CHAPTER SIX

some
fundamental
limit
theorems

Limit theorems characterize the mass behavior of experimental out-
comes resulting from a large number of performances of an experiment.
These theorems provide the connection between probability theory and
the measurement of the parameters of probabilistic phenomena in the
real world.

BEarly in this chapter, we discuss stochastic convergence, one
important type of convergence for a sequence of random variables.
This concept and an easily derived inequality allow us to establish
one form of the law of large numbers. This law provides clarification
of our earlier speculations (Sec. 3-6) regarding the relation, for large
values of n, between the sum of n independent experimental walues
of random variable z and the quantity nE(z).

We then discuss the Gaussian PDF. Subject to certain restric-
tions, we learn that the Gaussian PDF is often an excellent approxima-
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tion to the actual PDT for the sum of many random Variaples, re?gardless
of the forms of the PDF’s for the individual random variables included
i the S’;‘l}?:s altogether remarkable result i1s known as thg central limit
theorem. A proof is presented for the case where thf: sum1s coplposed of
independent identically distributed ran.dom variables. Fma,llyi. wet
investigate several practical approximation procedures based on limi

theorems.

6-1 The Chebyshev Inequality

The Chebyshev inequalily states an upper boun.d on the .prol.)a.blhty
that an experimental value of any random variable © w11.1 differ t})ly
at least any given positive quantity ¢ from E(2). I‘n particular, the
inequality will provide an upper bound on the quantity

Probllz — E(@)| = ] |
interms of tando,. Aslongas the value of the standard deviationg.1s

known, other details of the PDF f.(xo) are not relevant.
The derivation is simple. With ¢ > 0, we have

ot = [ lo = E@V0) dro >[I0 o = B@ITe0) dro
| [xe — E(I)]ifz(fvo) dxo

0= =

o

zo=E(z)+t

To obtain the above inequality, we note that the integrand in the 1eft};
most integration is always positive. By remo"fmg an interval of leglgl'i
9¢ from the range of that integral, we cannot increase f,he value obt e
integral. Inside the two integrals on the right-hand side of the a love
relation, it is always true that |z — E@)| = . We now rexl)1 ac(c;
[x — E(x))? by t* which can never increase the value of the right-han

side, resulting in

© [E@-—t " ]
ot 2 [207 tre0 dro + [y p P50 420
After we divide both sides by 2 and recognize the Physical interpreta-
tion of the remaining quantity on the right-hand side, we have

T

Probllz — E(@)| > ) < ("7)2

It states, for instance, that the

‘hich 1 i lity. :
which is the Chebyshev inequality B o A oz will

ili i lue of
probability that an experimental va )
be further than Ko, from E(z) is always less than or equal to 1/K
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Since it is a rather weak bound, the Chebyshev inequality finds
most of its applications in general theoretical work. I‘or a random
variable described by any particular PDI, better (though usually more
complex) bounds may be established. We shall use the Chebyshev
bound in Sec. 6-3 to investigate one form of the law of large numbers.

6-2 Stochastic Convergence

A deterministic sequence {x,} = Xy, @, . . . is said to converge to the
limit € if for every ¢ > 0 we can find a finite ne such that

|z — C| < € for all n > n,
If deterministic sequence {x,} does converge to the limit C, we write

lim 2z, =C

Only for pathological cases would we expect to be able to make
equally strong nonprobabilistic convergence statements for sequences
of random variables. Several different tvpes of convergence are defined
for sequences of random variables. In this section we introduce and
discuss one such definition, namely, that of stochastic convergence. We
shall use this definition and the Chebyshev inequality to establish a
form of the law of large numbers in the following section. (We defer
any discussion of other forms of convergence for sequences of random
variables until See. 6-9.)

A sequence of random variables, {y.} = y1, y2, ¥s, - . . , 15 said
to be stochastically convergent (or to converge in probability) to C if, for
cvery € > 0, the condition lim Prob(ly, — €] > ¢ =0 1s satisfied.

n— o

When a sequence of random variables, {y.}, is known to be
stochastically convergent to C, we must be careful to conclude only
that the probability of the event |y, — C| > e vanishes as n — o,
We cannot conclude, for any value of n, that this event is impossible,

We may use the definition of a limit to restate the definition of
stochastic convergence. Sequence {y,} is stochastically convergent to
C if, for any ¢ > 0 and any 8 > 0, it is possible to state a finite value
of ng such that

Prob(ly, ~ C| > ¢ < 8 for all n > ng

Turther discussion will accompany an application of the concept
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of stochastic convergence in the following section and a comparison
with other forms of probabilistic convergence in Sec, §-9.

6-3 The Weak Law of Large Numbers

A sequenee of random variables, {2}, with finite expected values,
is said (o obey a lew of large numbers if, in some sensc, the sequence

defined by

M, = }1 ,-21 i

converges to its expected value. The type of convergence which
applies determines whether the law i3 snid to be weak or sh'a'ng. ‘

Let 11, yz, . - - form a sequence of independent identically d'ls-
tributed random variables with finite expected values E(y) and finite
variances ¢,2.  In this section we prove that the sequence

byt
- T

Mn

is stochastically convergent to its expected value, and therefore the
scquence (| obeys a (weak) law of large numbers. . .

For the conditions given above, random variable M,,‘ is the
average of n independent experimental values of random variable y.

Quantity 3. is known as the saniple mean. .
From the definition of M, and the property of expectations of

sums, we have
gy = 9 - pe)

and, because multiplying n random variable y hy c defines a new random
variable with a variance cqual to ¢to,?, we have
na,t ot oy
1 Moy _ 9y _
ot =7 n o, v
To establish the weak law of large numbers for the case 'of
interest, we simply apply the Chebyshev inequality to M, to obtain

o T
mmML~HMM24g({0

and, substituting for M., F(M,), and o, we find
" a 2
Pmb[l;‘I Yy~ Ew |2 e] <
(=1

(S8ec Prob. 6.02 for a practical application. of this relation.) Upon
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n—t

: 1Y
lim Pro U a 21 wi — E(y) | = c]

which i3 known a3 the weak law of large numbers (in this case for
random varieble y). The law states that, as n — e, the probability
that the average of n independent experimental values of random
varinble y differs from F(y) by more than any nonzero e goes to zero.
We have shown that as long as the variance of u random variable is
finite, the random variable obeys the wenk law of large numbers,

Neither the independence of the y's nor the finite variance o2
conditions are necessary for the {y.} sequenee to obey a faw of large
numbers.  Proof of these statements is beyond the scope of this book.

Let’s apply our result to a situation where the y's are inde-
pendent Bernoulli random varinbles with parameter P, Suppose that
there are n trials and & is the number of successes.  Using our result
above, we have
lim Prob(’E - P| > é) =0
S L7
which is known as the Bernoulli law of lurge numbers.  This relation iy
one of the bases of the relaltive-frequency interpretation of probabilities,
Often people read into it fur more than it says.

For instance, let the trinls be eoin Aips and the successes heads.
H we flip the voin any number of times, it is still possible that all out-
comes will be heads. If we know that P i3 o valid parameter of a
eoin-flipping process and we set out to estimate P by the experimental
value of k/n, there is no value of # for which we could be certain that
our experimental value was within an arbitrary 1 eof the true value of
parameter J, ,

The Bernoulli law of large numbers does not imply that % con-
verges to the limiting value nl? asn — . Weknow that the standard
deviation of ¥, in fact, becomes infinite as n — « (sec Sec. 3-6).

6-4 The Gaussian PDF

We constder a very important PDT which deseribes a vast number of
prohabilistic phenomena,
The Gaussian {or normal) PDF iz defined to be

filza) == =

2za

g~ r—m) 1 7at — S Zo _<__ -
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where we have written a PDF for random variable z with parameters
m and 0. The s transform of this PDI is obtained from.

1
\V2ro

f7(s) = B™) =

fm . e—szoe—(a:o—m)‘/%z d(l?o
z

p= —®

Tg JBET

where the expression A(zo) is given by
m? _ 2mxq
20 20?

= ‘,-;:2 {[zo + (so? — m)}? — st¢* + 2mso?}

2
Alw) = sz + 55 +

In the above equation, we have carried out the alggbraic opemtion
known as “completing the square.”” We may substitute this result

into the expression for f,7(s),

® 1
£,7(s) = etsatin=—om Lo&_w

V2o

Note that the integral is equal to the total area under a Gau‘ss‘ian PDF
for which m has been replaced by the cxpress'ion m — so?.  This change
displaces the PDY with regard to the To axis but does not change the
total area under the curve. Since the total area under any PDI ml.lst
be unity, we have found the transform of a Gaussian PDF with
parameters m and ¢ to be

.7 (5)-= e 1m—em

Using the familiar relations

B = - [£476)|

e——(z‘,-)-.n71~m)‘1/202 dl:o

8=0

2
ﬁuﬁ%nmw{%mw]Lo
we evaluate the expected value and the variance of the Gaussian PDT
to be
E@) =m o?=9d°
We have learned that a normal PDY is specified by two parame-

ters, the expected value E(x) and the standard deviation o, The
normal PDY and its s transform are

@) =~ tmEernt —w Sm <
x

\2r o, -

sz (8) = e(s’af} 2)—sE(x)

The PDF for a sum of independent Gaussian random variables is itself a
Gaussian PDF.
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A sketch of the normal PDF, in terms of E(z) and o, follows:

fx (x4)

0135 .
/2 ox .' .'
L i 1 N %
E(x)

Suppose that we are interested in the PDT for random variable
‘w, defined to be the sum of two independent Gaussian random variables
z and y. We use the s transforms

f,T<S) = p(s%0.}D—sL(x) and f),T(S) = glste, IN—3Ey)

and the relation for the transform of a PDF for the sum of independent
random variables (Sec. 3-3) to obtain

VfwT(S) = ij;'(s)'fyT“) =-.Vr.g(sr’VIQ)(w,’-!—av’);a[é(z);}.g(y” )

We recognize this to be the transform of another Gaussian PDT.
Thus we have found that

A similar property was obtained for Poisson random variables in
Sec. 4-7.

When one becomes involved in appreciable numerical work with
PDI’s of the same form but with different parameters, it is often
desirable to suppress the parameters E(x) and ¢,% of any particular
situation and work in terms of a unit (or nornalized, or standardized)
random variable. A unit random variable has an expected value of
zero, and its standard deviation is equal to unity. The unit random
variable y for random variable z is obtained by subtracting E(z) from =
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and dividing this difference by o.

_x = Ix)
==

Y

and we may demonstrate the properties,
- L V) B
o - 5[Z 0] B0 B _,

T2 BG) _ o} - Bl

Oz

o = Elly — EQP} = B {[

It happens that the cumulative distribution function, p.< (),
for a Gaussian random variable cannot be found in closed form. We
shall be working with tables of the CDI for a Gaussian random
variable, and it is for this reason that we are interested in the discussion
in the previous paragraph. We shall be concerned with the unit
normal PDF, which-is given by

1
Sulyo) = \/57;

[

et —w <y < w, E() =0, o =1

We define the function (1) to be the CDT for the unit normal PDFT,

Yo

o 1
) = pusu) = [ fulew) doo = —= [

e~!2 dey,

and extensive tables of ®(yq) exist.
To make use of tables of ®(yq4) for a Gaussian (but unstand-

ardized) random variable &, we need only reeall the relation
z — E(zx)

Oz

y:

and thus, for the CDT of Gaussian random variable z, we have

Zo — E(x)] % [xo - E(x)]

z Tz

Pz<(%0) = py< [
The argument on the right side of the above cquation is equal to the
number of standard deviations o, by which xo excceds Z(x). If values
of xp arc measured in units of standard deviations from £(x), tubles of
the CDI for the unit normal PDI" may be used directly to obtain values
of the CDTI p,s(.‘l?o).

Since a Gaussian PDI is symmetrical about its expected value,
the CDI" may be fully deseribed by tabulating it only for values above
(or below) its expeeted value.  The following is u brief four-plice table
of ®(y,), the CDI for a unit normal random variable:
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Yo ®(yo) Yo (o) vo  ®(yo) Yo ®(yo)

0.00 0.5000
0.10 0.5398

1.00 0.8413 2.00 0.9772 3.00 0.9987
1.10 0.8643 2.10 0.9821 3.10 0.9990
0.20 0.5793 1.20 0.8849 2.20 0.9861 3.20 0.9993
0.30 0.6179 1.30 0.9032 2.30 0.9893 3.30 0.9995
0.40 0.6554 1.40 0.9192 2.40 0.9918 3.40 0.9997
0.50 0.6915 1.50 0.9332 .50 0.9938 3.60 0.9998
0.60 0.7257 1.60 0.9452 .60 0.9953
0.70 0.7580 1.70 0.9554 .70 0.9965
0.80 0.7881 1.80 0.9641 .80 0.9974
0.90 0.8159 1.90 0.9713 .90 0.9981

NN NN W

To obtain ®(y,) for yo < 0, we note that the area under Tfu(yo)
is equal to unity and that the shaded areas in the following sketches
are equal

ACN £,3,)

PR

—>%

and we may use-the relation
®(~yo) = 1 — P(yo)

We present a brief example, Suppose that we wish to determine
the probability that an experimental value of a Gaussian random
variable x falls within + ko, of its expected value, for £ = 1, 2, and 3.

Thus, we wish to evaluate
Probllx — E(x)] < ko,]  fork =1, 2, and 3

Since k is already in units of standard deviations, we may use the ®(y,)
table directly according to the relation

Probllz — E(v)| < koul = ®(k) — ®(—k) = &(k) — [1 — ®(k)]

i

0.682 k=1
=20(k) —1=1{0954 k=2
0997 k=3

Our result states, for instance, that the probability that an experi-
mental value of any Gaussian random variable z falls within an interval
of total length 40, which is centered on E(x) is equal to 0.954.
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6-5 Central Limit Theorems

Let random variable » be defined to be the sum of n independent
identically distributed random variables, each of which has a finite
expected value and a finite variance. It is an altogether remarkable
fact that, as n — «, the CDF p.<(ro) approaches the CDF of a Gaussian
random variable, regardless of the form of the PDF for the individual
random variables in the sum. This is one simple case of a central limit
theorem.

Every central limit theorem states some particular set of con-
ditions for which the CDF for a sum of n random variables will approach
the CDF of a Gaussian random variable as n — .

As long as it is not always true that a particular few of the
member random variables dominate the sum, the identically distributed
(same PDT) condition is not essential for a central limit theorem to
apply to the sum of a large number of independent random variables.
The #ndependence condition may also be relaxed, subject to certain
other restrictions which are outside the scope of this presentation.

Since many phenomena may be considered to be the result of a
large number of factors, central limit theorems are of great practical
significance, especially when the effects of these factors are either
purely additive (r = 21422+ - <) or purely multiplicative
(log r = log z; + log z2 + - - °).

We first undertake a brief digression to indicate why we are
stating central limit theorems in terms of the CDF p,< (7o) rather than
the PDF f.(rq).

There are several ways in which the members of a sequence of
deterministic functions {g.(zs)} = gi(zo), g2(x0), . . . can “approach”
the corresponding members of a sequence of functions {A.(ze)} in the
limit as n— «. However, the simplest and most easily visualized
manner is poini-by-point convergence; namely, if for any particular
zo and for any ¢ > 0 we can always find an n, for which
lgn(Z0) — ha(z0)| < € for all n > ng
This is the type of convergence we wish to use in our statement of the
central limit theorem.

Consider a case where random variable r is defined to be the sum
of n independent experimental values of a Bernoulli random variable
with parameter P. For any value of n we know that r will be a
binomial random variable with PMF

pr(ro) = <n>P'o(1 — P)» =012 ...,n
70

sia w

1 Let Ty Zo ..
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This PMF, written as a PDF, will always include aset of n + 1 impulses
and be equal to zero between the impulses. Thus, f.(r) can never
approach a Gaussian PDT on a point-by-point basis. However, it is
possible for the CDF of r to approach the CDF for a Gaussian random
variable on a. point-by-point basis as 7 — , and the central limit
theorem given in the first paragraph of this section states that this is
indeed the case.

We now present a proof of the form of the central limit theorem
stated in the opening paragraph of this section.
: -, T» be independent identically distributed random
variables, each with finite expected value E(x) and finite variance o,2.
We define random variable r to be r = T+ x4+ - - - + z,, and we
wish to show that the CDF D-<(r0) approaches the CDT of a Gaussian
random variable as n — <,

2 From the independence of the z’s and the definition of r, we have

JE(s) = [L7(s)]

3 Note that for any random variable Y, defined by y = ar + b, we may

ff)blltain Ji"(s) in terms of £,7(s) from the definition of the s transform as.
ollows:

IT6) = Ble™) = Bleere) = e [° e (o) dr,

We may recognize the integral in the above equation to obtain

fvT(s) = e—’bfrT(as)

We shall apply this relation to the case where y is the standardized

random variable for 7,

r— E(r —nE n
G()zr nE(z) U | b=_\/nE(x)

v V1o, Vo, s

to obtain f,7(s) from the expression for fT(s) of step 2.

75(@s) = [ @E@ fos/7 [T (\/:_L (T) Jn

So far, we haye found the s transform for ¥, the standardized sum of n
independent identically distributed random variables,

i+ 22+ - -+ 2, — nE(z)
Ve,

y:

Yy =

4 The above expression for f/"(s) may be written with es£G)/e:v and

s . .
A (\—77_;:) each approximated suitably near to s = 0. These
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approximations are found to be

() -1 - B2 () + 52 ()

When we multiply and collect terms, for suitably small s (or, equiva-
lently, for suitably large n) we have

1(s) = [1 + %%]

5 We use the relation

lim (1 + (—l)n = e°
n—s n

to take the limit as n — o« of the approximation for f,7(s) obtained
in step 4. This results in

lim £,7(s) = e"/2

n—w

and we have shown that the s transform of the PDT for random variable
y approaches the transform of a unit normal PDT.  This does not tell
us how (or if) the PDT f£,(y0) approaches a Gaussian PDT on a point-
by-point basis. But a relation known as the continuity theorem of
transform theory may be invoked to assure us that

lim f,,g(?/o) = ®(yo)

n—wo

[This theorem assures us that, if lim f,7(s) = f,7(s) and if fu7(s)

is a continuous function, then the CDTI for random variable y. con-
verges (on a point-by-point basis) to the CDI of random variable w.
This convergence need not be defined at discontinuities of the limiting
CDF ]

6 Since y is the standardized form of r, we simply substitute into the
above result for f,<(yo) and conclude the following.

If r=21+zs4+ - + 2, and 21, T2, . . . , T, are independent
identically distributed random variables each with finite expected value

E(z) and finite standard deviation ¢, we have

{ro — E(a‘):l E@r)

Or

nk(z)
Vno,

lim p,<(r0) = @

n— o

T

This completes our proof of one central limit theorem.
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6-6 Approximations Based on the Central Limit Theorem

We continue with the notation » = z; + 23 + - - - + z., where the
random variables xy, vs, . . . , &, are mutually independent and identi-
cally distributed, cach with finite expected value FE(x) and finite
variance ¢,2.  If every member of the sum happens to be a Gaussian
random variable, we know (from Seec. §-4) that the PDI f,(r¢) will also
be Gaussian for any value of n.  Whatever the PDF for the individual
members of the sum, one central limit theorem states that, as n — o,
we have

m¢w~¢[ﬂlﬁ@]

Gr

As n — «, the CDI for r approaches the CDT for that Gaussian ran-
dom variable which has the same mean and variance as r.
If we wish to use the approximation

pst) ~ 9|2 E0 |

T

for “large’” but finite values of n, and the individual z;s are not Gaussian
random variables, there are no simple general results regarding the
precision of the approximation.

If the individual terms in the sum are described by any of the
more common PDF’s (with finite mean and variance), f,(ro) rapidly
(n = 5 or 10) approaches a Gaussian curve in the vicinity of E(r).
Depending on the value of n and the degree of symmetry expected in
f+(ro), we generally expect .(ro) to be poorly approximated by a
Gausstan curve in ranges of 7, more than some number of standard
deviations distant from E(r). For instance, even if the t/s can take
on only positive experimental values, the use of an approximation
based on the central limit theorem will always result in some nonzero
probability that the experimental value of z; + 2, + -+ ~ 4 2, will
be negative.

The discussion of the previous paragraph, however crude it may
be, should serve to emphasize the central property of approximations
based on the central limit theorem.

As one example of the use of an approximation based on the
central limit theorem, let random variable » be defined to be the sum
of 48 independent experimental values of random variable z, where the
PDF for z is given by

Felwa) = 0 otherwise
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We wish to determine the probability that an experimental value of r
falls in the range 22.0 < r < 25.0. By direct calculation we easily
obtain

E(x) = 0.5 ot
E@r) = 48E(z) = 24.0 0.’

1/12
480, = 4.0

Il

In using the central limit theorem to approximate
Prob(22.0 < » £ 25.0)

we are approximating the true PDF f,(ro) in the range 22 < » < 25 by
the Gaussian PDF

1 1

= EM120, —

/2 o 2+/2r

If we wish to evaluate Prob(22.0 < r < 25.0) directly from the table
for the CDT of the unit normal PDF, the range of interest for random
variable r should be measured in units of ¢, from E(r). We have

e (ro~24)%/8

fr(?‘o) =

Prob(22.0 < r < 25.0) = Prob{—1.0s, < [r — E(n)] < 0.50,}
#(0.5) — ®(—1.0)

2(0.5) — [1 — #(1.0)]

0.6915 — 1.0000 4 0.8413

= 0.5328

I

[

It happens that this is a very precise approximation. In fact,
by simple convolution (or by our method for obtaining derived distribu-
tions in sample space) one can show, for the given f.(zo), that even for
n = 3orn = 4, f.(rg) becomes very close to a Gaussian PDF over most
of the possible range of random variable r (see Prob. 6.10). However,
a similar result for such very small n may not exist for several other
common PDF’s (see Prob. 6.11).

6-7 Using the Central Limit Theorem for the Binomial PMF

We wish to use an approximation based on the central limit theorem
to approximate the PMF for a discrete random variable. Assume we
are interested in events defined in terms of k, the number of successes
in 7 trials of a Bernoulli process with parameter P. From earlier work
(Sec. 4-1) we know that

pkUCo) = (Zo) Pk"‘(l - P)n-——k, ko =0, 1, 2, P

oy aen s

pylk,)
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and if @ and b are integers with b > a, there follows

b
Prob(a <k <b) = z (n > Pko(1 — P)»*
ko
ko=a
Should this quantity be of interest, it would generally require a very
unpleasant calculation. So we might, for large 7, turn to the central
limit theorem, noting that

k=mtmt o+

where each z; is an independent Bernoulli random variable.
If we applied the central limit theorem, subject to no additional
considerations, we would have

Prob(a < k < b) = & [Lﬂ@]

Ok

e [a - E(k)]

Ok

E(k)

Ok

nP
v/nP(1 = P)

We have approximated the probability that a binomial random variable
f: falls in the range ¢ < k£ < b by the area under a normal curve over
this range. In many cases this procedure will yield excellent results.
By looking at a picture of this situation, we shall suggest one simple
improvement of the approximation.

i

~— Normal approximation
to the binomial PMF

\kO

The bars of pi(ke) are shown to be about the same height as the
approximating normal curve. This must be the case if n is large enough
for the CDF’s of pi(ko) and the approximating normal curve to increase
by about the same amount for each unit distance along the k¢ axis (as
a result of the central limit theorem). The shaded area in this figure
represents the approximation to Prob(a < k < b) which results from
direet substitution, where we use the CDI' for a normal curve whose
expected value and variance are the same as those of pi(k,).

By considering the above sketch, we might expect that a more
reasonable procedure could be suggested to take account of the discrete
nature of k. In particular, it appears more accurate to associate the
area under the normal curve between ko — 0.5 and k; + 0.5 with the
probability of the event that random variable k takes on experimental
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value ko. This not only seems better on a term-by-term basis than
direct use of the central-limit-thcorem approximation, but we can also
show one extreme case of what may happen when this suggested
improvement is not used. Notice (from the above sketch) that, if we
have b = a + 1 {with ¢ and b in the vicinity of E(z)], direct use of the

CDF for the normal approximating curve will produce an approxi-

mation which is about 509, of the correct probability,
Proble £k <a-+1) = pla) + pla + 1)

When using the central limit theorem to approxin_nate the
binomial PMT, the adoption of our suggested improvement leads us
to write,

=

~o|bEti=nP) ﬂ;i:_ﬁﬂ}
Prob(a < k < b) Q[\/m] q’[\/m

This result, a special case of the central limit theorem, is known as the
DeM oivre-Laplace limit theorem. 1t can be shown to yield an improve-
ment over the case in which the +4 terms are not used. These cor-
rections may be significant when a and b are close {(b — a) /o, < 1] or
when a or b is near the peak of the approximating Gaussian PDF.

For example, suppose that we flipped a fair coin 100 times, and
let k cqual the number of heads. If we wished to approximate
Prob(48 < k < 51), the +4 corrections at the end of the range of k
would clearly make a significant contribution to the accuracy of the
approximation. On the other hand, for a quantity such as Prob(23 <
k < 65), the effect of the +4% is negligible.

One must always question the validity of approximations; yet
it is surprising how well the DeMoivre-Laplace limit theorem applies
for even a narrow range of k [near E(k)] when n is not very large. We
shall do one such problem three ways. After obtaining these solutions,
we shall comment on some limitations of this approximation technique.

Consider a set of 16 Bernoulli trials with P = 0.5. We wish to
determine the probability that the number of successes, k, takes on an
experimental valueequal to 6,7, or8. First we do the exact calculation,

8
Prob(6 < k < 8) = E (1106) Pr(1 — P)tt—k = 0.49313

ko=6 0

If we carelessly make direct use of the normal approximation, we have

Prob(6 < k < 8) ~ & (g_;j) — 0 (6—5—’?) — 0.34135
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which, for reasons we have discussed, is poor indeed, Finally, if we
use the +4 correction of the Delloivre-Laplace theorem, we find

] 1 — 1
Prob(6 < k < 8) ~ & (i%ﬁ _ (LQL——Z‘) = 0.49306
which is within 0.02¢; of the correct value.

If P is too close cither to zero or to unity for a given », the
resulting binomial PMT will be very asymmetrie, with its peak very
close to ky = 0 or to ko = n and any Gaussian approximation will be
poor. A reasonable (but arbitrary) rule of thumb for determining
whether the Delloivre-Laplace approximation to the binomial PA[F
may be employed [in the vicinity of (k)] is to require that

nP > 3q, n(l — P) > 3¢, with oi = /nP(1 — P)

The better the margin by which these constraints are satisfied, the

la'rger the range about % (k) for which the normal approximation will
yield satisfactory results.

6-8 The Poisson Approximation to the Binomial PMF

We bave noted that the DeMoivre-Laplace limit theorem will not
provide a useful approximation to the binomial PMFY if either P or
1 - Pis very small.  When cither of these quantities is too small for
a given .vulue of n, any Gaussian approximation to the binomial will
be unsatisfactory. The Gaussian curve will remain symmetrical about
E(k?, even though that value may be only a fraction of a standard
deviation from the lowest or highest possible experimental value of the
hinomial random variable.

If n is large and P is small such that the DelMoivre-Laplace
theorem may not be applied, we may take the limit of

Prlko) = ( ”) Pr(1 — P)nk,
ko

by letting n — « and P — 0 while always requiring nP = ux.  Our
r(.esullt. will provide a very good term-by-term approximation for the
significant members (%o nonnegative and within a few or of E(k)] of the
binomial PMF for large »n and small P.

I'irst, we use the relation nP = p to write

(ko) = nn —1) - (0 —ky+ 1) <£>k,, (1 N &>n_ku

ko! n

and, rearranging the terms, we have

pulke) = M = 1) - 'n‘h(n — ko + 1) kﬁ‘_;'<l #)""“’
0!
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Tinally, we take the limit as n — o to obtain

‘ kig=h  (pP)kog— (P
lim pi(ko) = #ko! = ¢ Eo!

The above result is known, for obvious reasons, as the Poisson approri-
mation lo the binomial PMF. ’

Yor a binomial random variable k, we may note that, as P — 0,
the E(k)/oy ratio is very nearly equal to 4/nP. Tor example, if
n = 100 and P = 0.01, the expected value E(k) = nP = 1.0 is only
one standard deviation from the minimum possible experimental
value of k. Under these circumstances, the normal approximation
(DeMloivre-Laplace) is poor, but the Poisson approximation is quite
accurate for the small values of ko at which we find most of the proba-
bility mass of pi(ko).

As an example, for the case n = 100 and P = 0.01, we find

k0=0 k»o=1 ko=3 ku=10

Exact value of pi(ke) 0.3660 0.3697 0.0610 7108
Poisson approximation 0.3679 0.3679 0.0613 10 - 108
DeMoivre-Laplace 0.2420 0.3850 0.0040 <2107

approximation

6-9 A Note on Other Types of Convergence

In Sec. 6-2, we defined any sequence {y,} of random variables 'to be
stochastically convergent (or to converge in probability) to C if, for
every ¢ > 0, the condition

lim Prob(Jy. — C| > ¢ =0

n— w

is satisfied. N

Let A, denote the event |y. — C| < e. By using the definition
of a limit, an equivalent statement of the condition for stochastic con-
vergence is that, for any ¢ > 0 and any & > 0, we can find an no such
that

Prob(4,) >1 — 3§

However, it does not follow from stochastic convergence that for any
¢ > 0 and any 8 > 0 we can necessarily find an no such that

PTOb(An0+[AnB+2A,,v+3 © ) >1—-38

For a stochastically convergent sequence {y,}, we would con-
clude that, for all n > nq, with no suitably large:

for alln > mo
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1 It is very probable that any particular y. is within +e of C.
2 It is not necessarily very probable that every y, is within +e of C.

A stronger form of convergence than stochastic convergence is
known as convergence with probabilily 1 (or convergence almost every-
where). The sequence {7, of random variables is defined to converge
with probability 1 to C if the relation
Prob(limy, = C) =1

it 0
is satisfied. Convergence with probability 1 implies stochastic con-
vergence, but the converse is not true. I'urthermore it can be shown
(by using measure theory) that convergence with probability 1 does
require that, for any ¢ > 0 and any § > 0, we can find an ne such that

Prob(4, 1 An2dnges - 0 ) > 1 — 38

I'or a sequence {y,} convergent to C with probability 1, we
would conclude that, for one thing, the sequence is also stochastically
convergent to C and also that, for all n > no, with ny switably large:

1 It is very probable that any particular y, is within +e of C.
2 It is also very probable that every y, is within +e of C.

A third form of convergence, mean-square convergence (or con-
vergence in the mean) of a sequence {y,} of random variables is defined
by the relation
lim E[(y, — )Y =0
et
It is simple to show that mean-square convergence implies (but is not
imphied by) stochastic convergence (see PProb. 6.20). Mean-square
convergence does not imply and is not implied by convergence with
probability 1.

Determination of the necessary and sufficient conditions for
sequences of random variables to display various forms of convergence,
obey various laws of large numbers, and obey central limit theorems is
well beyond the scope of our discussion. We do remark, however,
that, because of the limited tools at our disposal, the law of large
numbers obtained in Sec. (-3 is unnecessarily weak.

PROBLEMS

6.01 Let x be a random variable with PDI fi(zs) = Ae™*= for 2z, > 0.

Use the Chebyshev inequality to find an upper bound on the quantity
Prob[la — E(z)| > d}
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as o funetion of 4. Determine aso the true value of this probability as
a function of 4.

6.02 In Sec. 6-3, we obtained the relation

Prob [

1y oyt

PEREIE e

where 1, ¥z, . . . were independent identically distributed random

variables, If y is.known to have a Bernoulli PMY with parameter P,
n

use this relation to find how large » must be if we require that{1/n} Z W

ol
be within +0.01 of P with a probability of at icast 0.93.  (Remember
that this is a loose bound and the resulting valuc of n may be unneces-
garily large. See Prab. 6.09.)

603 Lot z, x5, . . . be independent experimental values of andom
variable with PDF f,(x0) = ga{ze — 0} — poa(ze = 13. Consider the
sequence defined by

Y = mMax (xh'r!) e :‘tﬂ)

Determine whether or not the sequence {y. is stochastically con-

vergent.

6.08 Consider a Gaussian random variable », with expeeted value
E(x) = m and variance 0,2 = (n/2)% -
a Dectermine the probability that an experimental value of T is

negative, ' .
b Determine the probability that the sum of four independent experi-

montal values of x is negative. '
¢ Two independent experimental values of @ {z),77) are obtained.
Determine the PDF and the mean and variance for:

experimental values of & is negative.

obtained from the following incquality for e 2 0:

=1 g [" I Zo o2y
- = pr— T4 X _<_ ——l e I
pizc(—a) L ‘\/'2#8 ] s Vir o
Use this result to obtain lower bounds on the probabilil‘,)-r that an
experimental value of o Gaussian rancdiom variable z is within
a to, b +2s, c +4do,

i ar, + bx; il ax, — brs Wil ey — 7o s b>0
d Determine the probubility that the product of four independent

6.05 A uscful bound for the area under the fails of a unit normai PDF is

B e e e e
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of its expected value. Compare these bounds with the true values of
these probabilities and with the corresponding bounds obtained from
the Chebyshev inequnlity,

6.06 A noisesignal 2 may be considered to be o Gaussian random variable
with an expected value of zero and a variance of ¢.2.  Assume that any
experimental valuc of x will cause an error in a digital communication
system if it is larger than +4.

a Determine the probability that any particular experimental value
of x will cause an error if:
I o7 = 1072472 i 0.7 = 10—14°?
il o2 = A2 v o2 = 442
b For a given value of A, what is the largest ¢.? mnay be to obtain an
error probability for any cxperimental value of z less than 10-?
10-¢?

6.07 The weight of a Pernotti Parabolic 'retzel, w, is a continuous randoin
variable deseribed by the probability density function

£, (1) _
] WeS 1
wo=1 lSw, 52

! FAUSER S 0
3wy 25w, <3
4] 35w,

) "’u( ounces)

a What is the probability that 102 pretzels weigh more than 200 cunces?

b If we seleet 4 pretzels independently, what is the probability that
exactly 2 of the 4 will cach have the property of weighing more than
2 ounces?

€ What is the smailest integer (the pretzels are not only imedible,
they nre alse unbreakable) N for which the total weight of N
pretzels will excced 200 ounces with probability 0.9907

6.08 The energy of any individual particle in a certain system is an inde-
pendent random variable with probability density function

oy | 2e2Es E,.20
.rh'(]lﬂ) - 0 Hﬁ <0
The total system energy is the sum of the energies of the individual
particles,

Numerical answers ave required for parts {(a), (b), {¢), and ().
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a If there are 1,600 particles in the system, determine the probability
that there are between 780 and 840 energy units in the system.

b What is the largest number of particles the system may contain if
the probability that its total energy is less than 440 units must be
at least 0.97257

¢ Each particle will escape from the system if its energy exceeds
(In 3)/2 units. If the system originally contained 4,800 particles,
what is the probability that at least 1,700 particles will escape?

d If there are 10 particles in the system, determine an exact expression
for the PDT for the total energy in the system.

e Compare the second and fourth moments of the answer to (d) with
those resulting from a central-limit-theorem approximation.

6.09 Redo Prob. 6.02, using an approximation based on the central limit
theorem rather than the Chebyshev inequality.

6.10 Determine and plot the precise PDF for 7, the sum of four independent
experimental values of random variable z, where the PDF for a is
Je(@e) = poa(ve — 0) — poy(xo — 1). Compare the numerical values

K =0,1, and 2.

(T

6.11 Let » be the sum of four independent experimental values of an
exponential random variable. Compare the numerical values of f.(rq)
and its central limit theorem approximation at ro = F(r) + Ka,, for
K =0,1,and 2.

6.12 A certain town has a Saturday night movie audience of 600 who must
choose between two comparable movie theaters. Assume that the
movie-going public is composed of 300 couples, each of which inde-
pendently flips a fair coin to decide which theater to patronize.

a Using a central limit theorem approximation, determine how many
seats each theater must have so that the probability of exactly one
theater running out of seats is less than 0.1.

b Repeat, assuming that each of the 600 customers makes an independ-
ent decision (instead of acting in pairs).

6.13 For 3,600 independent tosses of a fair coin:
a Dectermine a number n such that the probability is 0.5 that the
number of heads resulting will be between 1,780 and n.
b Determine the probability that the number of heads is within £1%
of its expected value.

= number of tablets consumed by any particular customer on any one day

of f,(ro) and its Gaussian approximation at ro = F(r) + Ko, for

6.14 Reyab aspirin has exactly 107 users, all of them fitfully loyal.  The.
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is a random variable %, described by the probability mass function

4 — ko

Palko) = 10

ke =0,1,2 3

Each customer’s Reyab consumption is independent of that of all other
customers. Reyab is sold only in 100-tablet bottles. On a day when
a customer consumes exactly ko tablets, he purchases a new 100-tablet
bottle of Reyab with probability k,/100.

a Determine the mean and variance of k, the random variable deserib-
ing the Reyab consumption of any particular customer in one day.

b Determine the mean and variance of t, the random variable describing
the lotal number of Reyab tablets consumed in one day.

¢ Determine the probability that the total number of tablets consumed
on any day will differ by more than + 5,000 tablets from the average
daily total consumption.

d Determine the probability that a particular customer buys a new
bottle of Reyab on a given day.

e What is the probability that a randomly selected tablet of Reyab
(it was marked at the factory) gets consumed on a day when its
owner consumes exactly two Reyab tablets?

f The'z Clip Pharmacy supplies exactly 30 Reyab customers with their
entire requirements. What is the probability that this store sells
exactly four bottles of aspirin on a particular day?

6.15 A popula.tion is sampled randomly (with replacement) to estimate
iS-, the fraction of smokers in that population. Determine the sample
size n such that the probability that the estimate is within +0.02 of

the true value is at least 0.95. In other words, determine the smallest
value of n such that

Prob (

6.16 Consider Fhe _following model for the weight gain of a prehistoric
neopalenantioctipus. His (or her) weight gain in pounds on any par-

;)iil;i?r day was an independent discrete random variable k, with the
h

number of smokers counted
n

- s[ < 0.02) > 0.95

0.74 ko = 0.50
Pilko) = { 0.25 ko = 4.00
0.01 ko = 200.0

Using this crude model, determine an approximation to the PDF for

(tihe weight of one such animal when it expired at the ripe age of 100,000
ays.
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6.17 Consider the number of 3s which result from 600 tosses of a fair
six-sided die.
a Determine the probability that there are exactly 100 3s, using a form
of Stirling’s approximation for n! which is very accurate for these
values,

nl = A/2r e-mnntos

b Use the Poisson approximation to the binomial PMT to obtain the
probability that there are exactly 100 3s.

¢ Repeat part (b), using the central limit theo.em intelligently.

d Use the Chebyshev inequality to find a lower bound on the proba-
bility that the number of 3s is between 97 and 103 inclusive, between
90 and 110 inclusive, and between 60 and 140 inclusive.

e Repeat part (d), using the central limit theorem and employing the
DeMoivre-Laplace result when it appears relevant. Compare your
answers with those obtained above, and comment.

6.18 A coin is tossed n times. Each toss is an independent Bernoulli
trial with probability of heads P. Random variable z is defined to be
the number of heads observed. For each of the following expressions,
either find the value of K which makes the statement true for all
n > 1, or state that no such value of K exists.

Example: E(z) = An*

a E(;i”l) =Bnt* b E{lz — E@J} = Cn* ¢ E(?) = Dn*
In the following part, consider only the case for large n:

d Prob (‘P - g[ < Fn") ~0.15

Answer: k = 1

6.19 FEach performance of a particular experiment is said to generate one
“‘experimental value” of random variable z described by the probability

density function

iy - |1 0 <z <t
S otherwise

The experiment is performed K times, and the resulting successive

(and independent) experimental values are labeled zy, 73, . . . , Zx.

a Determine the probability that x; and z, are the two largest of the
K experimental values.

b Given that z, + z, > 1.00, determine the conditional probability
that the smaller of these first two experimental values is smaller than

0.75.

il

T

I
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¢ Determine the numerical value of

K
lim Prob (! K_ E zi| < _ISL_H_)
K=o 2.4 23

A formal proof is not required, but your reasoning should be fully
explained.

d If.r = mi.n'(:vl,.rg, -+ 5%k) and s = max (xy,2y, . . . ,2x), deter-
mmcdthe Joint probability density function Jr.s(ro,80) for all values of
ro and sq.

6.20. Use the Chebyshev inequality to prove that stochastic convergence
1s assured for any sequence of random variables which converges in the
mMean-square sense.

6.21 A simple form of the Cauchy PDF is given by
Je(o) = [r(1 + x9)]?

a Determine £,7(s). (You may require a table of integrals.)
b Let y be the sum of K independent samples of x. Determine J,7(s).
¢ Would you expect Il(xm Jv(yo) to become Gaussian? Explain.

=0 <r < e

6.22 The num.ber.of rabbits in generation 7 is ;. Variable Niy1, the num-
ber of rabbits in generation 7 -+ 1, depends on random effects of light,
heat, water, food, and predator population, as well as on the number
n;.  The relation is

0.2 7=1
p"wl(jnl') = 03 J = 2
05 57=3

'IjhlS states, for instance, that with probability 0.5 there will be three
times as many rabbits in generation 7 + 1 as there were in generation 7

' The rabbit population in generation 1 was 2. Find an approxi;
mation to the PMF for the number of rabbits in generation 12. (Hint:
To usc the central limit theorem, you must find an expression involvin :
the sum of random variables.) ¢



