
CHAPTER F I V E  

discrete 
state 

Markov 
'ocesses 

The Bernoulli and Poisson processes are defined by probabilistic descrip- 
tions of series of independent trials. The R2arkov process is one type 
of characterization of a series of dependent trials. 

We have emphasized the no-memory properties of the Bernoulli 
and Poisson processes. R/larltov processes do have menlory (events in 
nonoverlapping intervals of time need not be independent), but the 
dependence of future events on past events is of a particularly simple 
nature. 



5-1 Series of Dependent Trials for Discrete-state Processes 

Consider a system which may be described at any time as being in one 
of a set of mutually exclusive collectively exhaustive states Sl, 82, 
. . . , S,. According to a set of probabilistic rules, the system may, 
a t  certain discrete instants of time, undergo changes of state (or state 
transitions). We number the particular instants of time a t  which 
transitions may occur, and we refer to these instants as the first trial, 
the second trial, etc. 

Let Si(n) be the event that the system is in state Si immediately 
after the nth trial. The probability of this event may be written as 
P[Si (n)] .  Each trial in the general process of the type (discrete state, 
disc~ele transition) introduced in the above paragraph may be described 
by transition probabilities of the form 

These transition probabilities specify the probabilities associated with 
each trial, and they are conditional on the entire past history of the 
process. The above quantity, for instance, is the conditional prob- 
ability that the system will be in state S j  immediately after the nth 
trial, given that 'the previous state history of the process is specified by 
the event Sa(n  - l ) S b ( n  - 2)X,(n - 3 )  . . . 

We note some examples of series of dependent trials in discrete- 
state discrete-transition processes. The states might be nonnegative 
integers representing the number of people on a bus, and each bus stop 
might be a probabilistic trial a t  which a change of state may occur. 
Another example is a process in which one of several biased coins is 
flipped for each trial and the selection of the coin for each trial depends 
in some manner on the outcomes of the previous flips. The number of 
items in a warehouse at  the start of each day is one possible state 
desc~iption of an iinventoiy. For this process, the state transition due 
to the total transactions on any day could be considered to be the 
result of one of a continuing series of dependent trials. 

5-2 Discrete-state Discrete-transition Ma rkov Processes 

If the transition probabilities for a series of dependent trials satisfy the 
= 
- - 

Markou condition: 

P[Sj(n) 1 Sa(n  - I)&,(% - 2)S,(n - 3) . . -1 
= P[S j (n )  I S,(n - I)] for all n, j ,  a, b, c ,  . . . E 

the system is said to be a diso-eie-state disc?-ete-transition Markov process. ZESZS 

If the state of the system immediately prior to the nth trial is known, 
the Markov condition requires that the conditional transition prob- 
abilities describing the nth trial do not depend on any additional past 
history of the process. The present state of the system specifies all 
historical information relevant to the future behavior of a i\Iarkov 
process. , 

We shall not consider processes for which the conditional transi- 
tion probabilities 

depend on the number of the trial. Thus we rimy define the state transi- . 
tion probabilities for a discrete-transition Markov process to be 

Quantity p~ is the conditional probability that the system mill be in 
state Sj immediately after the next trial, given that the present state 
of the process is Si. We always have 0 _< pi, $ 1, and, because the 
list of states must be mutually exclusive and collectively exhaustive, 
it must also be true that 

It is often convenient to display these transition probabilities as 
members of an m X 772 transilion matrix [p], for which pij is the entry 
in the,ith row and jth coIumn 

We also define the k-step state transition prob. ility pij@), 

/conditional probability that wroc-\ 
ess will be in state Sj after exactly 

pii(k) = k more trials, given that present ) = PIS,(n + i) 1 Si(n)j  
\state of process is S, - / 

which simply notes that the process had to be in some state immediately 
after the (n + k - l)th trial. From the definition of conditional prob- 
ability we have 



FOYa discrete-state discrete-transition Markov process we may use the 
Marliov condition on the right-hand side of this equation to obtain 

which may be substituted in the above equation for pij(k) to obtain the 
result 

This relation is a simple case of the Chapman-Kolmogorov equation, and 
it may be used as an alternative definition for the discrete-state 
discrete-transition Aiarkov process with constant transition proba- 
bilities. This equation need not apply to the more general process 
described in Sec. 5-1. 

Note that the above relation, with 1 = 1, 

provides a means of calculation of the k-step transition probabilities 
which is more efficient than preparing a probability tree for k trials 
and then collecting the probabilities of the appropriate events (see 
Prob. 5.02). 

We consider one example. Suppose that a series of dependent- 
coin flips can be described by a model which assigns to any trial con- 
ditional probabilities which depend only on the outcome of the previous 
trial. In particular, we are told that any flip immediately following an 
experimental outcome of a head ha5 probability 0.75 of also resulting 
in a head and that any flip immediately following a tail is a fair toss. 
Using the most recent outcome as the state description, we have the 
two-state Markov process 

S,:  tails 

In the state-transition diagram shown above, we have made a picture of 
the process in which the states are circles and the trial transition 
probabilities are labeled on the appropriate arrowed branches. 

We may use the relation 

first for k = 2, then for k = 3, etc., to compute the following table (in 
which we round off to three significant figures) : 

Our table informs us, for instance, that, given the process is in state 
S1a t  any time, the conditional probability that the process will be in 
state S2 exactly three trials later is equal to 0.328. In this example 
it appears that the k-step transition probabilities pij(k) reach a limiting 
value as k increases and that these limiting values do not depend on i. 
We shall study this important property of some Markov processes in 
the next few sections. 

If the probabilities describing each trial had depended on the 
results of the previous C flips, the resulting sequence of dependent trials 
could still be represented as a Markov process. However, the state 
description might require as many as 2C states (for an example, see 
Prob. 5.01). 

It need not be obvious whether or not a particular physical 
system can be modeled accurately by a nfarkov process with a finite 
number of states. Often this turns out to depend on how resourceful 
we are in suggesting an appropriate state description for the physical 
system. 

5-3 State Classification and the Concept of Limiting-state Probabilities 

Weobserved one interesting result from the dependent coin-flip example 
near the end of Sec. 5-2. As k -+ m ,  the k-step state transition prob- 
abilities pij(k) appear to depend neither on k nor on i. 

If we let P[Si(O)] be the probability that the process is in state 
Si just before the first trial, we may use the definition of p&) to write 

P[S,(k)l = $ p[Si(O)lpiJ (k) 
i = l  

The quantities P[Si(O)] are known as the initial conditions for the 
process. If it is the case that, as k --+ m , the quantity pij(k) depends 
neither on k nor on i, then we would conclude from the above equation 



that P[Sj(k)] approaches a constant as k -+ m and this constant is 
independent of the initial conditions. 

Many (but not all) Markov processes do in* fact exhibit this 
behavior. For processes for which the limiting-state probabilities 

exist and are independent of the initial conditions, many significant 
questions may be answered with remarkable ease. A correct discussion 
of this matter requires several definitions. 

State Si is called transient if there exists a state Sjand an integer 
1 such that pij(l) # 0 and pi&) = 0 for k = 0, 1, 2, . . . . This 
simply states that Si is a transient state if there exists any state to 
which the system (in some number of trials) can get to from S, but 
from which it  can never return to St. For a Narkov process with a 
finite number of states, we might expect that, after very many trials, 
the probability that the process is in any transient state approaches 
zero, no matter what the initial state of the process may have been. 

As an example, consider the process shown below, 

for which we have indicated branches for all state transitions which are 
to have nonzero transition probabilities. States S g  and Ss are the only 
states which the process can leave in some manner such that it may 
never return to them; so S2 and S5are the only transient states in this 
example. 

State Si is called recurrent if, for every state Sj, the existence of 
an integer rj such that pij(rj) > 0 implies the existence of an integer ri 
such that pji(ri) > 0. From this definition we note that, no matter 
what state history may occur, once the process enters a recurrent state 
it mill always be possible, in some number of transitions, to return to 
that state. Every state must be either recurrent or transient. I n  the 

above example, states S1,S3,S4,and S6are recurrent states. 
The fact that each of two states is recurrent does not necessarily 

require that the process can ever get from one of these states to the 
other. One example of two recurrent states with p,(k) = pji(k) = 0 

for all k is found by considering the pair of states S1 and S3in the above 
diagram. 

Recurrent state Si is called periodic if there exists an integer d, 
with d > 1, such that pii(k) is equal to zero for all values of k other 
than d, 2d, 3d, . . . . I n  our example above, recurrent states Ssand 
S6are the only periodic states. (For our purposes, there is no reason 
to be concerned with periodicity for transient states.) 

A set W of recurrent states forms one class (or a single chain) if, 
for every pair of recurrent states '8%and Sjof W, there exists an integer 
r;j such that pij(r,) > 0. Each such set W includes all its possible 
members. The members of a class of recurrent states satisfy the con- 
dition that i t  is possible for the system (eventually) to get from any 
member state of the class to any other member state. In our example, 
there are two single chains of recurrent states. One chain is composed 
of states SI and S4, and the other chain includes S3and 8 6 .  Note that  
the definition of a single chain is concerned only with the properties of 
the recurrent states of a Markov process. 

After informally restating these four definitions for m-state 
Markov processes (m < a), we indicate why they are of. interest. 

TRANSIENT STATE Si: From a t  least one state which may be reached 

eventually from Si,system can never return to Si. 
RECURR~NTSTATE 8;: From every state which may be reached even- 

tually from Si, system can eventually return 
to S;. 

PERIODIC STATE 8.:A recurrent state for which p,(k) may be non-

zero only for k = d, 2d, 3d, . . . , with d an 
integer greater than unity. 

SINGLE CHAIN W: A set of recurrent states with the property that 

the system can eventually get from any member 
state to any other state which is also a member 
of the chain. All possible members of each 
such chain are included in the chain. 

For a Markov process with a finite number of states whose recur- 
rent stales form a single chain and which contains no periodic states, we 
might expect that the k-step transition probabilities p&) become inde- 
pendent of i and k as k approaches infinity. We might argue that such 
a process has "limited memory." Although successive trials are 
strongly dependent, i t  is hard to see how P[Si(k)J should be strongly 
influenced by either k or the initial state after a large number of trials. 
I n  any case, i t  should be clear that, for either of the following processes, 



we would certainly not expect any pij(k) to become independent of i 
and k as k gets very large. 

We speculated that, for a Markov process with a finite number of 
states, whose recurrent states form a single chain, and which contains 
no periodic states, we might expect that 

where Pjdepends neither on k nor on i. I n  fact this result is established 
by a simplified form of the ergodic theorem, which we shall state without 
proof in the following section. The Pj's, known as the limiting-state 
probabilities, represent the probabilities that a singlechain process with 
no periodic states will be in state Sjafter very many trials, no matter 
what the initial. conditions may have been. 

Since our example of the dependent coin flips in the previous 
section satisfies these restrictions, the ergodic theorem states, for exam- 
ple, that quantity PISl(n)J = Prob(heads on nth toss) will approach 
a constant as n -+ co and that this constant will not depend on the 
initial state of the process. 

5-4 The Ergodic Theorem 

In  this section we shall present and discuss a formal statement of a 
simple form of the ergodic theorem for a discrete-state discrete-transi- 
tion hIarliov process. The ergodic theorem is as follows: 

Let Mk be the matrix of. k-step transition probabilities of a Mar~lcov 
process with afinite number of states SI,Ss . . . , 8,. If there exists an 

integer k such that !he terms pij(k) of the matrix i l l r  satisfy the relation 

min pij(k) = 6 > 0 
l _ < i l m  

for at least one column of Afk, then the equalities 

. . . ? 1 i = 1 2 ,  . . . , I ;  Z P ,  = 1lirn p,(n) = P, j = 1 
n--+m i 


are satis*fied. 

The restriction 

min pi,@) = 6 > 0 
l_<t<m 

for a t  least one column of Mk simply requires that there be a t  least one 
state & and some number k such that i t  be possible to get to Sj from 
every state in  exactly k trsnsitions. This requirement happens to ' 

correspond to the c.onditions that, the recurre~~t  states of the system 
form :t single chain and that  there be no periodic states.. 

When the above restriction on the pij(k) is satisfied for some 
value of k, the ergodic theorem states that? as n -+ m , the n-step transi- 
tion probabilities pij(n) approach the limiting, or "steady-state," prob-
abilities Pi. A formal test of whether this restriction does in fact hold 
for a given process requires certain matrix operations not appropriate 
to  the mathenlatical background assumed for our discussions. We shall 
work with the "single chain, finite number of states, and no periodic 
states" restriction as being equivalent to the restriction in the ergodic 
theorem. (The single-chain and no-periodic-states restrictions are 
necessary conditions for the ergodic theorem ; the finite-number-of- 
states restriction is not a necessary condition.) For the representative 
34arkov systems to be considered in this book, we may test for these 
properties by direct observation. 

5-5 The Analysis of Discrete-state Discrete-transition Markov Processes 

We begin this section with a review of some of the things we already 
know about discrete-state discrete-transition Markov processes. We 
then write the general difference equations which describe the behavior 
of the state probabilities, the P[Sj(n)l's, as the process operates, over a 
number of trials. For processes to which the ergodic theorem applies, 
we also consider the solution of these difference equations as n -+ to 
obtain the limiting-state probabilities. . Finally, we note how our 
results simplify for the important class of Markov processes known as 
birth-and-death processes. 

As we did a t  the beginning of our study of the Poisson process 
in Chap. 4, let us make use of an efficient but somewhat improper 
notation to suit our purposes. We define 

Pj(n)= P[Sj(n)J = probability process is in state S, immediately after 
nth trial 

From the definition of pij(n) we may write 

where the Pi(O)'s, the initial conditions, represent the probabilities of 
the process being in its various states prior to the first trial. Because 



of the Markov condition, we also have We collect the probabilities of the events Sj(n + 1) for j = 1 (first 
equation), for j = 2 (second equation), etc., up through j = Trt, - 1. 
Thus, for any discrete-state discrete-transition Markov process-and when the ergodic theorem applies, we know that ----

Pl(n + 1) = Pdn)pll + Pdn)pzl + . - . + Prn(n)prnl -
= 
--

P2(n + 1)  = Pl(n)p12 +Pdn)p22 + . , 4- Prn(n)prnz -m - 1 eqs.: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ----
--=-and these limits do not depend on the initial conditions. Pm-1(n + 1) = P~(n)pl(m-l)+ P~(n)p2(.-1) + - . . 4- Prn(n)~m(rn-l), ESSZZ 
One expresses his "state of knowledge" about the state of a mth eq.: 

-
1 = Pl(n + 1) +P2(n + 1) + . - . + Pm(n 4- 1)

hlarlcov process a t  any time by specifying the probability state vector ====--=szz 
where the lath equation states the dependence of the Pj(n + 1)'s.

Now we shall write the describing equations for the state proba- Given a set of initial conditions P1(0), P2(0), . . . , Pm(0), these 
bilities of a JIartov process as it continues to undergo trials. There 

equations may be solved iteratively for n = 0, 1,2, etc., to determine 
are efficienttransform and flow-graph techniques for the general solu- the state probabilities as a function of n. 3Iore advanced methods
tion of these equations. Here we shall develop only the describing which allow one to obtain the probability state vector IP(n) I in closed
equations and consider their solution as n goes to infinity. Even this form will not be considered here. 
limited tour will prepare us to study many important practical systems. For the remainder of this section, we consider only processes

The equations of interest will relate the P,(n + 1)'s to the state with no periodic states and whose recurrent states form a single chain. 
I
probabilities one trial earlier, t,he Pi(n) '~ .  Each of the first m - 1 Thc  ergodic theorem applies to such processes; so we may let 

following relat>ionssums the probabilities of the mutually exclusive 
and collectively exhaustive ways the event Sj(n + 1) can occur, in lim Pi(n + 1) = lim Pj(n) = Pi 

n--+m n+ mterms of the state probabilities immediately after the nth trial. We 
start with the appropriate event space, and, rewriting the above equations for the limit as n -+ m ,  we have 

The solution to these nz simultaneous equations detcrn~inesthe limiting- , 

state probabilities for those processes which meet the restrictions for 
the ergodic theorem. Examples of the use of our two sets of simul-
taneous equat,ions are given in the following section. (By writing the 
mth equation in the form used above, we avoid certain problems with 
this set of simultaneous equations.) 

Happily, there is a special and very practical type of Narkov 
process for which the equations for the limiting-state probabilities nmy 
be solved on sight. We further limit our discussion of singlc-chain 
processes with no periodicities 'to the case of birth-and-death processes. 



limiting-state probabilities for a single-chain birth-and-death process.
A discrete-state discrete-transition birth-and-death process is a We begin by choosing any particular state SKand noting that, a t  any 

.\larl;ov process whose t,ransition probabilities obey time in the history of a birth-anddeath process, the total number of 
SK4 SK+Itransitions made so far must either be one' less than, equal 
to, or one greater than the total number of S K + ~--+ SKtransitions made 

2nd for these processes i t  is advantageous to adopt the birth-anddeath so far. (Try to trace out a possible state history which violates this 
notation rule.) 

Consider the experiment which results if we approach a birth- 
pi(i+l) = bi pi(i-I) = di and-death process after i t  has undergone a great many. transitions and 
Onc cxanlple of a birth-and-death process is our state of knowledge about the process is given by the limiting-state 

probabilities. The probability that the first trial after we arrive will 
result in an SK--+ S K + ~  the probability that i t  will transition is P K b ~ ;  
result in an S K + ~  SR transition is PR+l dR+l. -+ 

Since, over a long period of time, the fractions of all trials which 
have these two outcomes must be equal and we are simply picking a 
trial a t  random, we must have (for a single-chain birth-and-death 
process with no 'periodic states) 

and thus the limiting-state probabilities may be obtained by finding 
all Pi's in terms of Pofrom 

and then solving for Po by using 2Pi = 1 
.\[any practical irlrt~ances of this dype of process are mentioned in the 
problenls a t  the cud of this chapter. So te  that our definition of the Another way to derive this result would be to notice that, for a 

birth-and-death process (and the method of solution for the limiting- birth-anddeath process, many of the coefficients in the. simultaneous 

state prob:tbilities to follow) does not include the process pictured equations for the Pi's for the more general single-chain Alarkov process 

below : are equal to zero. The resulting equations may easily be solved by 
direct substitution to obtain the solution stated above. 

The first paragraph of this sectionmay now serve as a road map 
for the above work. Several examples are discussed and solved in 
the following section. 

For the given assignment of state 
labels. this process will violate 5-6 Examples Involving Discrete-transition Markov Processes 
the definition of the birth and 
death process if  either PISor Pat example 1 Experience has shown that the general mood of Herman may be 
is nonzero 

realistically modeled as a three-state Alarkov process with the muturtlly 
exclusive collectively exhaustive states 

S1:Cheerful St: SO-SO S3:Glum u. His mood can change only overnight, and the following transition 
probabilities apply to each night's trial: 

\Yv sli:~llnow demonstrate one argument for obtaining the 



All entries have been rounded off to three significant figures. The 
difference equations apply to any discrete-state discrete-transition 
RIarkov process. . 

b Since our Markov model for this process has no periodic states and its 
recurrent states form a single chain, the limiting-state probabilities 
are independent of the initial conditions. (The limiting-state proba- 
bilities would depend on the initial conditions if, for instance, we had 
p12 = p32. = p13 = p31 = 0.) We shall assume that the limiting-state 
probabilities are excellent approximations to what we would get by 

We are told that Herman's mood today is so-so. 
(a) Determine the components of the probability state vector, the 

Pi(n)'s, for Herman's mood for the next few days. 

carrying out the above table for about 60 more trials (two months). 
Thus we wish to solve the simultaneous equations for the limiting-state 
probabilities, 

(b) Determine this probability state vector for a day a few months 
hence. Is the answer dependent on the initial conditions? 

(c) Determine the PMF for the number of trials until Herman's mood 
undergoes its first change of state. 

(d) What is the probability that Herman will become glum before he 
becomes cheerful? 

which, for our example, are 

a We are given ,P(O), = /P1(0) P2(0) P3(0) ,= , 0  1 0 , )  and we 

may use the original set of difference equations for the Pj(n + l)'s, 

which may be solved to obtain 

first with n = 0, then with n = 1, etc. For instance, with n = 0 we These values seem consistent with the behavior displayed in the above 
find table. The probability that Merman will be in a glum mood 60 days 

hence is very close to 6/13. In  fact, for this example, the limiting- 
state probabilities are excellent approximations to the actual-state 
probabilities 10 or so days hence. Note also that this is not a birth-
and-death process (prs # 0) and, therefore, we may not use the more 
rapid method of solution for the Pj's which applies only to birth-and- 
death processes. 

And thus we have obtained 
c Given that Herman is still in state St, the conditional probability that 

he will undergo a change of state (of mind) a t  the next transition is 

I P(1) P1(l) P2(l) Pa(1) 1 = 0.3 0.4 0.3j 

Further iterations using the difference equations allow us to generate 
the following table: 

given by 1 - p22. Thus the PMF for 1, the number of (Bernoulli) 
trials up to and including his first change of mood, is the geometric 
PNI '  with parameter P equal to 1 - p22. 

We would obtain n similar result for the conditional PMF for the 
number of trials up to and including the next actual change of state for 
m y  discrete-transition Alarliov process, given the present state of the 
process. For this reason, one may say that such a process is charac-



terized by geometric holding tinzes. A similar phenomenon will be dis- 
cussed in the introduction to the next section. 

d Given that Herman's mood is so-so, the following event space describes 
any trial while he is in this state: 

QD,/ 
A transition does occur and he becomes cheerful 

e e No transition results from the trial 

A A transition doer a r u r  and he becomes glum 

Thus we may calculate that the conditional probability he becomes 
glum given that a transition does occur is equal to p!23/(p21 -4- ~23). 
This is, of course, equal to the probability that he becomes glum before 
he becomes cheerful, and its numerical value is 0.3/(0.3 + 0.3) = 0.5. 

example 2 Roger Yogi hfantle, an exceptional baseball player who tends to 
have streaks, hit a home run during the first game of this season. The 
conditional probability that he will hit a t  least one homer in a game is 
0.4 if he hit a t  least one homer in the previous game, but it is only 0.2 
if he didn't hit any homers in the previous game. We assume this is a 
complete statement of the dependence. Numerical answers are to be 
correct within 4 2 %. 
(a) What is the probability that Roger hit a t  least one home run during 

the third game of this season? 
(b) If we are told that he hit a homer during the third game, what is 

the probability that he hit a t  least one during the second game? 
(c) If we are told that he hit a homer during the ninth game, what is 

the probability that he hit a t  least one during the tenth game? 
(d) What is the probability that he will get a t  least one home run during 

the 150th game of this season? 
(e) What is the probability that he will get home runs during both the 

150th and 151st games of this season? 
(f) What is the probability that he will get home runs during both the 

3d and 150th games of this season? 
(g) What is the probability that he will get home runs during both the 

75th and 150th games of this season? 
This situation may be formulated as a two-state Markov process. 

A game is type H if Roger hits a t  least one homer during the game; 
otherwise it is type N. For our model, we shall consider the trials to 
occur between games. 

For this example we shall not go to an 8, description for each state, but 
we shall work directly with H and N, using the notation 

P(Hn) = probability Roger is in state H during nth game 

P(Nn) = probability Roger is in state N during nth game 

We are given the initial condition P(H1) = 1. We also note that this 
is a single-chain process with no periodic states, and i t  also happens to 
be a birth-anddeath process. 

a We wish t o  determine P(H3). One method would be to use the sequen- 
tial sample space 

P ( * )  4 - - 

to find P(H3) = 0.16 + 0.12 = 0.28. Since the conditional branch 
traversal probabilities for the tree of a Markov process depend only on 
the most recent node, i t  is usually more efficient to solve for such state 
probabilities as a function of n from ths difference equations, which, for 
this example, are 

and which lead, of course, to the same result. 
b The desired conditional probability is easily calculated from the above 

sequential sample space, 

We have chosen to write P(H2 ( H3) rather than P(H2 I H3HI) because 
the event H I  is given as part of the overall problem statement. 

c The conditional probability that Roger hits a t  least one homer in the 
10th game, given he hit a t  least one in the 9th game (and given no 
information about later games), is simply p w ~ ,  which is given to be 0.4 
in the problem statement. 

d If we carry out a few iterations using the difference equations given 
after the solution to part (a) we find, working to three significant figures, 



Thus it is conservative to state that, for all practical purposes, his 
performances in games separated by more than 10 games may be con- 
sidered independent events. P(HISO) is just the limiting-state proba- 
bility pH,  which, taking advantage of our method for birth-and-death 
processes, is determined by 

resulting in PH = 0.25, which checks with the result obtained by 
iteration above. 

Note that the e The desired quantity is simply P1{pIr,= a - & = 0.1. 
strong dependence of results in successive or nearly successive games 
must always be considered and that the required answer is certainly 
not P H ~ .  

f P(H3Ni50)= P(H3)P(IJI5o I H3) % P ( H ~ ) P H= (0.28)(*) = 0.07 
g Roger's performances on games this far apart may be considered inde- 

pendent events, and we have 

' The reader is reminded that these have been two elementary 
problems, intended to further our understanding of results obtained 
earlier in this chapter. Some more challenging examples will be found 
at  the end of the chapter. 

Some questions concerned with random incidence (Sec. 4-11) for 
a Markov process, a situation which did not arise here, will be intro- 
duced in the examples in Sec. 5-8. 

5-7 Discrete-state Continuous-transition Markov Processes 

Again we are concerned with a system which may be described a t  any 
time as being in one of a set of mutually exclusive collectively exhaustive 
discrete states S1, S2, S3, . . . , Sn. For a continuous-transition 
process, the probabilistic rules which describe the transition behavior 
allow changes of state to occur a t  any instants on a continuous time 
axis. If an observer knows the present state of any Markov process, 
any other information about the past state history of the process is 
irrelevant to his probabilistic description of the future behavior of the 
process. 

I n  this section, we consider Markov processes for which, given 
that the present state is Si, the conditional probability that an Si -* Sj 

transition will occur in the next At is given by Xu At (for j # i and 
suitably small At). Thus, each incremental At represents a trial whose 
outcome may result in a change of state, and the transition probabilities 
which describe these trials depend only on the present state of the 
system. W e  shall not allow Xij to be a function of time; this restriction 
corresponds to our not allowing pij to depend on the number of the trial 
in our discussion of the discrete-transition Aflarkov process. 

We begin our study of these discrete-state continuous-transition 
Markov processes by noting some consequences of the above descrip- 

, . 

tion of the state transition behavior and by making some comparisons 
with discrete-transition processes. (All the following statements need 
hold only for suitably small At.) 

The conditional probability that no change of state will occur 
in the next At,  given that the process is a t  present in state Si, is 

I'rob(no change of state in next At, given present state is Si) 
= 1 - 2 x,at 

I 
i#i 

Although pii was a meaningful parameter for the discrete-transition 
process, a quantity Xii  has no similar interpretation in the continuous- 
transition process. This is one reason why our equations for the state 
probabilities as a function of time will be somewhat different in form 
from those describing the state probabilities for the discrete-transition 
process. (For reasons outside the scope of this text, i t  is preferable 
that we let Xii  remain undefined rather than define hi, to be equal to 
zero.) 

Given that the system is a t  present in state Si, the probability of 
leaving this state in the next At, no matter how long the system has 
already been in state Si, is equal to 

1hij At 
i 

if i 

and, from our earlier study of the Poisson process, we realize that the 
remaining time until the next departure from the present state is an 
exponentially distributed random variable with expected value 

(C ~ij1-l 
j

jt'i 

For this reason, the type of continuous process we have described is 
said to have exponential holding times. Surprisingly general physical 
systems, many of which do not have exponential holding times, may be 
modeled realistically by the resourceful use of such a Markov model. 

For the continuous-transition process, we shall again define a 
transient state Si to be onefrom which it  is possible for the process 



eventually to get to some other state from which i t  can never return to 
Si. A recurrent state Si is one to which the system can return from 
any state which can eventually be reached from S;. No concept of 
periodicity is required, and a single class (or chain) of recurrent states 
again includes all its possible members and has the property that i t  is 
possible eventually to get from any state which is a member of the class 
to any other member state. 

A useful compact notation, similar to that used in Sec. 5-5, is 
Pj(t) = P[S,(t)] = probability process is in state Sj at  time t. Pj(t) 
must have the properties 

We would expect, a t  least for a process with a finite number of 
states, that the probability of the process being in a transient state 
goes to zero as t -+ m. For a recurrent state S; in a single chain with 
a finite number of states we might expect 

if Si is a recurrent state in a single-chain process 1: Pi(t) dt = m with a finite number of states 

since we expect Pi(t) to  approach a nonzero limit as t -+a. 
We shall now develop the equations which describe the behavior 

of the state probabilities, the Pi(t)'s, as the process operates over time 
for any m-state continuous-transition 3Iarkov process with exponential 
holding times. The formulation is very similar to that used earlier for 
discrete-transition JIarkov processes. We shall write nz - 1 incre-
mental relations relating Pj(t + At) to the P;(t)'s, for j = 1, 2, . . . ,  
11% - 1. Our ?nth equation will be the constraint that 2P,(t + At) = 1. 

i 


To express each Pj(t + At), we sum the probabilities of all the 
mutually exclusive mays that the process could come to be in state Sj 
at t + At, in terms of the state probabilities a t  time 1, 

m - 1 eqs. : 

mth eq.: 1 = P,(t + At) 
j 


On the right-hand side of the ith of the first w - 1 equations, 
the first term is the probnhi1it.y of the process being in state Si at  time 

t a i d  not undergoing a change of state in the next At. The second term 
is the probability that the process entered state Si from some other 
state during the incremental interval between t and t + At. We can 
simplify these equations by multiplying, collecting terms, dividing 
through by At, and taking the limit as At --+ 0 to obtain, for any dis-
crete-state continuous-transition Markov process with exponential 
holding times 

m - 1 eqs. : 

mth eq.: 

Each of the first nz - 1 equations above relates the rate of 
change of a state probability to the probability of being elsewhere (in 
the first term) and to the probability of being in that state (in the 
second term). The solution of the above set of simultaneous differ- 
ential equations, subject to a given set of initial conditions, would 
provide the state probabilities, the Pi(t) '~,  for i = 1, 2, . . . . m and 
t > 0. Effective flow-graph and transform techniques for the solution 
of these equations exist but are outside the scope of our discussion. 
For some simple cases, as in Example 1 in See. 5-8, the direct solution 
of these equations presents no difficulties. 

For the remainder of this section we limit our discussion to  
processes whose recurrent states form a single chain. We might expect 
for such processes that the effects of the initial conditions vanish as 

t - +  and that Pi(t + At) -+ Pi(t) (or -df'idt(t) - 0 ) a s t - 6 .  w e  

define the limiting-state (or steady-state) probabilities by 

And we comment without proof that a suitable ergodic theorem does 
exist to establish the validity of the above speculations. 

To obtain the equations for the limiting-state probabilities, we 
need only rewrite the simultaneous differential equations for the limit- 
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ing case of t --+ . There results 

If the process has been in 
i operation for a long time, 

j i .  1 
this term, multiplied by 

0 = 2 pjhJ2 - P2 C X z j  At, is the probability that 1
3 

j# 2 j2 2 the process will enter Sz 
from elsewhere in a ran- 

. . . . . . . . . . . . . . . . .  domly selected At. 


l 1 f  the process has been in 

0 = P j j  - P A m operation for a long time, 
i 

j ~ m - 1  
s' 

jf m-1 this term, multiplied by 
At, is the probability that, 
in a randomly selected At, 
the process will leave S2 

to enter another state. 

Thus, for any Markov process with exponential holding times whose 
recurrent states form a single chain, we may obtain the limiting-state 
probabilities by solving these m simultaneous equations. 

Again, ' there exists the important case of birth-and-death proc- 
esses for which the equations for the limiting-state probabilities are 
solved with particular ease. 

A continuous birth-and-death process is a discrete-state con-
tinuous-transition hIarkov process which obeys the constraint 

(Recall that Xi i  has not 'been defined for continuous-transition proc-
esses.) The parameters of the process may be written in a. birth-and-
death notation and interpreted as follows 

hi(i+s = bi = average birth rate when process is in state Si 
hiri-l, = di = average death rate when process is in state Si 

Either by direct substitution into the simultaneous equations or by 
arguing that, when a birth-and-death process is in the steady state 
(i.e., the limiting-state probabilities apply), the process must be as 
likely, in any randomly selected At, to undergo an Si -t &+I transition 
as to undergo the corresponding Si+,-+Si transition, we obtain 

Thus, for a continuous birth-and-death process, the limiting-state proba- 
bilities are found from the simple relations 

Several examples with solutions are presented in Sec. 5-8. A 
wider range of applications is indicated by the set of problems a t  the 
end of this chapter. Example 2 in Sec. 5-8 introduces some elementary 
topics from the theory of queues. 

5-8 Examples Involving Continuous-transition Processes 

example 1 A young brown-and-white rabbit, named Peter, is hopping about 
his newly leased two-room apartment. From all available information, 
we conclude that with probability 6he was in room 1 at  t = 0. When-
ever.Peter is in room 1, the probability that he will enter room 2 in the 
next At is known to be equaI to X12 At. At any time when he is in room 
2, the probability that he will enter room 1 in the next At is A21  At. It 
is a bright, sunny day, the wind is 12 mph from the northwest (indoors!), 
and the inside temperature is 70°F. 
(a) Determine Pl(t), the probability that Peter is in room 1 as a func- 

tion of time for t 2 0. 
(b) If we arrive at  a random time with the process in the steady state: 

(i) What is the probability the first transition we see will be 
Peter entering room 2 from room l? 

(ii) What is the probability of a transition occurring in the first 
At after we arrive? 

(iii) Determine the PDFf,(xo), where x is defined to be the waiting 
time from our arrival until Peter's next change of room. 

(iv) If we observe no transition during the first T.units of time 
after we arrive, what is then the conditional probability that 
Peter is in room I'? 

Let state S, represent the event "Peter is in room n." We have 
a two-state AIarliov process with exponential holding times. We sketch 
a transition diagram of the process, labeling the branches with the con- 
ditional-transition probabilities for trials in an incremental interval At. 

a I t  happens that, in this example, the recurrent states form a single 
chain. However, since we shall solve the general differential equations, 



we are not taking any steps which require this condition. 

m - 1 eqs. : P1(t + At) = ~ l ( t ) ( 1  - Xu At) + Pn(t)A21 At 

?nth eq. : 1 = PI@) 4- P2(t) 

and we have the initial conditions P(0) = PI(O) P2(0) = cP 1-6. 
u 1-J - 

After collecting terms, dividing both sides of the first equation by At, 
taking the limit as At -t 0, and substituting the second equation into 
the first equation, we' have 

which is a first-order linear differential equation which has the complete 
solution 

(For readers unfamiliar with how such an equation is solved, this knowl- 
edge is not requisite for any other work in , this book.) We sketch 

A21 
Pl(t) for a case where @ is greater than 

A12 + A21 

Since we do happen to be dealing with a birth-and-death process 
which satisfies the ergodicity condition, we may also obtain the limiting- 
state probabilities from 

P2Xzl = Plh12 and P1 + P2 = 1 

which does yield the same values for the limiting-state probabilities as 
those obtained above. 

bi The first transition we see will be an S1 -+ S2 transition if and only if 
Peter happened to be in room 1 when we arrive. Thus, our answer 

is simply 

Note that, although we are equally likely to observe an 81 -+ S 2  or an 
S2 -+ Sl  transition in the first At after we arrive at  a random time, 
it need not follow that the first transition we observe is equally likely 
to be either type. Outcomes of trials in successive At's after we arrive 
at  a random time are not independent. For instance, if X12 > Asl and 
we arrive at a random instant and wait a very long time without noting 
any transitions, the conditional probability that the process is in state 
8 2  approaches unity, We'll demonstrate this phenomenon in the last 
part of this problem. 

bii The probability of a transition in the first At after we arrive is simply 

which is the sum of the probabilities of the two mutually exclusive 
ways Peter may make a transition in this first At. The quantity 
2A12Xzl(X12 + X21)-1 may be interpreted as the average rate a t  which 
Peter changes rooms. Of course, the two terms added above are equal, 
since the average rate at  which he is making room 1 -+ room 2 transi- 
tions must equal the average rate a t  which he makes the only other 
possible type of transitions. If X12 > X21, it is true that Peter makes 
transitions more frequently when he is in room 1 than he does when 
he is in room 2, but the average transition rates over all time come out 
equal because he would be in room 1 much less often than he would be 
in room 2. 

This answer checks out if Ale = X21, and furthermore we note that, if 
X I I  >> X 12, we are almost certain to find the process in state 1, in the 
steady state and to have the PDF until the next transition be 

and the above answer does exhibit this behavior. 
biv Define event A :  "No transition in first T units of time after we arrive." 

We may now sketch a sequential event space for the experiment in 
which we arrive at a random time, given the process is in the steady 
state. 
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The quantity P(A I S1) is the conditional probability that we shall see 
no transitions in the first T units of time after we arrive, given that the 
process is in state S1. This is simply the probability that the holding 
time in S1after we arrive is greater than T. 

We wish to obtain the conditional probability that we found the process 
in state S1, given there were no changes of state in the first T units 
of time after we arrived a t  a random instant. 

This answer checks out for X12 = hzl  and as T -+0. Furthermore, if 
A 2 1  >> X12, we would expect that, as T --+ a,we mould be increasingly 
likely to find the process in its slow transition (long-holding-time) state 
and our answer does^ exhibit this property. 

example 2 Consider a service facility a t  which the arrival of customers is a 
Poisson process, with an average arrival rate of h customers per hour. 
If customers find the facility fully occupied when they arrive, they 
enter a queue (a waiting line) and await their turns to be serviced on a 
first-come first-served. basis. Once a customer leaves the queue and 
enters actual service, the time required by the facility to service him 
is an independent experimental value of an exponentially distributed 
random variable with an expected value of p-I hours (p > A). 

Determine the limiting-state probabilities and the expected value 
for the total number of customers a t  the facility (in the queue and in 
service) if 
(a) The facility can service only one customer a t  a time. 
(b) The facility can service up to an infinite number of customers in 

parallel. 
We shall study several other aspects of these situations as we 

answer the above questions. To begin our solution, we define the event 
Si by 

Si:There are a total of i customers a t  the facility, where i includes 
both customers in the queue and those receiving service. 

Since the customer arrival rate for either case is independent of the 
state of the system, the probability of an Si4 Si+l transition in any 
incremental interval At is equal to X At. The probability of completing 
a service and having an arrival in the same At is a second-order term. 

a We are told that the servic,e times are independent exponential random 
variables with the PDFf,(xo) = pe-rZo for xo > 0. Parameter p repre-
sents the maximum possible service rate a t  this facility. If there were 
always at least one customer at the facility, the completion of services 
would be a Poisson process with an'average service completion rate of p 

services per hour. Considering only first-order terms and not bother- 
ing wit,h the self-loops, we have the state transition diagram 

hAt XAt XAt 

etc. 

We are concerned with an infinite-state single-chain continuous-birth- 
and-death process, with 

For the case of interest, p > A, we shall assume that the limiting-state 
probabilities exist for this infinite-state process. I f  the maximum sew- 
jce.rate were less than the average arrival rate, we would expect the 
length of the line to become infinite. We use the relations 

biPi+l = -Pi i = 0 1 2  . . . and 2 Pi= 1&+I 
i 

and there follow 



T,he expected value of the total number of customers a t  the facility 
when the process is in the steady state, E(i), is obtained above by either 
using z transforms or noting the relation of the Pi's to the geometric 
PMF. 

I t  is interesting to observe, for instance, that, if the average 
arrival rate is only 80% of the inaximum average service rate, there 
will be, on the average, a total of four customers a t  the facility. When 
there are four customers present, three of them will be waiting to enter 
service even though the facility is empty 20 % of all time. Such is the 
price of randomness. 

Let's find t hePDF  for t, the total time (waiting for service and 
during service) spent by a randomly selected customer at  this single- 
channel service facility. Customers arrive randomly, and the proba- 
bility any customer will find exactly i other customers already a t  the 
facility is Pi. If he finds i other ctistomers there already, a customer 
will leave after a total of i + 1 independent exponentially distributed 
service times are completed. Thus the conditional PDF for the waiting 
time of this customer is an Erlang PDI? (See. 4-6) of order i + 1, and 
we have 

Thus, the total time any customer spends a t  the facility, for a process 
with independent exponentially distributed interarrival times and serv- 
ice times, is also an exponential random variable. The expected time 
spent a t  the facility is then 

and we can check this result by also using our result from Sec. 3-7, 
noticing that t is the sum of a random number i + 1 of independent 
service times, 

E(t) = E(i  + l)E(x) = 

b For this part, we consider the case where there are an infinite nuni- 
ber of parallel service stations available a t  the facility and no cus- 
tomer has to wait before entering service. When there are exactly i 
custoniers in service at  this facility, the probability that any particular 

customer will leave (complete service) in the next At is p At. While 
there are i customers present, we are concerned with departures repre- 
senting services in any of i independent such processes and, to the first 
order, the probability of one departure'in the next At is ip At. We 
have, again omitting the self-loops in the transition diagram, 

etc. 

Use of our simplified procedures for obtaining the limiting-state proba- 
bilities for birth-and-death processes proceeds: 

The limiting-state probabilities for this case fornz a Poisson PJIB for 
the total number of customers a t  the facility (all of whom are in service) 
a t  a random time. As one would expect, Pois greater for this case than 
in part (a), and all other Pi's here are less than the corresponding 
quantities for that single-channel ease. For instance, if h / p  = 0.8, this 
facility is completely idle a fraction 

of all time. This compares with Po = 0.20 for the same A/p ratio for 
the single-channel case in part (a). 

example 3 A four-line switchboard services outgoing calls of four subscribers 
who never call each other. The durations of all phone calls are inde- 
pendent identically distributed exponential random variables with an 
expected value of p-l. For each subscriber, the interval between the 
end of any call and the time he places his next call is an independent 
exponential random variable with expected value X-l. 
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Four independent \ 

customers who never ,\ Switchboard with 
call each other and 

/. capacity of four , , 
,participate only in , input lines 

outgoing calls 

We shall assume that the system is in the steady state, neglect 
the possibility of busy signals, and use the state notation Si: Exactly i 
of the input lines are active. 
(a) Determine the limiting-state probabilities for the number of the 

input lines in use at  any tinze. 
(b) Given that there are a t  present three switchboard lines in use, deter-

mine the I'D17 for the waiting time until the next change of state. 
(c) Determine the expected value of the number of busy input lines. 
(d) What is the probability that there are exactly two lines busy a t  the 

switchboard the instants just before the arrivals of both members 
of a randomly selected pair of successive outgoing calls? 

a Reasoning similar to that used in part (b) of the previous example 
leads us to the following observation. Given that there are exactly i 
input lines in use at  the present time, the conditional probability of an 
Si --+ Si+l transition in the next At is (4 - i)X At, and the conditional 
probability of an Si --+ Si-l transition in the next At is zp At. Keglecting 
the self-loops, we have the transition diagram 

This is a single-chain process with no periodicities; so the limiting-state 
probabilities will not depend on the initial conditions. Furthermore, 
it is a birth-and-death process; so we may use the special form of the 
simultaneous equations for the limiting-state probabilities, 

4 

which result in 

As we I\-ould expect, if X >> p, P4 is very close to unity and, if X << p, 

Po is very close to unity. 
b Given that the systenl is in state Satthe probability that it will leave 

this state in the next At  is (3p + h)  At, no matter how long it has been 
in S3. Thus, the YDF for t, the exponential holding time in this state, 
is 

c Direct substitution of the Pi's obtained in part (a)  into 

results in 

and this answer agrees with our intuition for X >> p and p >> X. 
d This is as irwolvcd a problem as one is likely to encounter. Only 

the answer and a rough outline of how it may be obtained are given. 
The serious reader should be sure that he can supply the missing steps; 
the less serious reader may choose to skip this part. 

2XPzAnswer = -------- + XP) (&)(4hp0 +3+/( h i )  -If 
Probability first member of Conditional p r x b i l i t y  that ~onditional-probabilitythat 
our pair of arrivals becomes next change of state is due to next change of state is due to
3d customer present at completion of a call, given an arrivai, given system is
switchboard system is in state Ss in state Sz 

We have assunled that ,the "randomly selected" pa,ir was chosen by 
selecting the first member of the pair by means of an equally likely 
choice among a large number of incoming calls. If the first member 
were to be chosen by selecting the first incoming call to follow a ran-
domly selected instant, we would have a different situ t 'LZ ion. 

P R O B L E M S  

--
-E- 5.01 For a series of dependent trials, the probability of success on any-------- trial is given by (k + l ) / (k  + 3), where k is the number of successes-----
--=- in the previous three t,ria,ls. Define a state description and set of--
---- transition probabilities which allow this process to be described as a------- liarkov process. Draw the state transition diagram. T r y  to use the ------= smallest possible number of states. 



consider the three-state discrete-transition Narkov process 5.04 a Identify the transient., recurrent,, and priodic states of the discretc- 
state discret e-transition Narkov process described by 

Determine the three-step transition probabilities p ~ ( 3 ) ,p&), 
arid pla(3)both from a sequential sample space and by using the equ3- 
tion pij(n + 1) = pik(n)pkj in an effective manner. 

k 


We are observing and recording the outcomes of dependent flips of 
a coin at  a distance on a foggy day. The probability that any flip mill 
have the same outcome as the previous flip is equal to P. Our observa- 

tions of the experimental outcomes are imperfect. In  fact., the proba- 
bility that me shall properly record the outcome of any trinl is equal to 
F and is independcnt of all previous or future errors. We use the 
notation 

hn: We record the observation of the nth trial to be heads. 
1,: We record the observation of the nth trial to be tails. 

I 

Actual coin-flipping i Imperfect ; Observations of 
Iprocess information coin-flipping 
I Ichannel process 

Can the possible sequences of our observations be modeled a 
the state history of a two-state Sfarkov process? 

b How many chains are formed by the recurrent states of this process? 
c Evaluate linl ~ , ~ ( n )  and, lim ps6(n). 

n 3  m n-t 03 

5.05 For t,hc :\larkov proclcss pirt,urcd hcrc, the following qucstioris nxay 
be answered by inspection: 

Giver: that this process is in  state Sojust before the first trinl, determiue 
the probability that: 
a Thc process enters SZfor the first time as the result of the Kth trial. 
b The process never enters S4. 
c The process does enter S2, but it also leaves S2on the trial after i t  

entered S2. 
d The process ent,ers S1for the first time on the third trial. 
e The process is in state Sginlnlcdiately after the Nth trial. 

5.06 Days are either good (a,fair (F),or sad (8). Let Fn,for instance, 
be t,he event that the nth day is fair. Assume that the probability of 
having a good, fair, or sad day depends only on the condition of the 
previous day as dictated by the conditional probabilities 

( + I 1 n = 3 f'(Fn+~I Sn) = 3/8 . P(Sn+l I Fn) = 1/f3 

p(Fn+, I Fn) = 2/3 P(Sn+l I Gn)= 1/6 P(Sn+lJ Sn) = J-/2 

Assume that the process is in the steady state. A good day is worth 
$1, a fair day is worth $0, and a sad day is worth -$I. 
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= 
Ez2 a Determine the expected value and the variance of the value of aj 
-Ez 
zzzs - randomly selected day. 
5
z=== b Determine the expected value and the variance of the value of azz53 randon1 two-day sequence. Compare with the above results, and--i
- comment^.==s 

-- c With the yroecss in the steady-state a t  day zero, we are told thatI 

=.-- the sun1 vnluc. of days 13 and 14 was $0. What is the probability-

L 
-- t h t  day 1 3  w:w :I fair day? 
j
5z = s--
z=s
-/= e
-- 5.07 Thc outeomcs of successive-flips of ;I ptrticular coin are dependent 
I 
C- :md arc found to be described fully by the condition:~lprobabilities
s==z -
E Z  
s=zzs--
i--d 

3 

d ~ v h e l ~\ye have used the r.iotation 
C 
d 


_L Event lik:Hcads on kth toss Event 7'~.: Tails on 1it.h toss s 
d --
-- We know that the first. toss camc up heads.j_----- a Drtemiue the  probability that the jirst tail will occur on the kth toss-------- ( k  = 2 ,  3, 4, . . .I.------ b What is the probability that flip 5,000 will comc up heads? 
zz=zj- c What is thc probability that flip 5,000 will come up heads and Rip 
i -
j 
- 5,002 wit1 also come up heads?=-
j 
--= d Given that flips 5,001, j,002, . . . , 3,000 f m all have the same--------- result, what is the probability that all of these rn outcomes are heads? 
I - Sin~plifyyour answer as much as possible, snd interpret your result 
ji--
II- for large vnhes of 111 .  
55- e We are told that the 873th heid just occurred on the ;iOOth toss.= -i -- Determine the expected value of the number of additional flips 
iL- required until we observe the 379th head.-L 
I_ -
I
E--
S--==s 5.08 In his new job for the city, doe rndies daily meusurements of the 
----- level of the Sludge River. His predecessor established that these daily-----
=--- readings can be modeled by a ;\larkov process and that there are only---
-- three possible river depths, zero, one, and two feet. I t  is also known 
=---- that the river level never changes more than one foot per day. The-------- city has compiled the following transition probabilities:--
_C 

d 

-. pol = 1/4 pio = 1/2 p12 = 1/4 p2r = 1/4-d ---d 

5 Let X K  represent Joe's reading of the river depth on his Xth day on the 
s5_I job. We are given that the reading on the day before he started was--_ -= - onefoot.------- Detern~inc:--------- a The probability mass function for random variable XI---
- b The probability that x377 # x378 ------- c The conditional probability mass function for ~ 9 9 9 ,given that XI,OOO= 1 

d The numerical values of 
i Jim E(X,+~- x,) ii lim E[(z,+, - x,)*]

n--300 

i = l  

e The z trmsform of the probability mass function p ~ ( & ) ,  where 
random variable I, is the smallest positive integer which satisfies 
ZL# 2 1 .  

5.09 1\11.. Alean Variance has the orily key which locks or unlocks tho door 
to Building 59, the Probability Building. He visits the door once each 
hour:on t,he hour. When he arrives: 
If the door is open, he locks it ~ i t h  0.3. 
If the door is locked, he unloclis it with probnbility 0.8. 
a After he has bcen on the job several mont,hs, is he more likely to 

lock the door or to unlock it on a randomly selected visit? 
b With the proress i l l  the st,eadystate, doe arrived at  Building 59 two 

hours ahead of Harry. What is the probability that each of them 
found the door in the same condition? 

c Given the door was open at  thc time Slr. Varisnec was hired, deter-
mine the z transform for the number of visits up to and including 
the or~eon which he unlocked the doorhimself for the first time. 

10 Arrivals of potcnt.ial cust.omcrs on t,hcstrcet outside a one-pump gas
station are noted to be :I I 'O~SSOI~process with an nverngo :trrival rate-
of X mrs per hour. l 'otr~~tinleustonlern will eon~ci n  for gas if there 
arc fewrr than two vnrs nlrendy at  the pump (irrduding the one being 
attended to). If there are two cars already at the pump, the potential 
customers will go eIsewhcrc. 

I t  is noted that the amount of tinw required to service any car 
is :tn indcpendcnt randonl variable with PDlp 

a Give a physiwl interprrtation of thc constarlt p. 

b Write the differential equations relating the P,(t)'s, where P,t(t)is the 
probability of having n mrs at  the pump at  time 1. Do not solve the 
equstions. 

c Write arid solve the equations for P,?,n = 0, 1, 2, 3, . . . , where P, 
is thc stcndy-state probnbility of having a total of n cars a t  the pump. 

d If the cars arrive at  the averqq?rntc of 20 per hour and the averngc 
service time is two nlinutrs per (&:it-,what is the probability that a 
potcntinl cwstomcr will go clscwhcrc? What fraction of the attend-
ant's time will be spent servicing cars:) 
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--
C-- e At the same salary, the o\vner can provide a more popular, but slower, i d Taxi A has been destroyed in a collision with a Go-Kart, and we ---
C
-- atterldant,. This would raise the average service time to 2.5 minutes note that B is a t  the station at  time t = 0. What are the expected---- value and variance of the time until B leaves the station with his----- per car but would also increase from 20 to 28 cars per hour. Which 
C---- attendant should he use to maximize his expected profit? Deter- fourth fare since t = O? 
iL= 

s mine the percent change in the number of customers serviced per 
i 
C--c - hour t,hat would result from changing to the slower attendant. 5.13 All ships travel a t  the same velocity through a wide canal. East--j bound ship arrivals a t  the canal are a Poisson process with an average-
B 
C 
--
---- 5.11 At a single service facility, the interarrival times between successive arrival rate X E  ships per day. Westbound ships arrive as an inde-
C 

-- rustomers are independerit exponetitiillly distributed random variables. pendent Poisson process with average arrival rate XV per day. An 

-- The average customer arrival rate is 40 custoimrs per hour. indicator a t  a point in the canal is always pointing in the directioni 

i of travel of the most recent ship to pass it. Each ship takes T days to--- When a total of two or fewer customers are present, a single
C 
-s= attendant operates the facility and the sewice time for each customer is traverse the canal. Use the notation p = XE/Xw wherever lnossible 
C 

a11 exponentially distribukd random variable with a mean value of two a What is the probability that the next ship passing by the indicator 

minutes. causes i t  to change its indicated direction? 

Whenever there are three or morc customers a t  the facility, the b What is the probability that an eastbound ship will see no westbound 

attendant is joined by an assistant. In  t,hiscase, the service time is an ships during its eastward journey through the canal? 

exponrntially distributed random vnriable with an expected value of c If we begin observing a t  an arbitrary time, determine the probability 

one minute. mass function pk(ko), where k is the total number of ships we observe 

Assume the process is in the steady state. up to and including the seventh eastbound ship we see. 

a What fraction of the time are both of them free? d If we begin observing a t  an arbitrary time, determine the probability 

b What is the probnbilit,~that both men are working at  the facifity density function f,(to), where t is the time until we see our seventh 
eastbound ship.the instant before a randomly selected customer arrives? The instant 

after he arrives? e Given that the pointer is pointing west: 

c Each of the men is to receive a sdary proportional to the expected i What is the probability that the next ship to pass it will be 

valuc of the amount of time he is actually a t  work servicing customers. westbound ? 

The constant of proportiondity is the same for both men, and the ii What is the probability density function for the remaining time 
sum of their salaries is to be $100. Determine thel salary of each man. until the pointer changes direction? 

5.14 A switchboard has two outgoing lines and is concerned only with5.12 Only two taxicabs operate from a particular station. The total time 

it takes a taxi to service any customer and return to the station is an servicing the outgoing calls of three customers who never call each 

exponentially distributed random variable with a mean of 1/p hours. other. When he. is not on a line, each potential caller generates calls 

Arrivals of potential custon~ersare modeled as a Poisson process with a t  a Poisson rate A. Call lengths are exponentially distributed, with a 
average ra,teof A customers per hour. If any potential customer finds mean call length of l / p .  If a caller finds the switchboard blocked, he 

no taxi a t  the station at  the instant he arrives, he walks to his destina- never tries to reinstitute that particular call. 
tion and thus does not become an actual customer. The cabs al~~rays a Determine the fraction of time that the switchboard is saturated. 
return directly to the station without picking up new customers. ,411 b Determine the fraction of outgoing calls which encounter a-saturated 

parts of this problem are independent of statements in other parts. switchboard. 

a If = m, determine (in as simple and logical a manner as you can) 
5.15 An illurnination system contains R + 3 bulbs, each of which failsthe average number of custonlers served per hour. 

b Using the notation p = p/A, determine the steady-state probability independently and has a life span described by the probability density 

that there is exactly one taxi a t  the station. function 

c If me survey a huge number of actual customers, what fraction of 
them will report that they arrived at an instant when there was 
exactly one taxi at  the station? At the time of the third failure, the system is shut down, the dead bulbs 
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are replaced, and the system is "restarted." The down timefor the f Suppose that the process is a pure birth-and-death process and we 
service operation is a random variable described by the probability arrive at  a random time. What is the probability that the first 
density function transition wc observe will be due to a birth? That both of the first 

two transitions we observe will be due to births? 

a Determine the mean and variance of y, the time from t = 0 until 5.28 An information source is alwrys iri one of 112 mutually exclusive, 
the end of the kth service operation. collectively exhaustive states SI,S2, . . . , S,. Whenever this source 

b Determine the steady-state probability that all the lights are on. is in state Si: 
1 It produces printed messages in :r Poisson manner a t  an average rate 

Potential customers arrive at  the input gate to a facility in a Poisson of pi messages per hour. 
manner with average arrival rate h.  The facility will hold up to  three 2 The conditional probnbility that the source ill enter state Sj ( j  + i) 
customers including the one being serviced. Potential customers who in the next incremental At is given by X t j  At. 
arrive when the facility is full go elsewhere for service. Service time All messages are numbered consecutively and filed i n  a ware-
is an exponential random variable with mean l/p. Custonlers leave house. The process is in the steady state and you m:Ly nssumc that 
as soon as they are serviced. Service for actual cust,omers is on a the limiting stnte probabilities for the source, PI,  PI, . . . , P,, are 
first-come first-served basis. known qunntit ies. 
a If we select a random pair (see final comment in Sec. 9-8) of sue-' Each part of this problem is to be rvorlied separately. 

cessivepotential customers approaching the facility, mhat is the proba- a Given that the process has been in stnte S2for the last three hours 
bility that they will eventually emerge as a pair of successive actual what is the probability that no messages were produced in the last , 

customers? 1.5 hours? 
b If we select a random pair of successive actual customers leaving the b Given that the process is not in state S?,what is the probability that 

facility, what is the probability that these customers arrived as suc- it will enter S? i l l  the nest incremerlt,ai At? 
cessive potential customers a t  the facility input? c Determine the average rate a t  which messages are produced. 

c Starting at a randomly selected time, what is the probability that  d What is the probability that the source will produce exactly two 
before the next actual customer arrives at the input gate a t  least two messages during auy particular visit to state Sz? 
customers would be observed leaving via the output gate? e If me arrive at a ra~idom time to observe the process, what i s t h e  

probability that we see at least one nwssngc generated before rvc 
Consider K-state discrete-state Xlarkov system with exponential observe the next state t.r:rr~sition of the message source'? 

holding times. The system is composed of e single chain. f If we select a random message from the file in the warehouse, what 

Xi, At = conditional probability that system will enter state Sj in the is the probability that it mas produced when the source mas in state 
i #j next At, given that present state is Si Sz? 

g If me select s pair of cunsemiilfe messages a t  random from the file, 
Other than in part (a) you may use the limiting-state probabilities as mhat is the probability t.hat the source underwent exactly one ehange 
PI,PZ,. . . , PK in your ansmers. of stnte during the itlterval between the instsnts at which these two 
a Write, i n  a simple form, a set of equations which deternline the messages were produced Y 

steady-state probabilities PI,Pz, . . . ,Pn.  h If we ore told that, during the last 10 hours, the source process 
b Given that the process is a t  present in state Si,what is the probability underwent exactly eight changes of state and spent 

that two transitions from now it will again be in state Si? Exactly two hours in state S3 
c What are the expect.ed value and variance of the time the system Exactly five hours in state S7 

spends during any visit to state Si? Exact,ly t,hree hours in st:tte S8 
d Determine the average rate a t  which the system makes transitions. determine the exact conditional PMF for the number of messages 
e i f  we arrive at  a random time with the process in the steady state, produced during the last 10 hours. 

determine the probability density function for the time until the next 
transition after we arrive. 


