;(0)] be the probability that the vprocess is in state
8; just before the first trial, we may use the definition of pi;(k) to write

PIS () = 5 PISO)lpu(t)

The quantiti_es. P[8,(0)] are known as the initial conditions for the
process. If it is the case that, as k — «, the quantity p;(k) depends
neither on k nor on 7, then we would conclude from the above equation
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that P[S;(k)] approaches a constant as k — » and this constant is

independent of the initial conditions. . o
Many (but not all) Markov processes do in fact ex.h.xl'nt. this

behavior. For processes for which the limiting-state probabilities

lim P{S;(k)} = P;

k>

exist and are independent of the initial conditions, many si.gniﬁczimt
questions may be answered with remarkable ease. A correct discussion
of this matter requires several definitions. '

State S; is called transient if there exists a state S; and an integer
I such that p;(}) # 0 and p;(k) =0 for k = 0, 1,.2, .... This
simply states that S; is a transient state if there exists any state to
which the system (in some number of trials) can get to from S,: but
from which it can never return to S;. For a Markov process wn',h a
finite number of states, we might expect that, after very many trials,
the probability that the process is in any transient state approaches
zero, no matter what the initial state of the process may have been.

As an example, consider the process shown below,

i=L2 ...,m

<

&

for which we have indicated branches for all state transitions which are
40 have nonzero transition probabilities. States S, and S; are t}'le only
states which the process can leave in some manner such that 1.t may
never return to them; so S, and Ss are the only transient states in this
example. '
State S is called recurrent if, for every state S;, the exz§tence of
an integer r; such that pi;(ry) > 0 implies the existence of an integer ¢
such that p;(r;) > 0. From this definition we note that, no matter
what state history may occur, once the process ente_rs. a recurrent state
it will always be possible, in some number of transntnons,'to return to
that state. [Every state must be either recurrent or transient. In the
above example, states S1, Ss, S4, and Ss are recurrent states. .
The fact that each of two states is recurrent does not necessarily
require that the process can ever get from one of these states to the
other. Onec example of two recurrent states with pi(k) = pu(k) = 0

T

TRANSIENT STATE S;: From at least one state which may be reached

RECURRENT STATE ;! From every state which may be reached even-

PERIODIC STATE S;: A recurrent state for which p;;(k) may be non-

SINGLE CHAIN W: A set of recurrent states with the property that
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for all & is found by considering the pair of states S, and §; in the above
diagram.

Recurrent state S; is called periodic if there exists an integer d,
with d > 1, such that pi(k) is equal to zero for all values of k other
than d, 2d, 3d, . . . . In our example above, recurrent states S; and
Ss are the only periodic states. (For our purposes, there is no reason
to be concerned with periodicity for transient states.)

A set W of recurrent states forms one class (or a single chain) if,
for every pair of recurrent states 'S; and S; of W, there exists an integer
r; such that p;(r;) > 0. Each such set W includes all its possible
members. The members of a class of recurrent states satisfy the con-
dition that it is possible for the system (eventually) to get from any
member state of the class to any other member state. In our example,
there are two single chains of recurrent states. One chain is composed
of states S; and S,, and the other chain includes S; and Ss.  Note that
the definition of a single chain is concerned only with the properties of
the recurrent states of a Markov process.

After informally restating these four definitions for m-state
Markov processes (m < ), we indicate why they are of interest.

eventually from S;, system can never return to S;.

tually from S;, system can eventually return
to S..

zero only for k = d, 2d, 3d, . . .
integer greater than unity.

, with d an

the system can eventually get from any member
state to any other state which is also a member
of the chain. All possible members of each
such chain are included in the chain.

i

For a Markov process with a finite number of states whose recur-
rent states form a single chain and which contains no periodic states, we
might expect that the k-step transition probabilities p;;(k) become inde-
pendent of ¢ and k as k approaches infinity. We might argue that such
a process has “limited memory.” Although successive trials are
strongly dependent, it is hard to see how P[S(k)] should be strongly
influenced by either k or the initial state after a large number of trials.
In any case, it should be clear that, for either of the following processes,
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(5) (5

we would certainly not expect any pi;(k) to become independent of %
and k as k gets very large.

We speculated that, for a Markov process with a ﬁnit:e number' of
states, whose recurrent states form a single chain, and which contains
no periodic states, we might expect that

lim pi;(k) = P;
k—w =1
where P; depends neither onknoroni. In fact this result is est,ab'lished
by a simplified form of the ergodic theorem, which we shall stlats': \'\uthout.
proof in the following section. The P;s, known as t,h.e lumtmg—stfue
probabilities, represent the probabilities that a single—cha.?n process with
no periodic states will be in state S; after very many trials, no matter
what the initial conditions may have been. '
Since our example of the dependent coin flips in the previous
section satisfies these restrictions, the ergodic theorem states, for exam-
ple, that quantity P[Si(n)] = Prob(heads on nth toss) will approach
a constant as n — oo and that this constant will not depend on the
initial state of the process.

5-4 The Ergodic Theorem

process with a finite number of states Sy, Sz, . . ., Sm. If there exisis an

In this section we shall present and discuss a formal st'atement of a
simple form of the ergodic theorem for a discrete-state discrete-transi-
tion Markov process. The ergodic theorem is as follows:

Let M be the matriz of k-step transition probabilities of a Markov

-

T T
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The restriction

min p;(k) =6>0

1<i<m

for at least one column of M, simply requires that there be at least one
state S; and some number k such that it be possible to get to S; from
every state in exactly & transitions. This requirement happens to
correspond to the conditions that the recurrent states of the system
form a single chain and that there be no periodic states..

When the above restriction on the p;;(k) is satisfied for some
value of &, the ergodic theorem states that, asn — o, the n-step transi-
tion probabilities p;;(n) approach the limiting, or “steady-state,” prob-
abilities P;. A formal test of whether this restriction does in fact hold
for a given process requires certain matrix operations not appropriate
to the mathematical background assumed for our discussions. We shall
work with the “single chain, finite number of states, and no periodic
states” restriction as being equivalent to the restriction in the ergodic
theorem. (The single-chain and no-periodic-states restrictions are
necessary conditions for the ergodic theorem; the finite-number-of-
states restriction is not a necessary condition.) For the representative
Markov systems to be considered in this book, we may test for these
properties by direct observation.

5-5 The Analysis of Discrete-state Discrete-transition Markov Processes

We begin this section with a review of some of the things we already
know about discrete-state discrete-transition Markov processes. We
then write the general difference equations which describe the behavior
of the state probabilities, the P(S;(n)]’s, as the process operates over a
number of trials. For processes to which the ergodic theorem applies,
we also consider the solution of these difference equations asn — o to
obtain the limiting-state probabilities. Finally, we note how our
results simplify for the important class of Markov processes known as
birth-and-death processes.

As we did at the beginning of our study of the Poisson process
in Chap. 4, let us make use of an efficient but somewhat improper
notation to suit our purposes. We define

P;(n) = P[S;(n)] = probability process is in state S; immediately after

integer k such that the terms pi;(k) of the matriz My satisfy the relation ot bl

min pyk) =8 >0 From the definition of ;;(n) we may write

1<i<m q

» P;(n) = Y P;(0)p:;(n) Pi(n) =1 forn =0,1,2 ...
for at least one column of My, then the equalities ] J 41‘: 3 2,: j ;
impy(n) =P; j=1,2...,m =12 ...,m; 2 P, =1 | where the P.-(Q)’ 5, t}}e inil{al canditions,'represent the pr'obabilities of
n— @ ’ ; the process being in its various states prior to the first trial. Because
are satisfied. == i
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of the Markov condition, we also have

pi(n) = E paDpeitn — 8  1=0,1,2,...,7n
k

and when the ergodic theorem applies, we know that

lim Pj(n) = P,'

n— oo

i=12...,m

and these limits do not depend on the initial conditions.
One expresses his “state of knowledge” about the state of a
Markov process at any time by specifying the probability state vector

(P(n) ;= | Pin) Po(n) - - Pn(n),

Now we shall write the describing equations for the state proba-
bilities of a Markov process as it continues to undergo trials. There
are cfficient transform and flow-graph techniques for the general solu-
tion of these equations. Here we shall develop only the describin'g
equations and consider their solution as n goes to inﬁnity.. Even this
limited tour will prepare us to study many important practical systems.

The equations of interest will relate the P;(n + 1)’s to the state

probabilities one trial earlier, the Pi(n)’s. Each of the first m - 1
following relations sums the probabilities of the mutually exclusnfe
and collectively exhaustive ways the event S;(n + 1) ean occur, in
terms of the state probabilities immediately after the nth trial. We
start with the appropriate event space,

Sj(n+1)

/S,(ﬂ+l) L4 v
5,(n)
\[Sj(n+1))'0

Py
1<
4
Pz/j S(n+1) v
S,(n)
TS5ty

4

/}/‘Sj(n-"l) ° v
S,(n)
h[sj(nn)]'.
my

.

m — 1 eqs.:

mth eq.: 1
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We collect the probabilities of the events S;(n + 1) for j = 1 (first
equation), for j = 2 (second equation), etc., up through j = m — 1.
Thus, for any discrete-state discrete-transition Markov process

Pn +1) = Pyn)pu + Py(n)pnn 4 - o 0+ Pu(n)pm

Pn +1) = Pyn)pr2 + Pay(n)p2: + o+ Pr(n)pme

Pma(n + 1) = Py(n)prm-n + Po(n)pam—ty + -+ * + Pu()Pmim-n
1=Pi(n+1) +Pn+1) + .-+ +Pan+1)

where the mth equation states the dependence of the P;(n + 1)’s.
Given a set of initial conditions P(0), P:(0), . . . , Pa(0), these
cquations may be solved iteratively for n = 0, 1, 2, etc., to determine
the state probabilities as a function of n. More advanced methods
which allow one to obtain the probability state vector | P(n) in closed
form will not be considered here.

Tor the remainder of this section, we consider only processes
with no periodic states and whose recurrent states form a single chain.
The ergodic theorem applies to such processes; so we may let
lim Pin + 1) = lim Pi(n) = P;

n— o n—w

and, rewriting the above equations for the limit as n — o, we have

0 = Pi(puy — 1) + Papn + - 4 PuDm

0 = Pip1s + Po(paz — 1)+ * + + + Pubm

0 = Pipim—y + Papoim—yy + -+ PPy
=P1+P2++Pm

The solution to these m simultaneous equations determines the limiting-
state probabilities for those processes which meet the restrictions for
the ergodic theorem. Examples of the use of our two sets of simul-
taneous equations are given in the following section. (By writing the
mth equation in the form used above, we avoid certain problems with
this set of simultaneous equations.)

Happily, there is a special and very practical type of Markov
process for which the equations for the limiting-state probabilities may
be solved on sight. We further limit our discussion of single-chain
processes with no periodicities to the case of birth-and-death processes.
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A discrete-state discrete-transition birth-and-death process is a
Markov process whose transition probabilities obey

pi; =0 ifg=¢—1 4 71+1

and for these processes it is advantageous to adopt the birth-and-death
notation

Pici+1) = b: Piti-n = d;

One cxample of a birth-and-death process is

d, d, 3
1-b, b 0 0
d, 1-b-d, b 0
Ip) =
7 d,  1-b,-d, b,
0 0 4y 1-d,

Many practical instances of this type of process are mentifn‘led in the
problems at the end of this chapter. Note that our deﬁmtloz} o'f‘the
birth-and-death process (and the method of solution for the ln.mtmg-
state probabilities to follow) does not include the process pictured

below:

B )

For the given assignment of state
labels, this process will violate
the definition of the birth and
death process if either puor Par
is nonzero

i

We shall now demonstrate one argument for obtaining the

G v v
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limiting-state probabilities for a single-chain birth-and-death process.
We begin by choosing any particular state Sg and noting that, at any
time in the history of a birth-and-death process, the total number of
Sk — Sky41 transitions made so far must either be one less than, equal
to, or one greater than the total number of Sx.1 — Sk transitions made
so far. (Try to trace out a possible state history which violates this
rule.) ‘

Consider the experiment which results if we approach a birth-
and-death process after it has undergone a great many transitions and
our state of knowledge about the process is given by the limiting-state
probabilities. The probability that the first trial after we arrive will
result in an Sg — Sg4; transition is Pgbg; the probability that it will
result in an Sg,; — Sk transition is Pgy s dgy1.

Since, over a long period of time, the fractions of all trials which
have these two outcomes must be equal and we are simply picking a
trial at random, we must have (for a single-chain birth-and-death
process with no ‘periodic states)

Pgbg = Pri1dr41

and thus the limiting-state probabilities may be obtained by finding
all P/s in terms of P, from

P.-+1=P‘b" 1=01,2 ...

dit1

and then solving for P by using ) Pi = 1

t

Another way to derive this result would be to notice that, for a
birth-and-death process, many of the coefficients in the.simultaneous
equations for the P;’s for the more general single-chain Markov process
are equal to zero. The resulting equations may easily be solved by
direct substitution to obtain the solution stated above.

The first paragraph of this section may now serve as a road map
for the above work. Several examples are discussed and solved in
the following section.

5-6 Examples Involving Discrete-transition Markov Processes

example 1 Experience has shown that the general mood of Herman may be
realistically modeled as a three-state Markov process with the mutually
exclusive collectively exhaustive states

81: Cheerful Sz: So-so 8;3: Glum

His mood can change only overnight, and the following transition
probabilities apply to each night’s trial:
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0.6
03
0.0

. 0 ’ 3

03 07

We are told that Herman’s mood today is so-so.

(a) Determine the components of the probability state vector, the
Pi(n)’s, for Herman’s mood for the next few days.

(b) Determine this probability state vector for a day a few months
hence. Is the answer dependent on the initial conditions?

(¢) Determine the PMF for the number of trials until Herman’s mood
undergoes its first change of state.

(d) What is the probability that Herman will become glum before he
becomes cheerful?

We are given | P(0) = (P1(0) P3(0) Ps(0); =0 1 0, and we

may use the original set of difference equations for the P;(n + 1)’s,

Pi(n 4+ 1) = 2 Pi(n)p;;

forj=1,2,...,m—1

first with n = 0, then with n = 1, ete. For instance, with n = 0 we
find

Pi(1) = ¥, Pi0)pir = (0)(0.6) + (1)(0.3) + (0)(0.0) = 0.3
Py(1) = ¥ P0)pe = (0)(0.2) + (1)(0.4) + (0)(0.3) = 04
1 o Py(1) = 0.3

I =YPRM =03 +04  +PuD)
K

And thus we have obtained

P(L), = Py(1) Pa1) Pi(1);=,03 04 03,

Further iterations using the difference equations allow us to generate
the following table:

n=0 n=1 n=2 n=3 n=4 n=5 n=86

Pin) 0.000 0.300 0.300 0.273 0.254 0.243 0.237
Py(n) 1.000 0.400 0.310 0.301 0.303 0.305 0.306
Py(n) 0.000 0.300 0.390 0.426 0.443 0.452  0.457
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All entries have been rounded off to three significant figures. The
difference equations apply to any discrete-state discrete-transition
Markov process.

Since our Markov model for this process has no periodic states and its
recurrent states form a single chain, the limiting-state probabilities
are independent of the initial conditions. (The limiting-state proba-
bilities would depend on the initial conditions if, for instance, we had
P12 = Paz.= P13 = pu = 0.) We shall assume that the limiting-state
probabilities are excellent approximations to what we would get by
carrying out the above table for about 60 more trials (two months).
Thus we wish to solve the simultaneous equations for the limiting-state
probabilities,

0=2P|’pz‘j_Pj ji=12 ...,m—1
1=YP,
7
which, for our example, are
0 = P1(0.6 — 1.0) 4+ P»(0.3) + P3(0.0)

0
1

il

Py(0.2)

P+ P+ P
which may be solved to obtain

P, = 3/13 =~ 0.231 P, = 4/13 = 0.308

+ P,(04 — 1.0) 4+ P:(0.3)

il

P, = 6/13 =~ 0.461

These values seem consistent with the behavior displayed in the above
table. The probability that Herman will be in a glum mood 60 days
hence is very close to 6/13. In fact, for this example, the limiting-
state probabilities are excellent approximations to the actual-state
probabilities 10 or so days hence. Note also that this is not a birth-
and-death process (pis # 0) and, therefore, we may not use the more
rapid method of solution for the P;'s which applies only to birth-and-
death processes.

Given that Herman is still in state S, the conditional probability that
he will undergo a change of state (of mind) at the next transition is
given by 1 — ps2. Thus the PMT for [, the number of (Bernoulli)
trials up to and including his first change of mood, is the geometric
PMI with parameter P equal to 1 — pa..

pillo) = (1 — paa)padde™ = (0.6)(0.4)%1

We would obtain a similar result for the conditional PMT for the
number of trials up to and including the next actual change of state for
any discrete-transition Markov process, given the present state of the
process. For this reason, one may say that such a process is charac-

IO=112,3,-..
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terized by geometric holding times. A similar phenomenon will be dis-
cussed in the introduction to the next section.

Given that Herman’s mood is so-so, the following event space describes
any trial while he is in this state:

@ A transition does occur and he becomes cheerful

P
Py .
@ No transition results from the trial
)
23 @ A transition does occur and he becomes glum

Thus we may calculate that the conditional probability he becomes
glum given that a transition does occur is equal to p2s/ (P21 + Pas).
This is, of course, equal to the probability that he becomes glum before
he becomes cheerful, and its numerical value is 0.3/(0.3 + 0.3) = 0.5.

example 2 Roger Yogi Mantle, an exceptional baseball player who tends to

0.4

have streaks, hit a home run during the first game of this season. Th.e
conditional probability that he will hit at least one homer in a game is
0.4 il he hit at least one homer in the previous game, but it is only 0.2
if he didn’t hit any homers in the previous game. We assume this is a
complete statement of the dependence. Numerical answers are to be
correct within +2%. .
(a) What is the probability that Roger hit at least one home run during
the third game of this season? .
(b) If we are told that he hit a homer during the third game, what is
the probability that he hit at least one during the second game'?
(¢) If we are told that he hit a homer during the ninth game, what is
the probability that he hit at least one during the tenth game?
(d) What is the probability that he will get at least one home run during
the 150th game of this season? .
(e) What is the probability that he will get home runs during both the
150th and 151st games of this season?
(f) What is the probability that he will get home runs during both the
3d and 150th games of this season?
(g) What is the probability that he will get home runs during both the
75th and 150th games of this season?
This situation may be formulated as a two-state Markov process.
A game is type H if Roger hits at least one homer during the game;
otherwise it is type N. For our model, we shall consider the trials to
occur between games.

0.2 08
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For this example we shall not go to an S; description for each state, but
we shall work directly with H and N, using the notation

P(H,) = probability Roger is in state H during nth game

P(N,) = prohability Roger is in state N during nth game

We are given the initial condition P(H;) = 1. We also note that this
is a single-chain process with no periodic states, and it also happens to
be a birth-and-death process.

We wish to determine P(H ;).
tial sample space

One method would be to use the sequen-

Pe)  H

o (] 0.16 4
Hz/
\

N.

. 0.24

o~

. 0.48

to find P(H;) = 0.16 + 0.12 = 0.28. Since the conditional branch
traversal probabilities for the tree of a Markov process depend only on
the most recent node, it is usually more efficient to solve for such state
probabilities as a function of # from the difference equations, which, for
this example, are

P(H,y1) = 0.4P(H,) + 0.2P(N,)
1 = P(Hat1) + P(Nnti)

and which lead, of course, to the same result.
The desired conditional probability is easily calculated from the above
sequential sample space,

P(H,H;) 016 4

PH) 028 7
We have chosen to write P(H, | H;) rather than P(H, | H;H,) because
the event H is given as part of the overall problem statement.
The conditional probability that Roger hits at least one homer in the
10th game, given he hit at least one in the 9th game (and given no
information about later games), is simply p;», which is given to be 0.4
in the problem statement.
If we carry out a few iterations using the difference equations given
after the solution to part (a) we find, working to three significant figures,

=1,2 ...

P(H:| Hs) =
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P(H,) 1.000 0.400 0.280 0.256 0.251 0.250 0.250 0.250
P(Nn) 0.000 0.600 0.720 0.744 0.749 0.750 0.750 0.750

Thus it is conservative to state that, for all practical purposes, his
performances in games separated by more than lq games may be con-
sidered independent events. P(Hs) is just the hmx@g—state proba-
bility Py, which, taking advantage of our method for birth-and-death

processes, is determined by
0.6Py = 0.2Pn Py+ Py =10

resulting in Pu = 0.25, which checks with the result obtained by

iteration above.

e The desired quantity is simply Puprn = 1 1% = 0.1. Notfa that the
strong dependence of results in successive or nearly successive games
must always be considered and that the required answer is certainly
not Puz.

f P(HaHlso) = P(Hs)P(Hxso ‘ Hj) =~ P(Hs)PH = (0-28)('}:) = 0-07'

g Roger’s performances on games this far apart may be considered inde-

pendent events, and we have

P(H75H150) = P(Hy)P(H 5o | His) = P’ = 1/16

* The reader is reminded that these have been two elemen?sary
problems, intended to further our understanding of result‘s obtained
earlier in this chapter. Some more challenging examples will be found

at the end of the chapter. o f
Some questions concerned with random incidence (Sec. 4-11) for

a Markov process, a situation which did not arise here, will be intro-
duced in the examples in Sec. 5-8.

5.7 Discrete-state Continuous-transition Markov Processes

Again we are concerned with a system which may be (%escribed at any
time as being in one of a set of mutually exclusive collect.wely exha.us.tx.ve
discrete states Sy, Sz S35 . .., Sm For a contmqo_us—tmnsm.on
process, the probabilistic rules which describe the transxtlf)n behaYlor
allow changes of state to occur at any instants on a continuous time
axis. If an observer knows the present state of any Markov process,
any other information about the past state history of the process is
irrelevant to his probabilistic description of the future behavior of the

process. b aiven
In this section, we consider Markov processes for which, give

that the present state is S;, the conditional probability that an Si— 8;

Aaaoia
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transition will occur in the next At is given by A\;j At (for j £ ¢ and
suitably small Af), Thus, each incremental At represents a trial whose
outcome may result in a change of state, and the transition probabilities
which describe these trials depend only on the present state of the
system. We shall not allow \;; to be a function of time; this restriction
corresponds to our not allowing p;; to depend on the number of the trial
in our discussion of the discrete-transition Markov process.

We begin our study of these discrete-state continuous-transition
Markov processes by noting some consequences of the above descrip-
tion of the state transition behavior and by making some comparisons
with discrete-transition processes. (All the following statements need
hold only for suitably small At.)

The conditional probability that no change of state will occur
in the next At, given that the process is at present in state S, is

Prob(no change of state in next A¢, given present state is S;)
=1— 3 \; At
i

Although pi: was a meaningful parameter for the discrete-transition
process, a quantity Ay has no similar interpretation in the continuous-
transition process. This is one reason why our equations for the state
probabilities as a function of time will be somewhat different in form
from those describing the state probabilities for the discrete-transition
process. (Ior reasons outside the scope of this text, it is preferable
that we let \;; remain undefined rather than define \;; to be equal to
zero.)

Given that the system is at present in state S;, the probability of
leaving this state in the next At, no matter how long the system has
already been in state S, is equal to

2 Ay Al
J';';v'

and, from our earlier study of the Poisson process, we realize that the
remaining time until the next departure from the present state is an
exponentially distributed random variable with expected value

(JE )\‘.J.)—-x

For this reason, the type of continuous process we have described is
said to have exponential holding times. Surprisingly general physical
systems, many of which do not have exponential holding times, may be
modeled realistically by the resourceful use of such a Markov model.

For the continuous-transition process, we shall again define a
transient state S; to be one from which it is possible for the process
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eventually to get to some other state from which it can never return to
Si. A recurrent state S; is one to which the system can return from
any state which can eventually be reached from S;. No concept of
periodicity is required, and a single class (or chain) of recurrent states
again includes all its possible members and has the property that it is
possible eventually to get from any state which is a member of the class
to any other member state.

A useful compact notation, similar to that used in Sec. 5-5, is
P;(t) = P[S;(t)] = probability process is in state S; at time ¢. P;(¢)
must have the properties

0SPH<1 YP@ =1

We would expect, at least for a process with a finite number of
states, that the probability of the process being in a transient state
goes to zero as t — o, For a recurrent state S; in a single chain with
a finite number of states we might expect

/‘” Pit) dt = o if §; is a recurrent state in a single~-chain process
o ¢ with a finite number of states
since we expect P;({) to approach a nonzero limit as { — .

We shall now develop the equations which describe the behavior
of the state probabilities, the P;({)’s, as the process operates over time
for any m-state continuous-transition Markov process with exponential
holding times. The formulation is very similar to that used earlier for
discrete-transition Markov processes. We shall write m — 1 incre-

mental relations relating P;(¢ + At) to the Pi(t)’s, forj =1,2, . . .,
m — 1. Ourmth equation will be the constraint that  P;(¢ + At) = 1.

7
To express each P;(t + At), we sum the probabilities of all the
mutually exclusive ways that the process could come to be in state S,
at t + At, in terms of the state probabilities at time ¢,

m — 1 eqs.:
Pyt + At) = Py(t) (1 - z Nyj At), + E P;(t)\1 Al
21 i1
Pyt + At) = Po(t) (1 - E Aej At) + E P;(t)\;2 At
L g

%2 =2

...................................

Poy(t + At) = Pn_i(t) (1 - 2 Am—ty; At) + E P;(t)Njem—1y At
j;éﬁ:—l J‘#ﬁ’n—l
mth eq.: 1= Z P;(t + At)
J

On the right-hand side of the zth of the first m — 1 equations,
the first term is the probability of the process being in state S; at time

dP,(t
O~ YR P ¥y
3 7
J#1 Jl
dPq(t)
m — 1 egs.: dzt = ; Pi(t)\j — Py(1) 2 Az
2 =2
L
—Ttl-— = E Pi(l)xi(m—l) - P(m—l)(t) E x(m—-l)j
f?‘f;,l—l j,g"{_l
mth eq.: 1= E P;(t)
7
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f and not undergoing a change of state in the next Az, The second term
is the probability that the process entered state S; from some other
s.tate .during the incremental interval between ¢ and ¢ + Af. We can
simplify these equations by multiplying, collecting terms, dividing
through by A¢, and taking the limit as At — 0 to obtain, for any dis-
crete-state continuous-transition Markov process with exponential
holding times

Each of the first m — 1 equations above relates the rate of
change of a state probability to the probability of being elsewhere (in
the first term) and to the probability of being in that state (in the
secsmd term). The solution of the above set of simultaneous differ-
entlall equations, subject to a given set of initial conditions, would
provide the state probabilities, the Pi(t)’s,fori=1,2, ..., mand
t 2 0. Effective flow-graph and transform techniques for the solution
of these equations exist but are outside the scope of our discussion.
For some simple cases, as in Example 1 in Sec. 5-8, the direct solution
of these equations presents no difficulties.

For the remainder of this section we limit our discussion to
processes whose recurrent states form a single chain. We might expect
for such processes that the effects of the initial conditions vanish as
t— o« and that Pyt + Al) — P;(t) (or (H;#—»O) as t— o, We

define the limiting-state (or steady-state) probabilities by

o

Ar}d we comment without proof that a suitable ergodic theorem does
exist to establish the validity of the above speculations.

To obta.m the eguations for the limiting-state probabilities, we
need only rewrite the simultaneous differential equations for the limit-
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ing case of t— «. There results

T

=

0= Z Pj - P, E Aij If the process has bee.n in

i I operation for a long time,

. : this term, multiplied by =
0=3 P =P 3N Al, is the probability that

i i2

the process will enter Se
from elsewhere in a ran-
domly selected Al

If the process has been in

I

operation for a long time,
this term, multiplied by
At, is the probability that,
in o randomly selected At,

0= E Pi)‘i(M—l) - Pm——l E ?\(m..;),'
] 7

J .
j#Am—1 j#Em—1

=
=
==
=
=
=
===
=
=
=
=
e

the process will leave S
to enter another state. =

Thus, for any Markov process with exponential holding _tirp(?s whoie
b N , )
recurrent states form a single chain, we may obtam.the limiting-state
iliti i i tions.
robabilities by solving these m simultaneous equa ]
’ Again, there exists the important case of blrth-and—de.a_tl} proc
esses for which the equations for the limiting-state probabilities are
solved with particular ease. ‘ )
A continuous birth-and-death process 1s a dlscrete—'state con-
tinuous-transition Markov process which obeys the constraint

Ni =0 fj=i—1, t+1
(Recall that \s has not been defined for continuous-transition proc-

esses.) The parameters of the process may be written in a birth-and-
death notation and interpreted as follows

Masy = bi = average birth rate when process is in state S;

Nig—py = di = average death rate when process IS 1n state S;

Either by direct substitution into the simultar}e().uS equatlor(;s ort:tz
arguing that, when a birth-and-death process is in the stea g se e
(i.e., the limiting-state probabilities apply), the procesSs m;xs be 2
likely, in any randomly selected Al, to undergo a.n.S; — Siy1 tran
as to undergo the corresponding Siv1— S; transition, we obtain
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Pb; = Pipdina

Thus, for a continuous birth-and-death process, the limiting-state proba-
bilities are found from the simple relations
b;

P = - Py
= aa

and Z P;=1
Several examﬁles with solutions are presented in Sec. 5-8. A
wider range of applications is indicated by the set of problems at the

end of this chapter. Example 2 in Sec. 5-8 introduces some elementary
topics from the theory of queues.

5-8 Examples Involving Continuous-transition Processes

example 1 A young brown-and-white rabbit, named Peter, is hopping about
his newly leased two-room apartment. From all available information,
we conclude that with probability ® he wasinroom 1 at¢{ = 0. When-
ever Peter is in room 1, the probability that he will enter room 2 in the
next At is known to be equal to A2 Af. At any time when he is in room
2, the probability that he will enter room 1 in the next At is Agy AL, It
is a bright, sunny day, the wind is 12 mph from the northwest (indoors!),
and the inside temperature is 70°F.

(a) Determine P,(t), the probability that Peter is in room 1 as a fune-
tion of time for { > 0.
(b) If we arrive at a random time with the process in the steady state:
(1) What is the probability the first transition we see will be
Peter entering room 2 from room 1?
(ii) What is the probability of a transition occurring in the first
At after we arrive?
(iii) Determine the PDF f,(xo), where z is defined to be the waiting
time from our arrival until Peter’s next change of room.
(iv) If we observe no transition during the first T units of time
after we arrive, what is then the conditional probability that
Peter is in room 1?
Let state S, represent the event ““Peter is in room n.”"  We have
a two-state Markov process with exponential holding times. We sketch
a transition diagram of the process, labeling the branches with the con-
ditional-transition probabilities for trials in an incremental interval At.

1-X\p,At LSPYAYS I—XEIAI

CEX, D

Mg At

a It happens that, in this example, the recurrent states form a single
chain. However, since we shall solve the general differential equations,
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we are not taking any steps which require this condition.

m — 1 eqs. . Pl(t + At) = Pl(t)(l — A12 At) + Pz(t))ql At

mth eq.: 1 = Pi(t) + Po(1)

and we have the initial conditions [L’—(O_? = P(0) Py(0) =@ 1—0.

i

After collecting terms, dividing both sides of the first equatior.l bX At,
taking the limit as At — 0, and substituting the second equation into

the first equation, we have
dP(t)

dt
which is a first-order linear differential equation which has the complete
solution

Aoy — (O gRet _)\2_1_ t>0
Py(t) = ("’ - XZT—FE) ‘ e+ 7

(For readers unfamiliar with how such an equationissolved, this knowl-

edge is not requisite for any other work in this book.) We sketch

. A2
P.(t) for a case where @ is greater than o

4+ (a1 + M) Pi() = A1 Py0) = @

B(t)
1

Does this steady state solution
seem reasonable? Test

it for the cases N j2=A21,
Ap>> Ngpand A< Ay

Since we do happen to be dealing with a birth-and-death. process
which satisfies the ergodicity condition, we may also obtain the limiting-
state probabilities from

Pi)\21=P1>\12 P1+P2=1

which does yield the same values for the limiting-state probabilities as

those obtained above. o b
bi The first transition we see will be an 8; — S, transition if and only 1

Peter happened to be in room 1 when we arrive. Thus, our answer

and

S
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bii

biii
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is simply
Py = a1y + Ae))?

Note that, although we are equally likely to observe an S; — S, or an
S; — 8, transition in the first At after we arrive at a random time,
it need not follow that the first transition we observe is equally likely
to be either type. Outcomes of trials in successive At’s after we arrive
at a random time are not independent. For instance, if A1» > Ag; and
we arrive at a random instant and wait a very long time without noting
any transitions, the conditional probability that the process is in state
S, approaches unity. We’ll demonstrate this phenomenon in the last
part of this problem.

The probability of a transition in the first At after we arrive is simply

A12ho1
Pz At + P At = 2 ( 22020 ) g
M1z AL + Pay ()\12 T )\21>

which is the sum of the probabilities of the two mutually exclusive
ways Peter may make a transition in this first AZ. The quantity
2M12h21(A 12 4+ A21)”! may be interpreted as the average rate at which
Peter changes rooms. Of course, the two terms added above are equal,
since the average rate at which he is making room 1 — room 2 transi-
tions must equal the average rate at which he makes the only other
possible type of transitions. If Aj2 > Ny, it is true that Peter makes
transitions more frequently when he is in room 1 than he does when
he is in room 2, but the average transition rates over all time come out
equal because he would be in room 1 much less often than he would be
in room 2.

fo(z)) = Pifeys, (0 | 81) + Pafsis,(#a | So).
= —Ml—- —~A112%o L ~As1Zo >
)\12 + )\21 Xue + Xu + )\21 lee To 2 0
= _.._)\_]'.?I\L —~A11Z —~Aa1Zo
—)\12+>\21(e te ) Zo 20

This answer checks out if A;2 = Xgy, and furthermore we note that, if
Az1 3> Az, we are almost certain to find the process in state 1 in the
steady state and to have the PDF until the next transition be

xoZO

and the above answer does exhibit this behavior.

Define event A : “No transition in first T units of time after we arrive.”
We may now sketch a sequential event space for the experiment in
which we arrive at a random time, given the process is in the steady
state.

Az Mo
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sl
%A’o
1

p(A\S2__4 e

%A’.

S,

The quantity P(A | 8)) is the conditional probability that we shall see
no transitions in the first T units of time after we arrive, given that !;he
process is in state S;.  This is simply the probability that the holding
time in S, after we arrive is greater than T.

PUALS) = [ hseodte = enor P(A] 89 =

We wish to obtain the conditional probability that we found the process
in state S, given there were no changes of state in the first 7 units
of time after we arrived at a random instant.
P(SlA) _ )\me‘“’T

P4 = P(A) ~ Ape T 4 NpetaT
This answer checks out for A\y2 = As; and as T — 0. Fur‘thermo.re, if
A21 > Aig, we would expect that, as T' — «, we would pe mf:reasmgly
likely to find the process in its slow transition (long-holding-time) state
and our answer does exhibit this property.

T=>20

example 2 Consider a service facility at which the arrival of customers is a

Poisson process, with an average arrival rate of A customers per hour.
If customers find the facility fully occupied when they arrive, they
enter a queue (a waiting line) and await their turns to be serviced on a
first-come first-served. basis. Once a customer leaves the queue a.nd
enters actual service, the time required by the facility to service him
is an independent experimental value of an exponentially distributed
random variable with an expected value of p~! hours (u > A).

Determine the limiting-state probabilities and the expected valge
for the fotal number of customers at the facility (in the queue and in
service) if -
(a) The facility can service only one customer at a time. .
(b) The facility can service up to an infinite number of customers 1n

parallel. .

We shall study several other aspects of these situations as we

answer the above questions. To begin our solution, we define the event

S,‘ by
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S;: There are a total of ¢ customers at the facility, where ¢ includes
both customers in the queue and those receiving service.

Since the customer arrival rate for either case is independent of the
state of the system, the probability of an S; — Si4, transition in any
incremental interval At is equal tox At.  The probability of completing
a service and having an arrival in the same Atf is a second-order term.
We are told that the service times are independent exponential random
variables with the PDF f.(z;) = pe#% forzo, > 0. Parameter u repre-
sents the maximum possible service rate at this facility. If there were
always at least one customer at the facility, the completion of services
would be a Poisson process with an average service completion rate of u
services per hour. Considering only first-order terms and not bother-
ing with the self-loops, we have the state transition diagram

O O O T

We are concerned with an infinite-state single-chain continuous-birth-
and-death process, with

0
1,2,3,. ..

I

bi=A 1=012...

i

¢={° :
u 7

For the case of interest, x > A, we shall assume that the limiting-state
probabilities exist for this infinite-state process. If the maximumn serv-
ice rate were less than the average arrival rate, we would expect the
length of the line to become infinite. We use the relations

bi g = J—
P;+1-—Ei:l' i 1—0,1,2,... and ZP;-—l

and there follow

2 3
P1=§P0 P2=)—\P1=(>—‘)Po P3=§P¢=(§)Po
[ " 7

P;

]
® >
\-{
~
<
-
3
Il
it
It
IéMK
2N
® >
SN—?
i
I
/\ .:
[
|
" 1>
|
i

Po=1-21
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EG) =Y iP,-=%(1—5)_l b>

- H
i

The expected value of the total number of customers at the facility
when the process is in the steady state, E(7), is obtained above by either
using z transforms or noting the relation of the P/s to the geometric
PMF.

It is interesting to observe, for instance, that, if the average
arrival rate is only 809, of the maximum average service rate, there
will be, on the average, a total of four customers at the facility. When
there are four customers present, three of them will be wazting to enter
service even though the facility is empty 20% of all time. Such is the
price of randomness.

Let’s find the PDF for ¢, the total time (waiting for service and
during service) spent by a randomly selected customer at this single-
channel service facility. Customers arrive randomly, and the proba-
bility any customer will find exactly ¢ other customers already at the
facility is P;. If he finds ¢ other customers there already, a customer
will leave after a total of 7 + 1 independent exponentially distributed
service times are completed. Thus the conditional PDTF for the waiting
time of this customer is an Erlang PDI" (Sec. 4-6) of order ¢ 4 1, and
we have

fe(to) = Equ,-(to | S)P(S:) = zp_ﬂt:Te—'f_ P,

Al

_ i witlgiente A i ] A
o 7! m "

1=0
= (b — Ne &b {4, >0; >\

Thus, the total time any customer spends at the facility, for a process
with independent exponentially distributed interarrival times and serv-
ice times, is also an exponential random variable. The expected time
spent at the facility is then

E@) = (w—N"1  w>N\
and we can check this result by also using our result from Sec. 3-7,

noticing that ¢ is the sum of a random number ¢ + 1 of independent
service times,

E{t) = EG + 1)E(z) = B (1 — 2)_1 + 1]‘1‘ < (e — N

For this part, we consider the case where there are an infinite num-
ber of parallel service stations available at the facility and no cus-
tomer has to wait before entering service. When there are exactly ¢
customers in service at this facility, the probability that any particular
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customer will leave (complete service) in the next Af is w AL, While
there are i customers present, we are concerned with departures repre-
senting services in any of 7 independent such processes and, to the first
order, the probability of one departure'in the next Af is i Af. We
have, again omitting the self-loops in the transition diagram,

b.=N {=01,2... d,~=iﬂ i=01,2...

Usg 'of our simplified procedures for obtaining the limiting-state proba-
bilities for birth-and-death processes proceeds:

b: .
P,'+1=——P" ’L=0,1,2,... EP,'=1

g >A>0

The limiting-state probabilities for this case form a Poisson PMT for
the total number of customers at the facility (all of whom are in service)
?.t arandom time. As one would expect, P, is greater for this case than
In part (a), and all other P/s here are less than the corresponding
quantities for that single-channel ease. For instance, if \/u = 0.8, this
facility is completely idle a fraction

Py = ¢@o = 045

of all. time. This compares with Py = 0.20 for the same A/ u ratio for
the single-channel case in part (a).

example 3 A four-line switchboard services outgoing calls of four subseribers

who never call each other. The durations of all phone calls are inde-
pendent identically distributed exponential random variables with an
expected value of y~L. Tor each subscriber, the interval between the
end of any call and the time he places his next call is an independent
exponential random variable with expected value A1
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Four independent
—2>——— Switchboard with

customers who never N
call each other and —_— capacity of four

participate only in —_— ! input lines
outgoing calls

We shall assume that the system is in the steady state, neglect
the possibility of busy signals, and use the state notation S;: Exactly ¢
of the input lines are active.

(a) Determine the limiting-state probabilities for the number of the
input lines in use at any time.

(b) Given that there are at present three switchboard lines in use, deter-
mine the PDT for the waiting time until the next change of state.

(¢) Determine the expected value of the number of busy input lines.

(d) What is the probability that there are exactly two lines busy at the
switchboard the instants just before the arrivals of both members
of a randomly selected pair of successive outgoing calls?

a Reasoning similar to that used in part (b) of the previous example
leads us to the following observation. Given that there are exactly ¢
input lines in use at the present time, the conditional probability of an
S; — Sit1 transition in the next At is (4 — )X A¢, and the conditional
probability of an S; — S,_, transition in the next Atiszu Af. Neglecting
the self-loops, we have the transition diagram

4rAt 3Nt 2\At AAL
nat 2udt 3udte 4udt
i=0  i=1  i=2 i=3 i=4
b 4\ 3\ 2\ A 0
d, 0 u 2u 3u 4u

This is a single-chain process with no periodicities; so the limiting-state
probabilities will not depend on the initial conditions. IFurthermore,
it is a birth-and-death process; so we may use the special form of the
simultaneous equations for the limiting-state probabilities,

b;

Py = &t
3

Pi i=0,1,234 YPi=1

which result in

A\~ A A\ _ (Y )_\)“4
NE A\ 4 _ 54 2‘_—4
Pa=4<;) (1+;) P4—-(#) (1+#)

-
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As we would expect, if X >> u, Py is very close to unity and, if A & i,
Py is very close to unity.

Given that the system is in state .S;, the probability that it will leave
this state in the next Az is (34 4+ \) At, no matter how long it has been
in S;. Thus, the PDT for ¢, the exponential holding time in this state,
is

filto) = (Bu + Ne=@+Mu 1, >0
Direct substitution of the P/’s obtained in part (a) into
4
(@) = Z P,
i=0

results in
-1
BG) = 4§(1 +5)
u M

and this answer agrees with our intuition for A 3 u and u> A,

This is as involved a problem as one is likely to encounter. Only
the answer and a rough outline of how it may be obtained are given.
The serious reader should be sure that he can supply the missing steps;
the less serious reader may choose to skip this part.

~ AP, 3p A
Answer = (4)\130 T O\, ¥ P, T )xPs) X ()‘ + 3#) X ()\ + Il)

Probability first member of Conditional probability that Conditional probability that
our pair of arrivals becomes next change of state is due to next change of state is due to
3d customer present at completion of a call, given an arrival, given system is
switchboard system is in state Si in state S

We have assumed that the “randomly selected” pair was chosen by
selecting the first member of the pair by means of an equally likely
choice among a large number of incoming calls. If the first member
were to be chosen by selecting the first incoming call to follow a ran-
domly selected instant, we would have a different situation.

PROBLEMS

5.01 For a series of dependent trials, the probability of success on any

trial is given by (k + 1)/(k + 3), where % is the number of successes
in the previous three trials. Define a state description and set of
transition probabilities which allow this process to be described as a
Markov process. Draw the state transition diagram. Try to use the
smallest possible number of states.
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= 5.04 a Identify the transicnt, recurrent, and periodic states of the discrete-
state discrete-transition Markov process described by

o5 0 0 0 05 0 0
03 04 0 0 02 01 O
0 0 06 02 0 02 0
pl={0 © 0 05 0 0 05
03 04 0 0 03 0 O
0 0 04 06 0 0 O
(0 0 0 06 0 0 04]

502 Consider the three-state discrete-transition Markov process

-

b How many chains are formed by the recurrent states of this process?
¢ Evaluate lim pui(n) and lim pes(n).

n— w0 n~—

03

Determine the three-step transition probabilities p1i(3), p12(3),
and pya(3) both from a sequential sample space and by using the equa-

tion pu(n + 1) = ¥, pa(n)pi; in an effective manner.
P

5.05 Yor the Markov process pictured here, the following questions may
be answered by inspection:

503 We are observing and recording the outcomes of dependent flips of
a coin at a distance on a foggy day. The probability that any flip will
have the same outcome as the previous flip is equal to P.  Our observa-
tions of the experimental outcomes are imperfect. In fact, the proba-
bility that we shall properly record the outcome of any trial i§ equal to
F and is independent of all previous or future errors. We use the

notation

h,: We record the observation of the nth trial to be heads.
{,: We record the observation of the nth trial to be tails.

Given that this process is in state So just before the first trial, determine

the probability that:

a The process enters S, for the first time as the result of the Kth trial.

b The process never enters S,.

¢ The process does enter S,, but it also leaves S, on the trial after it
entered S,.

d The process enters S, for the first time on the third trial.

e The process is in state S; immediately after the Nth trial.

I

%
=
% 5.06 Days are either good (), fair (F), or sad (S). Let F,, for instance,
= be the event that the nth day is fair. Assume that the probability of
= having a good, fair, or sad day depends only on the condition of the
; | = previous day as dictated by the conditional probabilities
Actual coin-flipping 5 fmperfect ' Observations of =
uapr:;ess information : coin-flipping = P(Fra| Gn) = 1/3 P(Frt1] Sa) = 3/8 P(Snir| Fa) = 1/6
channel 1 Protess P(Fasi|F) = 2/3  P(Sara| G)) =1/6  P(Sasa|Sn) = 1/2

Can the possible sequences of our observations be modeled as
the state history of a two-state Markov process?

Assume that the process is in the steady state. A good day is worth
$1, a fair day is worth $0, and a sad day is worth —$1.
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a Determine the cxpected value and the variance of the value of a

randomly sclected day.

b Determine the expected value and the variance of the value of a

5.07

random two-day scquence. Compare with the above results, and

comment.

¢ With the process in the steady-state at day zcro, we are told that

the sum value of days 13 and 14 was $0. What is the probability
that day 13 was o fair day?

The outcomes of successive-flips of a particular coin are depfax?dent
and are found to be deseribed fully by the conditional probabilities

Prob(Hust | /1) = 3/4  Prob(Luss | T0) = 2/3

where we have used the notation

Event [1,: Heads on kth toss Fvent 7' Tails on kth toss

We know that the first toss came up heads.‘ . )

a Determine the probability that the first tail will occur on the kth toss
k=2314... o . o

b What is the probability that flip 5,000 w1‘11 come up heads? .

¢ What is the probability that flip 5,000 will come up heads and flip
5,002 will also come up heads?

d Civen that flips 5,001, 5,002, . . ., 5,000 + m all have the samleP
result, what is the probability that all of these m.outcomes are heads?
Simplify your answer as much as possible, and interpret your result
for large values of m. )

e We are told that the 375th head just occurred on the.u'()Oth toiss.
Determine the expected value of the number of additional flips
required until we observe the 379th head.

5.08 In his new job for the city, Joe makes daily measurements of the

level of the Sludge River. His predecessor cstablished that these da\iy
readings can be modeled by a Markov process and that t.here a,rfe on‘y
three possible river depths, zero, one, and two feet. It is also ]\nox;\ n
that the river level never changes more than one fo_ot per day. The
city has compiled the f ollowing transition probabilities:

po = 1/4 P = 1/2 P = 1/4 P = 1/4

Let zx represent Joe's reading of the river depth on his Kth day (:in t’he
job. We are given that the reading on the day before he started was

one foot.
Determine: '
a The probability mass funetion for random variable
b The probability that zs77 7 Zars . ‘ .,
¢ The conditional probability mass function for Toge, given that zy,000 =

'

IR
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d The numerical values of
i lim E(Cayy — a) i im El(@a41 — 22)7

n—> w0 n— o
o 10X
fii im — Z Zi

e The z transform of the probability mass function pp(L,), where
random variable I is the smallest positive integer which satisfies
T 2y

5.09 Mr. Mean Variance has the only key which locks or unlocks the door

to Building 59, the Probability Building. He visits the door once each

hour-on the hour. When he arrives:

If the door is open, he locks it with probability 0.3.

If the door is locked, he unlocks it with probability 0.8.

a After he has been on the job several months, 1s he more likely to
lock the door or to unlock it on a randomly selected visit?

b With the process in the steady state, Joe arrived at Building 59 two
hours ahead of Harry. What is the probability that cach of them
found the door in the same condition?

¢ Given the door was open at the time Mr., Variance was hired, deter-
mine the z transform for the number of visits up to and including
the one on which he unlocked the door himself for the first time.

510 Arrivals of potential customers on the street outside a one-pump gas

station arc noted to be a Poisson process with an average arrival rate
of X cars per hour. Potential customers will come in for gas if there
arc fewer than two cars already at the pump (including the one being
attended to). If there are two cars already at the pump, the potential
customers will go clsewhere.

It is noted that the amount of time required to service any car
is an independent random variable with PDI’

#e—pTa To 2_ 0

Je(To) =} g Ty <'0

a Give a physical interpretation of the constant u.

b Write the differential equations relating the P, (f)'s, where P, (¢) is the
probability of having n cars at the pump at time é. Do not solve the
equations.

¢ Write and solve the cquations for P,, n = 0, 1,2, 3,. . . , where P,
1s the steady-state probability of having a total of n cars at the pump.

d If the cars arrive at the average rate of 20 per hour and the average
service time is two minutes per car, what is the probability that a
potential customer will go elsewhere?  What fraction of the attend-
ant’s time will be spent servicing cars?
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e At the same salary, the owner can provide a more popular, but slower,

attendant. This would raise the average service time to 2.5 mm'u.t,e:
per car but would also inerease A from 20 to 28 cars per hourl; Whic
attendant should he use to maximize his expected profit?  Deter-

ntine the perecent chunge in the number of customers serviced per
hour that would result from changing to the slower attendant.

5.11 At a single service facility, the interarrival times between successive
customers are independent exponentially distributed random variables.
The average customer arrival tate is 10 customers per hour. ‘

When a total of two or fewer customers are present, a smgl.e
attendant operates the facility and the service t,i'me for cach custonfuir ’IS
an exponentinlly distributed random variable with a mean value of two

S' .ya
mmut‘e\\’hcnever there are threc or more customers at the. fuc'tht.yf the
attendant is joined by an assistant. In this case, the service tlmel 12 ar}

exponentially distributed random variable with an expected value o

ohe minute.

Assume the process is in the steady state.

a What fraction of the time are both of them free? . .

b What is the probability that both men are worklmg at Phe f.acxht}
the instant hefore a randomly seleeied customer arrives? Theinstant

fter he arrives?

c ;]':fh of the men is to receive a salary proportional to the expected
value of the amount of time he is actually at work serviemg customers.
The constant of proportionality is the same for both men, and the
«am of their salarics is to be 8100, Determine the salary of each man.

5.12 Only two taxieabs operate from a particular station, The t?lal 'tmm
it takes a taxi to service any customer and r(jturn to the station is an
exponcntially distributed raundom variable with a mean of 1 /.u .1‘101'1'1"5';
Arrivals of potential customers are madeled as a Pox-ssm process F\[\ ld-
average rate of A customers per hour. If any potential cusu:)mer n ?
no taxi at the station at the instant he arrives, he walks to his destina
tion and thus does not become an actual customer. The cabs al\\'aﬂsl
return direetly to the station without picking up new customers,
parts of this problem are independent of staf,ements in other parts. )
a If \ = =, determine (in as simple and lctl:)gxcalha manner 0§ you can

ho average number of customers served per hour. N
b %]:n?g; il}-r?iotntion p = u/A, deleLmine t.he steady-state probability
.t is oxactly one taxi at the station. .
c tIlfm\:'et:?:-ev:ay a hugc number of actual cus.tomers, what fra,nztlonw of
them will report that they arived at an instant when there was
exactly one taxi at the station?

S L

A A S

S T
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d Taxi 4 has been destroyed in a collision with a Go-Kart, and we
note that B is at the station at time ¢ = 0, What are the expected

velue and variance of the time until B leaves the station with his
fourth fare since ¢ = 07

5.13 All ships travel at the same velocity through a wide canal. East-
bound ship arrivals at the canal are a Poisson process with an average
arrival rate Ag ships per day. Westbound ships arrive as an inde-
pendent Poisson process with average arrival rate Aw per day. An
indieator a2t a point in the eanal is always pointing in the direction
of travel of the most recent ship Lo passit. Each ship takes T days to
traverse the canal. Use the notation p = Ag/Aw wherever possible.

a What is the probability that the next ship passing by the indicator
eauses it to change its indicated dircetion?

b What is the probability that an eastbound ship will see no westbound
ships during its castward journey through the canal?

¢ If we begin observing at an arbitrary time, determine the probability
mass function pe(ko), where & is the total number of ships we observe
up to and including the seventh eastbound ship we see.

d If we begin observing at an arbitrary time, determine the probability

density function fi(;), where { is the time until we see our seventh
castbound ship.

e Given that the pointer iz pointing west:
i What is the probability that the next ship to pass it will be
westbound ?

it What is the probability density function for the remazining time
unti} the pointer changes direction?

5.14 A switchboard has two outgoing lines and is concerned only with
servicing the outgoing calls of three customers who never call each
other. When he is not on 2 line, each potential caller generates calls
st a Poisson rate . Call lengths are exponentially distributed, with a
mean call length of 1/u.  If 2 ¢aller finds the switchboard blocked, he
never tries Lo reinstitute that purticalar eall.
a Determine the fraction of time that the switchboard is saturated.

b Determine the fraction of outgoing calls which encounter a saturated
switehboard,

5.15 An illumination system contains R + 3 bulbs, each of which fails

independently and las o life span described by the probability density
funetion

Sillle) = Xe™™e 4, >0

At the time of the third failure, the system is shut down, the dead bulbs
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are replaced, and the system is “restarted.” The down time for the
service operation is a random variable described by the probability
density function '

fe(x0) = uPxee™™ o >0

a Determine the mean and variance of y, the time from t = 0 until
the end of the kth service operation.
b Determine the steady-state probability that all the lights are on.

5.16 Potential customers arrive at the input gate to a facility in a Poisson

manner with average arrival rate \. The facility will hold up to three

customers including the one being serviced. Potential customers who

arrive when the facility is full go elsewhere for service. Service time
is an exponential random variable with mean 1/u. Customers leave

as soon as they are serviced. Qervice for actual customers is on 2

first-come first-served hasis.

a If we select a random pair (see final comment in Sec. 5-8) of sue-
cessive potential customers approaching the facility, what is the proba-
pility that they will eventually emerge as a pair of successive actual
customers?

b If we select a random pair of successive actual customers leaving the
facility, what is the probability that these customers arrived as sue-
cessive pofential customers at the facility input?

¢ Starting at a randomly selected time, what is the probability that
bejore the next actual customer arrives at the inpul gate at least two
customers would be observed leaving via the output gate?

517 Consider a K-state discrete-state Markov system with exponential
holding times. The system is composed of a single chain.

Nij AL = conditional probability that system will enter state S; in the
i next At, given that present state is Si

Other than in part (a) you may use the limiting-state probabilities as

Py, Py, . . . , Px in your answers.

a Write, in a simple form, a set of equations which determine the
steady-state probabilities P, P,...,Px

b Given that the process is at present in state S;, what is the probability
that two transitions from now it will again be in state S;?

¢ What are the expected value and variance of the time the system
spends during any visit to state S;?

d Determine the average rate at which the system makes transitions.

e If we arrive at a random time with the process in the steady state,
determine the probability density function for the time until the next

transition after we arrive.
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f Suppose that the process is a pure birth-and-death process and we
arrive .at a random time. What is the probability that the first
transxtlon‘ we observe will be due to a birth? That both of the first
two transitions we observe will be due to births?

5.18 ﬁn ti'nf(;rmaigon source is always in one of m mutually exclusive
collectively exhaustive states S;, Sy, . . ., S i ’
collectively @ 1, Sa, , Sm. Whenever this source

1 It produces printed messages i ]
ges in a Poisson manner at an ave
of u; messages per hour. . rae rote
2 tl‘he condxtlgnal probability that the source will enter state S; (j = ©)
in the next incremental At is given by A;; Al '
) All messages a‘re.numbered consecutively and filed in a ware-
ouse.a. ".I‘he process is in the steady state and you may assume that
the limiting state probabilities for the source, P,, P
known quantities. U
' Each part of this problem is to be worked separately.
a G;,VGH' th:;t the process has been in state S, for the last three hours
what is the probability that no messages were prod i
what is g produced in the last
b ch;n that the process is not in state Si, what is the probability that
it will enter S, in the next incremental A¢?

c D,etel‘rplne the average rate at which messages are produced.

d What 1s the ‘probabxhty that the source will produce exactly two
messages _durmg any particular visit to state S,7

e If we arrive at a random time to cobserve the process, what is the
probability that we see at least one message generated before we
observe the next state transition of the message source?

f .If we select a fan(lom message from the file in the warehouse, what
g F’he probability that it was produced when the source was in state

2!

g If we.se!ect a pair of consecutive messages at random from the file
what is the Probabxlxty' that the source underwent exactly one changé
of state during the interval between the instants at which these two
messages were produced?

h If we are told that, during the last 10 hours, the source process
underwent exactly eight changes of state and spent
Exactly two hours in state S3
Exactly five hours in state Sy
Exactly three hours in state Sg
determine th§ exact conditional PMF for the number of messages
produced during the last 10 hours.

.y P, are




