
C H A P T E R  S I X  

some 
fundamental 

limit 
theorems 

Limit theorems characterize the mass behavior of experimental out- 
comes resulting from a large number of perforrna.nces of an experiment. 
These theorems provide the connection between probability theory and 
the measurement of the parameters of probabilistic phenomena in the 
real world. 

Early in this chapter, we discuss stochastic convergence, one 
important type of convergence for a sequence of random variables. 
This concept and an easily derived inequality allow us to establish 
one form of the law of large numbers. This law provides clarification 
of our earlier speculations (Sec. 3-6) regarding t,he relation, for large 
values of n, between the sum of n independent experimental ualues 
of random variable x and the quantity nE(x). 

We then discuss the Gaussian PDF. Subject to certain restric- 
tions, we learn that the Gaussian PDF is often an excellent approxima- 



tion bo the actual PPD for the sum of many random variables, regardless 
of the forms of the PDF7s1for the individual random variables included 
in the sum. 

This altogether remarkable result is known as the central limit - a 

theorem. A proof is presented for the case where the sum is composed ot 
independent identically distributed random variables. Finally, we 

investigate several practical approximation procedures based on limit 
t heorenzs. 

6-1 The Chebyshev Inequality 

The Chebysher~ inequality sh tes  an upper bound on the probability 
that an experimental value of any random variable z will differ by 
at least any given positive quantity t from E(x ) .  In particular, the 
inequality will provide an upper bound on the quantity 

in t,erl>ls of t and o,. As long as the value of the standard deviation rr, is 
known, other details of the PDF f,(xo) are not relevant. 

The derivation is simple. With t > 0, we have 

To obtain the above inequality, n7e note that the integrand in the left- 
most integration is always positive. BY removing an interval of length 
2t from the range of that integral, n-e cannot increase the value of the 
integral. Inside the two integrals on the right-hand side of the above 
relat,ion, it is always true that 1x - lC(x)( 2 t. We now replace 

[x  - E(z)lZ by t 2 ,  which can never increase the valuc of the right-hand 
side, resulting in 

E(x)-t 

gzZ 2 jz0 = - t2&(xo) ~ X Q  + /xy=e(z)+t t2b(xo) ~ X O  

After we divide both sides by t2  and rec,ogllize the physical interpreta- 
t,ion of the remaining quantity on the right-hand side, we have - e = - - - - 

= 
P m b [ r  - E(z)\ 2 t] 5 @y - - 

which is the Chebyshev inequality. I t  states, for instance, that the 
probability that an experinwntal value of any random variable x will 
be further than Kc, from E(x)  is always less than or equal to 1/K2 

Since it is a rather ~veali bound, the Chebyshev inequality finds 
most of its applications in general theoretical work. For a random 
variable described by any particular I'UI", better (though usually more 
complex) bounds may he est:iblishcd. We shall use the Chebyshev 
bound in Sec. 6-3 to invcstig~ite one form of the lsrv of lnrgc numbers. 

6-2 Stochastic Convergence 

A dete~winistic sequence (1,,/ = .r,, .et, . . . is said to converge to t*he 
limit C i f  for every E > 0 wc can find a finite no such that 

I x , ~  - CI < E for all n > no 

If dctcrministic sequence (r,] does converge t,o thc limit C, 11-c write 

Only for pathological cases would we expect to  be able to make 
equally strong nonprobnbilistic convergence statements for sequences , 

of random variables. Several different types of convergerm are defined 
for sequences of randon1 variables. In this section we introduce and 
discuss one such definition, namely, that of stochastic conuo-gence. We 
shall use this definition and the Chebyshev inequality to establish a 
form of the law of large numbers jin the following section. (We defer 
any discussion of other fornts of eorivergeuec for sequences of random 
variables unt,il Sec. G-9.) - - - - - 

iC-- - 
P 

A sequence of random variables, (g./ = gr, y2, y3, . . . , is said - = - to bc stochasticallg convergent (or to converge i n  probability) to C if, for E S Z  = - every E > 0, the condition linl I'rob(/y, - C/ > e )  = 0 is satisfied. 
n--+ rn - 

- 
When a sequence of rahdorn variables, (g,J, is linorvn to be 

stochastically convergent to C, we must be careful to conclude onlg 
that the probability of the event ly, - C/ > E vanishes as n m .  
We cannot conclude, for any value of n ,  that this event is impossible. 

We may use the definition of a limit to restate the definition of 
stochastic convergence. Sequence { y, 1 is stochastically convergent to 
C if, for any F > 0 and any 6 > 0, i t  is possible to state a finite value 
of no such that 

i'rob((y, - C( > E) < 6 for all n > no 

Further discussion will accompany an application of the concept 



- - - - - 
- - 

-

for this equation there finally results 

m 
m-

of stochastic convergence in the following section and a coniparison 
witshother forlxs of probabilistic convergence in Sec. 6-9. 

6-3 The Weak Law of Large Numbers 

A sequence of random variables, (g, 1, with finite expected values, 
is said t,o obey a Inw oJ large numbers if, in some sense, the sequence 
defined by 

n 


i s 1  

converges to  its expected value. The type of convergence which 
applies determines whether the law is said to be weak or strong. 

Let 91,yz, . . . form a sequence of independent identically dis-
tributed random variables with finite expected values E(y) and finite 
variances aV2. In  this section me prove that the sequence 

is stochastically co~ivergentto its expected value, and therefore the 
sequence {g.] obeys a (weak) law of large numbers. 

For the c,onditions given above, random variable ill, is the 
average of n independent experimental values of random variable y. 
Quantity M ,  is known as the sample mean. 

From the definition of rtl, and the property of expectations of 
sums, we have 

and, because multiplying srandom variable y by c defines a new random 
variable with a variance equal to c2oY2,we have 

To establish the weak law of large numbers for the case of 
interest, me simply apply the Chebyshev inequality to A1, to obtain 

and, substituting for M,, E(M,),  and tor.., we find 

(See Prob. 6.02 for a practical application. of this relation.) Upon 

taking the limit as n --+ 

iirn Prob [I I; yi - B(9) / 2 = 0 mn-+ co 

i = l  m 

m 

mhich is known as the weak. law of large numbers (in this case for 
random variable y). The law states that, as n --+ m, the probability 
that the average of n independent experimental values of random 
variable y differs from E(y) by more than any nonzero E goes to zero. 
We have sholrrr~that as long as the variance of a random variable is 
finite, the random variable obeys the weak law of large numbers. 

Keither the independence of the yi's nor the finite variance 
conditions are necessary for the (0.) sequence to obey a law of large 
numbers. I'roof of these statenmrts is beyond the scope of this book. 

Let's apply our result to a situation where the 0;s are inde-
pendent Bernoulli random variables wit,h parameter P. Suppose that 
there are n trials arid 1c is the number of successes. Using our result 
above, we have 

lim Prob (1 - P 1 > L) - 0 
n--, = 

which is linonw 8s the Bewzoulli law o j  large nu~rzbem. This relntiorl is 
one of the bases of the 1,elatiue-j~.epuer~cinterpretation of probabilities. 
Often people read into it far more than it says. 

For instance, let the t.rials be coin flips mid the successes heads. 
If wc flip the coin any number of times, it is still possible that all out-
comes will be heads. If we know that P is a valid parameter of a 
coin-flipping process and we set out to estimate P by the experimental 
value of kin, there is no value of n for n-hich we could be certain that  
our experimental vnlue was within an arbitrary + e of the true value of 
parameter P. 

The Bernoulli law of large numbers does not imply that 1-L. con-
verges to the lin~itirigvnlue nP as n -+ @ .  We Icnow that the standard 
deviation of I;, in fart, becomes infinite as n --+ m (see Sec. 3-6). 

6-4 The Gaussian PDF 

We consider n very important PDF which describes a vast number of 
prohrtbilistic phenomena. 

The Gaussian (or nartizal) PDF is defined to be 



SOME FUNDAMENTAL LIMIT THEOREMS 

where we have written a PDF for random variable z with parameters 
nz and a. The s transform of this PDF is obtained from 

1 m : 

fiT(s) = E(emSx)= ---- e-s~oe-(zo-m) 2 1  2 0 2  

dzodGu / x ~ = - -

--- 1 
e-A(xo) dxO 

where the expression A(xo ) is given by  

In the above equation, we have carried out the algebraic operation 
known as "completing the square." We may substitute this result 
into the expression for fxT(s), 

Sote that the integral is equal to the total area undcr a Gaussian I'DF 
for which V L  has been rcplaccd by the expression sz - sa2. This change 
displaces the PDF I\-ith regard to the xo axis but does not change the 
total area under the curve. Since the total area under any PDF must 
be unity, we h ~ v efound the transform of a Gaussian PDF with 
parameters nz and a to be 
f x T ( S )  = e ( ~ 2 ~ 5 / 2 ) - ~ ~ ~  

Using the familiar relations 

we evaluate the expected value and the variance of the Gaussian PDF 
to be 

E ( x ) = m  a Z 2 = a 2  

We have learned that a normal PDF is specified by two parame-
ters, the expected value E ( x )  and the standard deviation a,. The 

normal PDF and its s transform are -------1
f x ( Z o )  = -=- e - 1 % - E ( ~ ) 1 2 1 2 ~ z 2  - 5 2, 5 rn 

d2.lrax __=1zzsz 
fXT(.) = e ( ~ 2 ~ 2 1 2 ) - ~ ~ ( ~ )  --w -
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A sketch of the normal PDF, in terms of E ( x )  and a,, follows: 

Suppose that wc are interested in the PDF for random variable 
' w, defined to be the sunl'of two independent Gaussian random variables 
x and y. We use thc s transforms 

and the relation for the transform of n 1'DF for thc sum of independent 
random variables (Sec. 3-5) to obtain 

We recognize this to be the transform of another Gaussian PDF. 
Thus we have found that 

-= 
The PDF for a sum of independent Gaussian random variables i s  itself a 

Z S E  
Gaussian PDF. --

A similar property was obtained for Poisson random variables in 
Sec. 4-7. 

When one becomes involved in appreciable numerical work with 
PDF's of the same form but with different parameters, i t  is often 
desirable to suppress the parameters E ( x )  and ax2 of any particular 
situation and work in terms of a unit (or normalized, or standardized) 
random variable. A unit random variable has an expected value of 
zero, and its standard deviation is equal to unity. The unit random 
variable y for random variable x is obtained by subtracting E ( x )  from x 



and dividing this difference by a, 

2nd we nmy demonstrate the properties, 

I t  happens that the cun~ulativc dist'ribution function, ps5(xo), 
for a Gaussinn rnrldonl v:tri:~blc cannot be found in closed form. We 
shall be worliing with t,:tblcs of the CDI? for a Gaussian random 
v:triable, and it is for this reason t,ha,t. we are interested in the discussion 
in the previous paragraph. We shall be concerned with the unit 
normal PDF, n-hichsis given by 

1
fV(yo)= -e - ~ o ~ / ~- o~ _< yo 5 00 , E(y)  = 0, fly = 14% 

We define the function +(yo) to be the CDF for the unit normal PDF, 

To nlnlic use of t:hles of +(yo) for Gaussian (but unstnnd- 
nrdized) random variitbfe .r, we need only rec:~lI thc relation 

and thus, for the CDF of Gaussian randon1 variablc .T, n-c have 

The argument on the right side of the nbovc cquntion is cqunl to tho 
number of st:md:~rd dcvi:ttions T, by which xo cxrccds IC(.c). If valucs 
of .TO :we inensured in units of st:mdard dcvintions from i;'(r),t:tl)lcs of 
the CDF for t,hc unit 1lo1m:~1 I'DI: m y  bc uscd directly to obt:tin vnlucs 
of the CI)F pI5(xo). 

Sincc n Gnussinn 1 ~ 1 1 1 ~  itbout its csp&tcd value, is symmctri~*nl 
the CDl: may he fully dcsrril~ed by t:d)r~l;~ti~lg it only for v:ilucs alwvc 
(or 11elow) its cxpeeted vxlue. Thc follon-ingis :L bricf fonr-pl:ice t:~l)lo 
of +(go), the CD1' for n unit normd rundon1 v:ui:tt)lc: 
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To obtain +(yo) for go < 0, we note that the area under fy(yO) 
is equal to unity and that the shaded areas in the following sketches 
are equal 

and we may use -the relation 

We present a brief example. Suppose that we wish to determine 
the probability t h i t  an experimental value of a Gaussian random 
variable z falls within +ka, of its expected value, for k = 1,2, and 3. 
Thus, we wish to evaluate 

Prob[lx - E(x)l 5 b,] . for Ic = 1, 2, and 3 

Since 1c is already in units of standard deviations, we 'may use the *(yo) 
table directly according to the relation 

Our result states, for instance, that the probability that an experi- 
nlcntal value of any Gaussian random variable x falls within an interval 
of total length 4@, which is centered on E(x) is equal to 0.954. 
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6-5 Central Limit Theorems 

Let random variable r be defined to be the sum of n independent 
identically distributed random variables, each of which has a finite 
expected value and a finite variance. It is an altogether remarkable 
fact that, as n -+ m , the CDF pr5 (rO) approaches the CDF of a Gaussian 
random variable, regardless of the form of the PDF for the individual 
random variables in the sun2. This is one simple case of a central limit 
theorem. 

Every central limit theorem states some particular set of eon- 
ditions for which the CDF for a sum of n random variables will approach 
t3he CDF of a Gaussian random variable as n --+ 03 .  

As long as it is not always true that a particular few of the 
member random variables dominate the sum, the identically distributed 
(same PDF) condition is not essential for a central limit theorem to 
apply to the sum of a large number of independent random variables. 
The independence condition may also be relaxed, subject to certain 
other restrictions which are outside the scope of this presentation. 

Since many phenomena may be considered to be the result of a 
large number of factors, central limit theorems are of great practical 
significance, especially when the effects of these factors are either 
purely additive (r = XI  + xz + - -) or purely multiplicative 
(log r = log X I  + log xz + . . .). 

We first undertake a brief digression to indicate why we are 
stating central limit theorems in terms of the CDF prs(ro) rather than 
the PDF fr(ro). 

There are several ways in which the' members of a sequence of 
deterministic functions {g, t (~n)  J = gl(xo), g2(x0), . . . can "approach" 
the corresponding members of a sequence of functions (h,(xo) ] in the 
limit as n -t m. However, the simplest and most easily visualized 
manner is point-by-point convergence; namely, if for any particular 
s o  and for any c > 0 we can always find an no for which 

This is the type of convergence we wish to use in our statement of the 
central limit theorem. 

Consider a case where random variable r is defined to be the sum 
of n independent experimental values of a Bernoulli random variable 
with parameter P. For any value of n we know that r will be a 
binomial random variable with PMF 

This PhIF, written as a PDF, will always include a set of n + 1 impulses 
and be equal to zero between the impulses. Thus, fr(ro) can never 
approach a Gaussian P D F  on a point-by-point basis. However, i t  is 
possible for the CDF of 1- to approach the CDF for a Gaussian random 
variable on a point-by-point basis as n -;, co, and the central limit 
theorem given in the first paragraph of this section states that this is 
indeed the case. 

We now present a proof of the fo.rm of the 'central limit theorem 
stated in the opening paragraph of this section. 

1 Let XI, 22, . . . *, 2, be independent identically distributed random 
variables, each with finite expected value E(z) and finite variance qz2. 

We define random variable r to be I ,  = XI + x2 + - . . + x,, and we 
wish to show that the CDF p,<(ro) approaches the CDF of a Gaussian 
random variable as n -+ oo . 

2 From the independence of the xi's and the definition of r, me have 

3 Note that for any random variable y, defined by y = ar + b, we may 
obtain fyT(s) in terms of frT(s) from the definition of the s transform as. 
follows : 

We may recognize the integral in the above equation to obtain 

We shall apply this relation to the case where y is the standardized 
random variable for r, 

to obtain fUT(s) from t.he expression for frT(s) of step 2. 

Sofar, me have found the s transform for y, the standardized sum of n 
independent identically distributed random variables, 

4 The above expression for fYT(s) may be written with e ~ E ( ~ ) l ~ = d ~  and 

f T  ( )  each approximated suitably near to s = 0. These 
6 c x  



approximations are found to be 

23 (x) E(x2) 
f x ~ ( ~ )  dn = I  -.(-&)+=(+)' 
When we multiply and collect terms, for suitably small s (or, equivn- 
lently, for suitably large n) we have 

5 We use the relation 

to take the limit as n -4 .ss of the approximation for fjIT(s) obtained 
in step 4. This results in 

lim fVT(s) = es2I2 
n-+ m 

and we have shown that the s transform of the PDF for randorn variable 
y approaches the trnnsform of a unit normnl PDF. This does not tell 
us how (or if) the PDF fy(yo) approaches a Gaussian P D l ~  on a point- 
by-point basis. But a relation linown as the continuity theor-em of 
transform theory may be invoked to assure us that 

lim &<(YO) = Nyo) 
n 4  

[This theorem assures us that,, if  lim A,,,T(s) = ,f,,T(s) and if f,,T(s) 
?L-+ m 

is a continuous function, then the CDF for random variable y, con- 
verges (on a point-by-point basis) to the CDF of random variable w. 
This convergence need not be defined at  discontinuities of the limiting 
CDF.] 

6 Since y is the standardized form of r, we simply substitute into the 
above result for f,< (yo) and conclude the following. 

If r = x l + x 2 +  + xn and XI, x2, . . . , x, are independent 

identically distributed randomvariables each with finite expected value 
E(x) and finite standard deviation a,; we have 

E(r) = nE(z) 
lim pT5(ro) = <P 
n+ = cr = 4; e x  

This complet,es our proof of one central limit theorem. 

APPROXIMATIONS BASED ON THE CENTRAL LIMIT THEOREM 215 

6-6 Approximations Based on the Central Limit Theorem 

\ We continue with the notation I .  = al + x2 + - - - + xn, where the , 

randoin variables ,XI, .r3 . . . , x, are mutually independent and identi- 
cally distributed, c:wh with finite expected value E(x)  and finite 
varinnw ax2. If every member of the sum happens to be a Gaussian 
random v:triable, wc I i t ~ o \ ~  (from Sec. 6-4) that the L'DF fr(ro) will also 
be Gaussian for any value of n. TVhateuer the I'DF for the individual 
members of the sum, one central limit 'theorem states that, as n -, m, 

. we have 

As n -, .o, the CDF for 1, approaches the CDF for that Gaussian ran- 
dom variable which has the same mean and variance as 1.. 

If 11-e wish to use the approxinlation 

for "large" but finite values of n, and the individual xi's are not Gaussian 
random variables, there are no simple general results regarding the 
precision of the approximation. 

If the individual terms in the sum are described by any of the 
more common PDF's (with finite mean and variance), fr(ro) rapidly 
(n = 5 or 10) approaches a Gaussian curve in the vicinity of Efr). 
Depending on the value of n and the degree of symmetry expected in 
f , ( ~ ) ,  we generally expect. ;(ro) to be poorly approximated by a 
Gaussian curve in ranges of 1.0 more than some number of standard 
deviations distant from IT(?.). For instmce, even if the xi's can take 
on only positive experiinental values, the use of an approximation 
based on the central limit theoren~ will always result in some nonzero 
probability that the experimental value of xl + x2 + . + xn will 
be negative. 

The discussion of the previous paragraph, however crude it  may 
be, should serve to empha.size the centla1 property of approximations 
based on the central limit theorem. 

As one example of the use of an approxinlation based on the 
centml limit theorem, let random variable r be defined to be the sum 
of 48 independent experimental values of random variable x, where the 
PDF for x is given by 



We wish to determine the probability that an experimental value of r 
falls in the range 22.0 < r $ 25.0. By direct calculation we easily 
obtain 

In  using the central limit theorem to approximate 

we are approximating the true PDF  fr(ro) in the range 22 < r < 25 by 
the Gaussian PDF 

If we wish to evaluate Prob(22.0 < r 25.0) directly from the table 
for the CDF of the unit normal PDF, the range of interest for random 
variable 1. should be measured in units of cr, from E(v). We have 

I t  happens that this is a very precise approximation. In  fact, 
by simple convolution (or by our method for obtaining derived distribu- 
tions in sample space) one can show, for the given f,(xo), that even for 
n = 3 or n = 4, f,(ro) becomes very close to a Gaussian PDF  over most 
of the possible range of random variable r (see Prob. 6.10). However, 
a similar result for such very small n may not exist for several other 
common PDF's (see Prob. 6.11). 

6-7 Using the Central Limit Theorem for the Binomial PMF 

We wish to use an approximation based on the central limit theorem 
to approximate the PAIF for a discrete random variable. Assume we 
are interested in events defined in terms of k, the number of successes 
in n trials of a Bernoulli process with parameter P. From earlier work 
(Sec. 4-1) we know that 

'and if a and b are integers with b > a, there follows 

Should this quantity be of interest, i t  would generally require n very 
unpleasant calculation. So we might, for Iargc n, turn to the central 
limit theorem, noting that 

where each xi is an independent Bernoulli random variable. 
If we applied the central limit theorem, subject to no additional 

considerations, we would have 

We have approximated the probability that a binomial random variable 
k falls in the range a _< k < b by the area under a n o r ~ ~ a lcurve over 
this range. In  many cases this procedure will yield, excellent results. 
By looking at  a picture of this situation, we shall suggest one simple 
improvenient of the approximation. 

-- Normal approximation 
to the binomial PMF 

The bars of pk(ko) are shown to be about the same height as the 
approxima.ting normal curve. This must be the case if n is large enough 
for the CDF's of pk(ko) and the approximating normal curve to increase 
by about the same amount for each unit distance along the ko axis (as 
a result of the central limit theorem). The shaded area in this figure 
represents the approximation to Prob(a _< I; 5 b)  which results from 
direct substitution, where we use the CDF for a normal curve whose 
expected value and variance are the same as those of pk(ko). 

By considering the above sketch, we might expect that a more 
reasonable procedure could be suggested to take account of the discrete 
nature of k. In  particular, i t  appears more accurate to associate the 
area under the normal curve between ko - 0.5 and ko + 0.5 with the 
probability of the event that random variable k takes on experimental 



value kco. This not ordy seems better on a term-by-term basis than 
direct use of the central-limit-theore111 approximation, but we can also 
show one extreme case of what may happen when this suggested 
improvenlent is not used. Kotice (from the above sketch) that, if we 
have b = a + 1 [with a and b in the vicinity of E(z ) ] ,direct use of the' 
CDF for the normal approximating curve vill produce an approxi- 
mation which is about 50%, of the correct probability, 

When using the central linlit theorem to approximate t.he 
binomial PAIF, the adoption of our suggested improvement' leads us 
to write, 

This result, a special case of the central Iimit theorem, is known as the 
DeMoivre-Laplace limit theowm. I t  can be shown to yield an improve- 
ment over the case in which the f& terms are not used. These cor- 
rections may be significant when a and b are close [(b - u ) / G ~  < 11 or 
when a or b is near the peak of the approximating Gaussian PDF. 

For example, suppose that me flipped a fair coin 100 times, and 
let Ic equal the number of heads. If me wished to approximate 
Prob(48 < k < 51), the f4 corrections a t  the end of the range of k 
would clearly make a significant contribution to the accuracy of the 
approximation. On the other hand, for a quantity such as Prob(23 5 
lc 5 6 5 ) , the effect of the $-+ is negligible. 

One must always question the va1idit.y of approximations; yet 
it is surprising how well the DeMoivre-Laplace limit theorem applies 
for even a narrow range of k [near E(?c)]when n is not very large. We 
shall do one such problem three ways. After obtaining these solutions, 
we shall comment on some iimitations of this approximation technique. 

Consider a set of 16 Bernoulli trials with P = 0.5. We wish to  
determine the probability that the number of successes, k, takes on an 
experimental value equal to 6,7, or 8. First we do the exact calculation, 

If we carelessly make direct use of the normal approximation, we have 

which, for reasons n-e have discr~ssed, is poor indeed. Firinlly, if we 
usc tbc i:corrcctioll of the DcMoivrc-Laplaw thcoren~, we find 

whic4h is withilt 0.025 of the cor1.cct value. 
If P is too claw cither to zero or to unity for n given n, the 

resulting binomial !'.\I I.' will hc very nsymnletrir, with its peak very 
close to Ii, = 0 or to ko = n arid m y  Gaussian approximation will be 
poor. h rcaso~xthlc (hut nrlitriwy) rule of thunlb for determining 
rrhctllcr the De~Ioivrc-IAap1:w approxi~nation to the binomial I'.\II: 
nwy be mlployed [in the vicinity of l i ( k ) ]is to require that 

nP > $2 n(l  - P)  > 3cr with ok = d n P ( 1  - P) 

The better the margin by which these co~lstraints are satisfied, the 
larger the r:mgc about R ( k )  for ~rlrirh the normal ~pprosilnation will 
yield sntisfuctory results. 

6-8 The Poisson Approximation to the Binomial PMF 

We have noted that the De3loivre-Laplare limit theorem will not 
provide a useful approximntion to the binomial 1'111: if either P or 
1 - P is very small. When either of these quantities is too sinall for 
a givcrl value of n, any Gaussinn npproximntion to the binomial will 
be urlsatisfactory. The Gaussian curve will renlhin aymt~et  r i d  about 
E(Ii),even though that value mny be only a fraction of a standard 
deviation from the lo~seat or highest possible experimental value. of the 
t?inomial random vnriabIe. 

If n is large and P is sn1all such that the Delloivre-Laplace 
theorem may not be applied, we may txlie the limit of 

by lettiug n -. m and P -+ 0 while always requiring nP = p. Our 
result will provide a very good term-by-term approximation for the 
significant members [k0nonnegative and within a few uk of E(k)]of the 
binomis1 PMF for large t 2  and small P. 

First, we use t.he relation nP = p to write 

and, rearranging the terms, we have 
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Finally, we take the limit as n 4 to obtain 

The above result is kno\sn, for obvious rcasons, as the Poisson approxi- 
mation to the binorilia1 PAIF. 

For a binomial rundonl variable k ,  we may note that*, as P -+ 0, 
the E(k)/gr ratio is very nearly equal to 4s. For example, if 
n = 100 and P = 0.01, the expected vnluc E(k) = n P  = 1.0 is ordy 
one standard deviation from the minimum possible experimental 
value of k. Under these circumsta~lces, the nornial approxinlatiori 
(DeJloivre-Laplace) is poor, but the Poisson approxinmtion is quite 
accurate for the small values of ko at  which we find most of the proba- 
bility mass of pk(ko). 

As an examplk, for the case n = 100 and P = 0.01, we find 

k" = 0 ko = 1 ko = 3 ko = 10 

Exact value of p k ( l i o )  0.3660 0.3697 0.0610 7 
Poisson approsirnation 0.3679 0.3679 0.0613 10 . 
DeRloivre-Laplace 0.2420 0,3850 0.0040 <2-10- l8  

approximation 

6-9 A Note on Other Types of Convergence 

In  See. 6-2, we defined any sequence ( ? j , , )  of random variables to be 
storhastically convergent (or to converge in probability) to C if, for 
every e > 0, the coridition 

is satisfied. 
Let A, denote t!le event ll/n - C( < E. By using the definition 

of a limit,, an equivalent statement of the condition for stochastic con- 
vergence is that, for any E > 0 and any 6 > 0, we can find an no such 
that 

Prob(An) >. '1 - 6 for all n > no 
However, it does not follow from stochastic convergence that for any 
E > 0 and any 6 > 0 we can necessarily find an no such that 

For n ~t~ochastirally convergent sequence (y,,), n-c would rorl- 
dude that, JOT all n > no, with no suitably large: 
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1 I t  is very probable that a n y  part ic lda~ IJ,~ is within + E  of C. 
2 I t  .is ]lot ~~eclcssnrily very probablc th:it ecery g,, is within & E  of C. 

A stronger foim of corlvergel1c.e tlmn stochastic convergerice is 
lino\sn :is conzwyence with probability 1 (or conrwrgence alnzost every- 
where). Thc scquc~icc (!/,,) of random vari:tblcs is defined to converge 
with probabi1it.y 1 to C if thc rel:ttio~i 

is sat isficd. Convergence with. probabili ty 1 implies stochastic con- 
vergenw, but thc converse is not true. 1;urthermore it can be shown 
(by using incasure t hcory) tha t  convcrgencc \sit,h probability 1 does 
require thfit., for any E > 0 rutd any 6 > 0, n-e (tan find an no such that 

For a scquenw {g , , ]  corivcrger~t~ to C with probability 1, we 
would (*ondude that, for onc thi~lg, the sequence is also stochastically 
convcrgcnt to C :md nlso that, ,for all n > no, with no sttitably large: 

1 It, is very ~ m b a b l e  that a n y  parlicdar y ,  is within + E  of C. 
2 I t  is dso  very probable that ecery y,, is within f E of C. 

A third form of convergence, wean-square convergence (or con- 
ceryence in Ihe wean)  of :L sequence ( 9 ,  / of random variables is defined 
by the relation 

I t  is sin~plc to show that rnc:l~~-squnre cortvergence implies (but is'not 
i~nplicd by) stotltristic convcrgelice (scc l'rob. (3.20). Mean-square 
corlvcrgc~~w does not. imply :md is not implied by convergence with 
probability 1. 

Determination of the necessary and sufficient conditions for 
sequences of random v:triables to displnyvarious forms of convergence, 
obey vnrious I t l m  of large numbers, and obey cer~t,ral limit theorems is 
~vcll beyond thc scope of ou r  discussion. We do renwrl;, however: 
th:tt, bccause of the limited tools a t  our disposal, the law of large 
rium bcrs obtained in See. 6-3 is un~recessarily weal;. 

P R O B L E M S  
- - - - 
zz 6.01 Lct z. he n random variable with 1'DF f,(xo) = Xe-Xq for xo > 0. - = 8 - - - - - Use t,he Chebyshev inequality to find an upper bound on the quantity - - - - - - - - - - = Prob[ln: - E(x)  1 2 dl - - 
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--------s----- as a function of d. Determine also the true value of this probability as-----

= a function of d.-----.--------- 6-02 In  Sec. 6-3, we obtained the relation-

------------ where yl, y2, . . . were independent identically distributed rand0111-
---- variables. If y isknown to have a Bernoulli l'.\lI? with parameter P,- n 
7 
--
7
-

use thisrelation to find how large n must be if we require t,hat(l/ri) 2 ?/i------ i = 1-----
= be within 40.01 of P with 8 probability of a t  least 0.93. (Ilemember---------- that this is n loose bound and the resulting vnluc of n may bc unneces---
I_--= - sarily large. See Prob. 6.09.)--
i------= 6.03 Let XI, z2, . . . be independent experimental vnlucs of :L rnndon~--
7 
---- variable with PDFf,(xo) = p-l(xo - 0) - p-,l(zo - 1). Consider the------= sequence defiried by---
czzz=z 

Detern~i~iewhether pr not the sequence (y.1 is stochnstically con-
vergent. 

6.04 Consider a Gaussian rarldoni v:wiable .r, with expected value 
E(z)  = 711 arid variance ax2= (?11/2)~. 
a Determine the probability that an experilnental vdue  of z is 

negative. 
b Determine the probability that the sum of four independent cxperi-

mental values of .z. is negative. 
c Two independent experimental values of z (zl,zr) are obtained. 

Determine the PDF and the mean nlld variaritte for: ...
i a.vl + b.x2 ii axl  - 6.7.2 111 1,rI - .T?) a , b > O  

d Determine the probability that the produrt of four independcrlt 
experin~e~italvalues of z is negative. 

6.05 A uscful bound for the area under the tails of a unit nonnal PDI' is 
obtained from the following incqunlity for a >_ 0: 

-=----
= Use this result to obtain lower bounds on the probability that an-------- cxperinleutal value of n Gaussian random variable x is within ------- a k a ,  b & % ,  c + 4 a ,  

-------- of its expected value. Compare these bounds with the true values of--------- these probabilities and with the corresponding bounds obtained from 
---= the Chebyshev inequality.---------

6.06 A noise signal z may be considered to be a Gaussian random va,riahle 
i with an expected value of zero and a variance of uZ2. Assume that any 

experimental value of z mill cause an error in a digital communication 
[ system if i t  is larger than +A.  

a Determine the probability that any particular experimental value 
of z will cause an error if: 
i a,2 = 10-3A2 i j  U z z  = 10-lA2 

i i i  uz2= A2 iv ax2= 4A2 
b For a given value of A ,  what is the largest ox2may be to obtain an 

error probability for any cxperinxntal value of x less than low3? 
10-6? 

6.07 The weight of a Pernotti I'arabolic Pretzel, w, is a contin~ousrandom 
variable described by the probability density function 

---------- a What is the probability that 102pretzels weigh more than 200 ounces?--------- b If ~ i - eselect 4 pretzels independently, what is the probability that--------- exactly 2 of the 4 d l  each have the property of weighing more than------- 2 ounces?--
--= -- c What is the smallest integer (the pret,zeIs are not only inedible, 
--- they are also unbrcaliable) N for n-hieh the total weight of N--------- pretzels will exceed 200 ounces with probability 0.990?-------
E 6.08 Thc energy of any individual particle in a certain s y s t m ~is an inde-
L------- pendent random variable with probability density futictiori-------

--
7 
--
----- The total system energy is the sum of t,hc energies of the individual---= - pnrticles,---
7 
---- Kumeriml n n s ~ e r sare required for parts (a), (b), (c), and (e). 
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a If there are 1,600 particles in the system, determine the probability 
that there are betn-eer~ 780 and 840 energy unit,s in the system. 

b What is the largest number of particles the system may contain if 
the probability that its total energy is less than 410 units must be 
a t  least 0.972;3? 

c Each particle n-ill escape from the system if its energy exceeds 
(In 3)/2 units. If the system originally contained 4,800 particles, 
what is the probability that a t  least 1,700 particles will escape? 

d If there are 10 particles in the system, determine an exact expression 
for thc PDF for the total energy iri the system. 

e Compare the second nud fourth mornent,~ of the answer to (d) with 
those resulting from a central-limit-theorem approximation. 

6.09 Itcdo I'roh. 6.02, using an approximation based on the central limit 
t hcorenl rat her tha.11 the Chebyshev inequality. 

6.10 Detcla-linc and plot the precise PDF for 7.) the sum of four independent 
expcrin~cntal values of randonl variable x, where the I'DF for x is 
,I;(xu) = p-l(xo - 0) - p - l (~o- 1). Compare the nun-lericnl values 
of ;fT(ro) and its Gnusaian approximation at  7.0 = E ( r )  rt Kgr, for 
I< = 0, 1, and 2. 

6.11 Let r' be thc sum of four indepcndcnt experimental vtilues of an 
tial random variable. Compare the numerical values of f,(r,o) cxpone~~ 

and its central limit theorem approximation a t  two = I;l(r) + Kar, for 
I( = 0, 1, and 2. 

6.12 A cwtain toxn has'a Saturday night movie audience of 600 u-ho must 
choosc bct~vecn t ~ o  comp:mble n~ovic thcnters. Assume that the 
n-lovic-going public is composed of 300 rouples, each of which inde- 
pendently ffips a f:\ir coin to decide which theater to patronize. 
a Using n central lin-lit theorem approximat,ion, determine how many 

scats each theater must have so that the probability of exactly one 
theater running out of seats is less th:tn 0.1. 

b Rcpent, assuming that each of the GOO rustomers malies an independ- 
ent decision (instead of acting in pairs). 

6.13 For 3,600 independent tosses of a fair coin: 
a Dctennine a number n such that the probability is 0.5 that the 

number of heads resulting will be bet\\-ecn 1,780 and n. 
b Dcterminc the probability that the number of heads is within $- 1 % 

of its expected value. 

6.14 Reyhb nspirin has exactly lo7 rlscrs, a11 of them fitfully loyal. The 

nm1l)c.r of tablets vonsumcd by :my p:wticular c~uston-lcr OII  m y  011c day 

is a random variable k, described by the probability mass function 

Each customer's Reyab eonsumption is independent of that of all other 
custon~ers. Reyab is sold only i r i  100-tablet bottles. On a day when 
a customer consumes exactly ko tablets, he purchases a new 100-tablet 
bottle of Reyab with probability ko/lOO. 
a Determine the mean and variance of k, the random variable describ- 

ing the Reyab co~~sumption of any particular customer in one day. 
b Determine the mean and variance oft, the random variable describing 

the total number of Reyab tablets consumed in one day. 
c Determine the probability that the total number of tablets consumed 

on any day will differ by more than & 5,000 tablets from the average 
daily total consumption. 

d Determine the probability that a particular customer buys a new 
bottle of Reyab on a given day. 

e What is the probability that a randomly selected tablet of Reyab 
(it was marlied at  the factory) gets consumed on a day when its 

' owner consumes exactly two Reyab tablets? 
f The Clip Pharmacy supplies exactly 30 Reyab customers with their 

entire requirements. What is the pro'bability that this store sells 
exactly four bottles of aspirin on a particular day? 

6.15 A population is sampled randomly (with replacement) to estimate 
S, the fraction of smokers in that population. Determine the sample 
size n such that the probability that the estimate is within k0.02 of 
the true value is a t  least 0.95. In  other words, determine the smallest 
value of n such that 

Prob number of smokers counted (I -
n 




6.17 Consider the number of 3s which result from 600 tosses of a fair 
six-sided die. 
a Determine the probability that there are exactly 100 3s, using a form 

of Stirling's approximation for n! which is very accurate for these 
values, 

b Use the Poisson approxin~ation to the binomial PSIF to obtain the 
probability that there are exactly 100 3s. 

c Repeat part (b), using the central limit theo.em intelligently. 
d Use the Chebyshev inequality to find a lower bound on the proba- 

bility that the number of 3s is between 97 and 103 inclusive, between 
90 and 110 inclusive, and between 60 and 140 inclusive. 

e Repeat part (d), using the central limit theorem and employing the 
DeMoivre-Laplace result when it appears relevant. Compare your 
answers with those obtained above, and comment. 

6.18 A coin is tossed n times. Each toss is an independent Bernoulli 
trial with probability of heads P. Random variable x is defined to be 
the number of heads observed. For each of the following expressions, 
either find the value of K which malies the statement true for all 
n >_ 1, or state that no such value of K exists. 

Example: E(x) = Ank Answer: k = 1 

In the following part, consider only the case for large n: 

6.19 Each performance of a particular experiment is saia to generate one 
"experimental value" of random variable x described by the probability 

j density function 

The experiment is performed K times, and the resulting successive 
1 (and independent) experimental values are labeled XI, x2, . . . , XK. 
i a Determine the probability that x2 and x4 are the two largest of the 

K experimental values. 
j b Given that xl + x2 > 1.00, determine the conditional probability 

that the en~nller of these first two experimental values is smaller than 
0.75. 

c ~e t e rmine  the numerical value of 

A formal proof is not required, but your reasoning should be fully 
explained. 

d If I - = min (~1~22,  . . . ,XX) and s = max ( 2 1 ~ 1 ,. . . J K ) ,  deter-
mine the joint probability density function f , , , (~.~,s~)  for all valucs of 
7'0 and so. 

6.20 Use the Chebyshev irrequality to prove that stochastic convergence 
is assured for any sequence of rundo111 variables which converges in the 
mean-square sense. 

6.21 A simple form of the Cauchy I'DF is given by 

a Determine j'.rT(~). (YOU may require a table of integrals.) 
b Let be the sum of K independent samples of :c. Determine fv*(s). 
c Would you expect lim S,(Z/,) to become Gaussian? Explain.

K-+ 80 

6.22 The number of rabbits in  generation i is ni. Variable ni+l,the num- 
ber of rabbits in generation i + 1, depends on random effects of light, 
heat,, water, food, and predator population, as well as on thenumber 
ni. The relation is 

This states, for instance, that with probability 0.5 there will be three 
times as many rabbits in genera ti or^ i + 1 ns there were in generation i. 

The rabbit population in generation 1 was 2. Find an approxi- 
mation to the PJLF for the number of rabbits in generation 12. (Hint:
To use the central limit theorem, you must find an expression involving 
the s2mt of random variables.) 


