CHAPTER SEVEN

an
introduction
10

statistics

The statistician suggests probabilistic models of reality and investigates
their validity. He does so in an attempt to gain insight into the
behavior of physical systems and to facilitate better predictions and
decisions regarding these systems. A primary concern of statisties is
statistical inference, the drawing of inferences from data.

The discussions in this chapter are brief, based on simple exam-
ples, somewhat incomplete, and always at an introductory level. Our
major objectives are (1) to introduce some of the fundamental issues
and methods of statistics and (2} to indicate the nature of the transition
required a3 one moves from probability theory to its applications for
stalistical reasoning.
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AN INTRODUCTION TO STATISTICS

We begin with afew comments on the relation between statistics
and probability theory.  After identifying some prime issues of concern
in statistical investigations, we consider common methods for the study
of these issues. These methods generally represent the viewpoint of
classical statistics.  Our concluding sectious serve as a brief introdue-
tion to the devcloping field of Buyesian (or modern) statistics.

Statistics Is Different

Probability theory is axiomuatic. [Fully defined probability problemns
have unique and precise solutions.  So far we have dealt with problems
which are whoelly abstract, although they have often been based on
probabilistic nredels of reality.

The field of statistics is different.  Statistics is concerned with
the relation of such models to actual physical systems. The methods
cmployed by the statisticizn are arbitrary ways of being reasonable in
the application of probability theory to physieal situations. His
primary tools are probability theory, a mathemnatical sophistication,
end common sense,

To use an extreme exaniple, there simply is no unique best or
correct way to extrapolate the gross national product five years hence
from three days of rainfalldata,  Infact, there is no best way to predict
the rainfail for the fourth day. But there are many wuys to try.

7-2 Statistical Models and Some Related Issues

In contrast to our work in previous chapters, we are now concerned
both with models of reality and reality itself. [t is important that
we keep in mind the differences between the statistician’s model (and
its implications) and the actual physieal situntion that is being modeled.

In the real world, we may design and pecform experiments,. We
may ohserve certain characleristics af interest of the experimental out-
comes.  If we are studying the behavior of a coin of suspicious origin,
& characteristic of interest might be the number of heads observed in
certiin number of tosses, If we are testing a vaccine, one charac-
teristic of interest could be the ohserved immunity rates in 2 control
group and in a vaceinated group.

What is the nature of the statistician’s medel?  From whatever
knowledge he has of the physical mechanisms involved and from his
past experience, the statistician postulates a probabilistic model for the
system of interest. He anticipates that this model will exhibit o
probabilistic hehavior in the characteristics of interest similar to that of
the physical system.  The detuils of the model might or might not he
¢losely related to the actual nature of the physieal system,

If the statistician is concerned with the coin of suspicious origin.
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he might suggest & model which is a Bernoulli process with probubility
P for n head on any toss, For the study of the vaccine, he might
suggest 0 mode! which assigns a probability of immunity P, to each
member of the control group nnd assigns a probability of immunity P,
to each member of the vaccinated group.

We shall eonsider some of the questions which the statistician
asks about his medels and learn how he employs experimental data to
cxplore these questions.

Based on some experimental datu, does a certain model seem reasonable
or at least not particularly unreasonable? This is the domain of
significance festing. In a significance test, the statistician speculates
on the likelihood thut data similar to that actually observed would be
generated by hypothetical experiments with the model,

Based on some experimental data, how do we express a preference
among several postulated models? (These models might be similar
models differing only in the values of their parameters.) When one
deals with a sclection among several hypothesized models, he is involved
in a matter of hypothesis testing, We shall learn that hypothesis testing
and significance testing are very closely related.

Given the form of a postulated model of the physical system and some
cxperimental data, how may the data be employed to establish the
most desirable values of the parameters of the model? This question
would nrise, for example, if we considered the Bernoulli model for flips
of the suspicious coin and wished to adjust parameter P to make the
model as compatible as possible with the experimental data. This is
the domain of estimation,.

We may be uncertain of the appropriate parameters for our model.
However, from previous experience with the physical system and from
other information, we may have convictions about a reasonable PDT
for these parumeters (which are, to us, random variables). The field
of Bayesian analysis develops an etlicient framework for combining
such “prior knowledge” with experimental data. Bayesian analysis
is particularly suitable for investigations which must result in decisions
among several passible future courses of action,

_ The remainder of this haok is concerned with the four issues
introduced above. The results we shall obtain are based on subjective
applications of concepts of probability theory.

7-3  Statistics: Sample Values and Experimental Values

In previous chapters, the phrase “experimental value’ always applied
to what we might now consider to be the onleome of @ hypothetical experi-
ment with a model of a physical system. Since it is impartant that we
be able to distinguish between consequences of & model and conse-
quences of reality, we establish two definitions.
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EXPERIMENTAL VALUE: Refers to actual data which must, of course,

SAMPLE VALUE!

1 Postulate a model for the physical system of interest.
2 Based on this model, select a desirable statistic for which:

AN INTRODUCTION TO STATISTICS

be obtained by the performance of (real)
experiments with a physical system
Refers to the outcome resulting from the
performance of (hypothetical) experiments
with a model of a physical system

These particular definitions are not universal in the literature, but they
will provide us with an explicit langunge. .

Suppose that we perform a hypothetical experiment with our
model n times.  Let random variable x be the characteristic of interf:st
defined on the possible experimental outcomes. We use the notation
z; to denote the random variable defined on the ith performance of
this hypothetical experiment. The set of random variables {(z, %2,

. . ,zn) is defined to be a sample of size n of random variable z. A

sample of size n is a collection of random variables whose prqbnb:l{stlc
behavior is specified by our model. Hypothesizing a model 13 equiva-
lent to specifying a compound PDF for the members of the sample.

We shall use the word statistic to deseribe any function of some
random variables, g(z,v,w, . . .). We may use for the argument of a
statistic either the members of a sample or actual experimental values
of the random variables. The former case results in what is known 8s
a sample value of the statistic. When experimental values are }lstlad
for uy,w, ..., we obtain an erperimenial value of the statlst}c.
Given a specific model for consideration, we may, in principle, derive
the PDF for the sample value of any statistic from the eompound
PDF for the members of the sample. If our model happens to be
correct, this PDF would also describe the experimental value of the
statistic.

Much of the field of statistics hinges on the following three steps:
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The operation of deriving the PDF’s and their means and vari-
ances for useful statistics is often very complicated, but there are a few
cases of frequent interest for which some of these caleulations are not
too involved, Assuming thal the z,'s in our sample are always tndepend-
ent and idenlically disiribuled, we present some examples,

One fundamental statistic of the sample (27, . . . ,za) is the
sample mean M,, whose definition, expected value, and variance were
introduced in Sec. 6-3
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and our proof, for the case v, < =, showed that M, obeyed (at least)
the weak law of large numbers, If characteristic x is in fact deseribed
by any PDF with a finite variance, we can with high prebability use
A, as a good estimate of K(x) by using a large value of n, since we know
that M, converges stochastically to E{xz).

It is often difficult to determine the exact expression for fu. (),
the PDF for the sample mean. Quite often we turn to the central
limit theorem for an approximation to this PDF. Our interests in the
PDF’s for particular statistics will become clear in later sections.

Another important statistic 13 S.?, the sample variance. The
definition of this particular random vanable is given by

1 L4
1.z E _ 2
Sa? = o (z;, — M)
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where M, is the semple mean as defined earlier. We may expand the
above expression,

S.’=%ixﬁ—§m£ ok M= Yz

=1 ] vl

The PDT for the sample value of the statistic may be caleulated in
a useful form.
Experimental values of the statistic may be obtained from reality.
3 Obtain an experimental value of the statistic, and comment on the
likelihood that n similar value would result from the use of the
proposed model instead of reality.

This is a more useful form of 8,2 for the ealculation of its expectation
l n
E(S.%) = B (zl z.z) — E(M.Y

The expectation in the first term i3 the expected value of 2 sum and
may be simplified by
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E(:El _r‘.'l) — Elzt 4 x4 -+ 22 = nE(Y

The ealeulation of E(A.?) requires a few intermediate steps,
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In the last term of the above expression, we have used the fact that, for
! # j, = and z; are independent random variables. Returning to our
expression for E(S,%), the expected valuc of the sample variance, we
have

E(S.3) = %nE(z’) - T{E(f) _ (1 _ }1) [E(x)]

-1
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Thus, we sec that for samples of a large size, the expecled ualuc.: of the
sample variance is very close to the variance of random variable z.
The poor agreement between £(S,?) and a2 for smallnis m(?st reasoni-
ble when one considers the definition of the sample variance for a
sample of size 1. .

We shall not investigate the variance of the sample vanance.
However, the rcader should realize that o result obtainable from the
previous equation, namely,

lim E{S%) = o.t

does not necessarily mean, in itself, that an experimental value of S,?
for large n is with high probability a good estimate of ¢.?.  We would
need to establish that S,? at least obeys a weak law of large numbers
before we could have confidence in an experimental value of S,* (for
large n) as a good estimator of o.%.  [or instance, E(8,%) = o, for large
n does not even require that the variance of S.? be finite.

7-4 Significance Testing

Assume that, as a result of preliminary modeling efforts, we have
proposed a model for a physical system and we are able to deter-
mine the PDI for the sample value of g, the statistic we have sclcvt..od.
In significance testing, we work in the event space far statistic ¢, .u:;mg
this PDF, which would also hold for experimental values of ¢ #f our
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model were correct. We wish to evaluate the hypothesis that our
model is correct.

In the event space for g we define an event W, known ag the
improbablc event, We may select for our improbable event any particu-
lar event of probability e, where « 1s known as the level of significance of
the test.  Ajfter event IV has been selected, we obtain an experimental
value of statistic g  Depending on whether or not the experimental
value of g falls within the improbable event W, we reach one of two
conclusions us a result of the significance test. These conelusions are

1 Rejection of the hypothesis. The experimental value ¢ fell within the
improbable event W. If our hypothesized model were correct, our
observed experimental value of the statistic would be an unprobable
result. Since we did in fact obtain such an cxperimental value, we
helieve it to be unlikely that our hypothesis is correct,

2 Acceplance of the hypothesis, The experimental value of g fell in ¥,
If our hypothesis were true, the observed cxperimental value of the
statistic would not be an improbable event. Since we did in fact
obtain such an experimental value, the significance test has not provided
us with any particular reason to doubt the hypothesis.

We discuss some examples and further details, deferring general
comments until we are more familiar with significance testing,

Suppose that we are studying a coin-flipping process to test the
hypothesis that the process is a Bernoulll process composed of fair
{P = §) trials. Eventually, we shall observe 10,000 flips, and we have
selected as our statistic & the number of heads in 10,000 flips. Using
the central limit theorem, we may, for our purposcs, approximate the
sample value of & as a continuous randoin variable with a Gaussian
PDI as shown below:

1, (ky)

S

E(k)= 10000 P = 5000
a, ~ V10000 (1 —P) = 50

X i 1 N
4500 S000 Q

Thus we have the conditional PDF for statistic k, given our hypothesis
is correct. If we set «, the probability of the “improbable” event at
0.05, many events could serve as the improbable event . Several
such choices for W are shown below in an event space for k, with
P{W?} indicated by the area under the PDF fi (k).
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Event W, : & > 5083

P(W)=005~a
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Event W,: (45000 > 98
Prob ((5000~4)>=98] = 0.025 - g

4]

Prob [(k—5000)> 98] = 0.025 = %

Sk

4902 5000 5098 o
Event W, th-50001 >4 d——-P(WJ.l%O.OS-a
/'E\ —= 4
4996 70 choa

The heavy line appearing on the ko axis in cach of the above sketches
represents one possible selection of an improbable event at the 0.05
level of signiticance.

That part of the cvent space for  statistic which is included in
the improbable event W is called the critieal range of the statistic.
If the cxperimental value of the statistic falls into the eritical region,
the hypothesis is “rejected’”; otherwise it is “accepted.”  Note that the
level of significance of the test is actually equal to the conditional
probability that a bypothesis will be rejected, given that it is correct.

A reasonable choiec of the improbable event must depend on the
actual problem at hand. /n a significance test, one is, in ¢ffect, lesting
his hypothesis agains! all other hypothesas, with no particular allernatives in
mind. If the hypothests being tested is not correct, some other hypoth-
esis- (stated or unstated) is correct. The eritical region is placed
where we believe other hypotheses are more likely to place the experi-
wental value of the statistic thun is the particular hypothesis under
test. This may be viewed as “setling a trap” for outcomes due to
other hypotheses, and it often results in a decision to make the nccept-
ance region W’ as small as possible. There can be no escape from the
fact that this type of statistical reasoning is necessarily an acbitrary

-
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and subjective procedure, but it is a procedure that most people would
consider superior Lo guessing.

Let’s return to the example of the coin-tossing process and assume
that we have agreed to set &, the level of significance (or the condi-
tional probability of the improbable event, given that the model is
correct) equal to 0.05. If we have no general feelings about possible
alternative hypotheses, we would expect to trap most othet hypotheses
most often by making our aeceptance region, the complement of the
critical region, as small as possible.  For this purpose, we would select
I in the ubove sketch us our choice for the improbable event W.

If we had suspicions that the most likely alternative hypotheses
were of the form "' P greater than 0.5, we would want the critical region
to cover values of our statistic most favored by the alternative hypoth-
eses. We would therefore seleet Wy of the three improbable cvents
shown above, Mlost often, however, significance testing refers to test-
ing one hypothesiz with no others in mind, and the acceptance region is
generally made as small as possible for a given level of significance.

The choice of the level of significance is rather arbitrary.  There
are a few popular conventional values of «, and these include 0.05, 0.02,
and 0.01. The smaller the level of significance, the less likely we are
to reject our hypothesis if it is true and the more likely we are to
accept our hypothesis if it is false. In.most cases, one would expect
the choice of the level of significance to depend on the relative costy
of the two possible types of errors which may result from the test,
falee acceptunce of the hypothesis and false rejection of the hypothesis.

Consider one additional example of the specification of a signifi-
cance Lest.  Suppose that our model for characteristic z of a certain
process is that z is & random varinble described by a Gaussinn PDF
withe, = 1. We have

1
fulzo) = Vo

e~ <y <

and we do not know the value of r, the expccted value of z.  Ten inde-
pendent experimental values of characteristic = have been obtained,
and we wish to test the hypothesis that parameter r is equal Lo zero.

Using z. ny the notation for the ith experimental value of r, we
arbitrarily elect Lo use the staltistic

y=n+zxs+ ' +Ip

since we know (from the properties of sums of independent Gaussian
random variables) that the PDF for the sample value of » is

fu(!lu) = ——1—: gty 1oV (310

V2r 410

—n Sy < @
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Area = 0.025
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In a significance test we work with the conditional PDF for our sta-
tistic, given that our hypothesis is true. For this example, we have

L wm —w < < w
Ve VD ==

Assume that we have deeided to test at the 0,05 level of signifi-
cance and that, with no particular properties of the possible alternative
hypotheses in mind, we choose to make the acceptance region for Fhe
significance test as small as possible, This leads to a rejection region
of the form |y| > A. The following sketch applies,

fulyo) =

(35}

Acea = 0.025

L— l > ¥

—

M

~-A a +A
and A is determined by
A—-0
Probiy > A) = 0025 =1 — %

\/10
A .
o —=) = 0975 A = 6.2 from table in Sec. 6-4
(V 10)

Thus, at the 0.05 level, we shall reject our hypothesis th.ut E(zy = 0if
it happens that the magnitude of the sum of the 10 experimental values
of x is greater than 6.2, o
We conclude this section with several brief comments on signifi-
cance testing: , .
The use of different statistics, based on samples of the same size and
the same experimental values, may result in different conclusions .fr(?m
the significance test, even if the acceptance regions for both statistics
are made as small as possible (see rob. 7.06}.
In our examples, it happened that the only parameter in the PDI"s
for the statistics was the one whose value was specified by the hypoth-
esis. In the above example, if .7 were not apecified and we wished to
make no assumptions sbout it, we would have had to fry to find a
statistic whose PDF depended on £(z) but not on «.”.

OX
~ 8
% Hg< o
i
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3 Even if the outcome of a significance test results in acceptance of the

hypothesis, there are probably many other more accurate (and less
accurate) hypotheses which would also be accepted ag the result of
similar significance tests upon them.

4 Because of the imprecise statement of the alternative hypotheses for

a significance test, there is little we ean say in general about the rela-
tive desirability of several possible statistivs based on samples of the
same size. One desires a statistic which, in its event space, diserinu-
notes as sharply as possible between his hypothesis and other hypoth-
eses. In almost all situations, increasing the size of the sample will
contribute to this discrimination.

5 The formulation of a significance test does not allow us to determine

the a priori probability that a significance test will result in an incorrect
conclusion. Even if we can agree to accept an a priorl probability
P(H,) that the hypothesis Hg is true (before we undertake the test),
we are still unable to evaluate the probability of an incorrect outcome
of the significance test. Consider the following sequential event space
picture for any significance test:

- Accept H,J ® "Correct acceplance”

H

Reject H, @ “False rejection®

@ "False acceplance”

~4 Reject H, @ “Correct rejection”

The lack of specific alternatives to Hy prevents us from caleulating a
priori probabilities for the bottom two event points, even if we accept
a value {or range of values) for P(H,).  We have no way to estimate 8,
the conditional probability of acceptance of /f, given H, is incorrect,
One value of significance testing is that it often leads one to discard
particularly poor hypotheses. In most cases, statistics based on large
enough samples are excellent for this purpose, and this is achieved
with o rather small number of nssumiptions about the situation under
study.

7-5 Parametric and Nonparametric Hypotheses

Two examples of significance tests were considered in the previous
scetion,  In both cases, the PDE for the statistic resulting from the
model contained a parameter. In the first example, the parameter
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was P, the probability of success for a Bernoulli process. In the second
example, the parameter of the PDF for the statistic was r, the expected
value of a Gaussian random variable. The significance tests were per-
formed on hypotheses which specified values for these parameters.

If, in effect, we assume the given form of a model and test hypoth-
eses which specify values for parameters of the model, we say that we
are testing parametric hypotheses. The hypotheses in both examples
were parametric hypotheses.

Nonparametric hypotheses are of a broader nature, often with
regard to the general form of a model or the form of the resulting PDI
for the characteristic of interest. The following are some typical non-
parametric hypotheses:

Characteristic x is normally distributed.

Random variables z and y have identical marginal PDI”s, that is,
J:(u) = f,(u) for all values of u.

Random variables z and y have unequal expected values.

The variance of random variable x is greater than the variance of
random variable y.

In principle, significance testing for parametric and nonparamet-~
ric hypotheses follows exactly the same procedure. In practice, the
determination of useful statistics for nonparametric tests is often a very
difficult task. To be useful, the PDI’s for such statistics must not
depend on unknown quantities. IPurthermore, one strives to make as
few additional assumptions as possible before testing nouparametric
hypotheses. Several nonparametric methods of great practical value,
however, may be found in most elementary statistics texts.

7-6  Hypothesis Testing

The term significance fest normally refers to the evaluation of a
hypothesis H, in the absence of any useful information about alter-
native hypotheses. An evaluation of H in a situation where the alter-
native hypotheses H,, H;, . . . are specified isknown as a hypothesis
test.

In this section we discuss the situation where it is known that
there are only two possible parametric hypotheses Ho(Q = @) and
H(Q = Q). We are using @ to denote the parameter of interest.

To perform a hypothesis test, we select one of the hypotheses,
H, (called the null hypothesis), and subject it to a significance test
based on some statistic ¢. If the experimental value of statistic ¢ falls
into the critical (or rejection) region W, defined (as in Sec. 7-4) by

Prob(gin W | Hy) = Prob{gin W | Q = Qo) = «

Conditional PDF
for & if H,is true
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we shall “reject” Hy and “accept’” H,. Otherwise we shall accept H,
and reject H,. In order to discuss the choice of the “best” possible
critical region W for a given statistic in the presence of a specific alter-
native hypothesis H,, consider the two possible errors which may result
from the outcome of a hypothesis test.

Suppose that H, were true. If this were so, the only possible
error would be to reject H, in favor of H,. The conditional probability
of this type of error (called an error of type 1, or false rejection) given
H, is true is

Prob(reject Ho{Q = Qo) = Prob(¢in W|{Q = Qy) = «

Suppose that H, is false and H, is true. Then the only type of
error we could make would be to accept H, and reject H,. The con-
ditional probability of this type of error (called an error of type 11, or
Jalse acceplance) given H, is true is

Prob(accept Ho | Q = Q1) = Prob(gnotin W |Q = Q,) = 8

N It is important to realize that « and 8 are conditional proba-
bilities which apply in different conditional event spaces. Ifurther-
more, for significance testing (in Sec. 7-4) we did not know enough
about the alternative hypotheses to be able to evaluate 8. When we
are concerned with a hypothesis test, this is no longer the case.

Let’s return to the example of 10,000 coin tosses and a Bernoulli
model of the process. Assume that we consider only the two alternative
hypotheses Hy(P = 0.5) and H (P = 0.6). These hypotheses lead to
twoalternative conditional PDI’s for k, the number of heads. We have

Conditional PDF
for k& if H, is true

1
5000 6000 —>k,

I.u this case, for any given « (the conditional probability of false rejec-
tion) we desire to select a critical region which will minimize 8 (the
conditional probability of false acceptance). It should be clear that,
for this example, the most desirable critical region W for a given o
will be a continuous range of k on the right. For a given value of a,
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we may now identily o and 3 as areas under the conditional PDF's for

k, as shown below:

Area re o = conditional prpbabimy
of false rejection of H,, gven
H, is true

f

e o)~

—

llﬂ( kO'IHI )

p—— = >k,

 —
Critical region W for

Area = 3 = conditianal probability rejection of H,

of false acceptance of Ho.given
H,is false

In practice, the selection of & pair of values o and 8 would nsually
depend on the relative costs of the two possnb.lc types of )errors and
some o priori estimate of the probability that Hqis true (see Irob. 7.10).

Consider 2 sequential event space for the'performanee' of a.
hypothesis test upon Ho with one specific alternative hypothesis H:

& Accept Hy
-
Hy is true and /
Al .
12}
?"HQ H, s false *\ Reject H,

® "True acceptance of Hy*
® “Faise rejection of H*

® “False acceplance of Hy'

Fi
~ 5 3 Rccept Hu

ol 1

Hy i tolse 125 Reject Hy @ “True rejection of Hy'

1f we are williing to assign an u priori probability P{H.) to thle
validity of Hy, we may then statc that the prohah;htx {to us) that this
hypothesis test will result in an incorrect conelusion is equal to

&P (le) + 611 — P(H)] |
Fven if we are uncomfortable with any step which involves the assump-
tion of P(If,), we may still usc the fact that

0< P(Hy) S

and the previous cxpression to obtain the bounds

min {a,8) < Prob(incorrect contclusion) < max {a,8)

We now comment on the selection of the statistic q.

I'or any

4
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hypothesis test, a destrable statistic would be one which provides good
discrimination between Hy and Hy.  Ior one thing, we would like the
ratio

Jaings | Ho)
fql'h(%‘ Hy)

to be as large as possible in the acceptance region W and to be as
small as possible in the rejeetion region W, This would mean that, for
rny experimental value of atatistic ¢, we would be relatively unlikely
to accept the wrong hypothesis.

We might decide that the best statistie, ¢, is one which (for a
given sample size of & given observable characteristie) provides the
minimum 8 for any given «. Even when such a best statistic does
exist, however, the derivation of the form of this best statistic and its
conditional PDI’s may be very difficult,

7-7 Estimation

Assume that we have developed the form of o medel for & physical
process and that we wish to determine the most desirable values for
some parameters of this model. ‘The general theory of using experi-
mental data to estimate such parameters 15 known as the theory of
estimation.

When we perform o hypothesis test with a rich set of alternatives,
the validity of several suggested forms of a model may be under ques-
tion. Ior our discussion of estimation, we shall take the viewpoint
that the general form of our model is not to be questioned. We wish
here only to estimate certain parameters of the process, given that the
form of the model 15 correct.  Since stating the form of the model is
equivalent to stating the form of the DI for characteristic = of the
process, determining the parameters of the mode! is similar to adjusting
the parameters of the PDE to best accommodate the experimental data.

Lot Qa(xy,xq, . . . ,2.) be a statistic whose sample values are o
function of a sample of size = and whose experimental values are a
function of n independent experimental values of randem variable .
Let € be a parameter of our medel or of its resulting PDI for random
variable r. We shall be interested in those statistics ¢, whose experi-
mental values happen to be good estimates of parameter ). Such
statistics are known as esfimators,

Some examples of useful estimators follow. We might use the
average value of n experimental values of z, given by

Qe (ot zat -0 bz = M,

- B
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as an estimate of the parameter E{z)., We have already eneountered
this statistic several times, [Although it is, alas, known as the sample
mean (M), we must realize thut, hke any other statistic, it has both
sample and experimental values. A similar comment applies to our
next example of an estimator.] Another example of a statistic which
may serve as an estimator is that of the use of the sample variance,
given by

1 < T 2
Q=+ Z (2, ~ M) = S,

LS
to estimate the variance of the PDI for random variable z. [or g
final example, we might use the maximum of n experimental values of
z, mven by
Qr = max (£,72, . . . ,2,)
to estimate the largest possible experimental value of random variable z,
Often we are able to suggest many reasonable estimators for a
particular parameter §.  Suppose, for instance, that it is known that
f:(zo) i3 symmetric about E{x), that is,
LE@) + a] = f[E{z) — qf for all a

and we wish to estimate E(r) using some estimator Qa{z,,22, . . . ,&a).
We might use the estimator

or the estimator

max (zy,Zz . . . ,Ta) = min (2,%2, . . . ,Ta)

Qnz = P

or we could Iist the z; in increasing order by defining
y = ith smallest member of (z1,z;, . . . ,z,)

and use for our estimator of &F(z) the statistic

Yint1y2 n odd
Fnia + Yonamia) n even

Qrsl -

Any of these three estimators might turn out to he the most desirable,
depending on what else is known about the form of fi(z,) and also
depending, of course, on our criterion for desirability.

In the following section, we introduce some of the properties
relevant to the selection and evaluation of useful estimators.
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7-8 Some Properties of Desirable Estimators

A sequence of estimates @, @5, . . . of parameter Q is called consistent
if it converges stochastically ta Qasn — «. Thatis, Q. is a consistent
estimator of € if

lim Prob{iQ, — Q[ > ¢) = 0 for any ¢ > 0

In Chap. 6, we proved that, given that ,? is finite, the sample mean
M, is stochastically convergent to E(z). Thus, the sample mean is a
consistent estimator of £(x). If an estimator is known to be consistent,
we would become confident of the accuracy of estimates based on very
large samples. Iowever, consistency is a limit property and may not
be relevant for small samples.

A sequence of estimates @y, @y, . . . of parmmeter Q is called
unbiased if the expected value of @, is equal to @ for all values

n=12..,
That is, Q. is an unbjased estimate for  if
E(Qu) =Q forn=12...

We noted (Sec. 7-3) that the sample mean 3, is an unbiased estimator
for £(z). We also noted that, for the expected value of the sample
variance, we have
n—1

E(S8.Y) =

Ty

and thus the sample variance is not an unbiased estimator of 0,2, How-
ever, it is true that
lim E(S,2) = o,t

n— ®
Any such estimator Q,, which obeyg

lim E(Q.) = @
b
is said to be an asymplotically unbiased estimator of Q. If §,is an
unbizsed (or asymptotically unbiased) estimator of @, this property
alone does not assure us of a good estimate when n is very large. We
should also need some evidence that, as n grows, the PDF for Q,
becomes udequately concentrated near parameter Q.

The relative efficiency of two unbiased estimators is simply the
ratio of their variances. We would expect that, the smaller the vari-
ance of an unbiased estimator Q., the more likely it is that an experi-
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mental value of @, will give an gccurate estimate of purameter . We
would say the most efficient unbiased cstimator for @ is the unhiased
cstimator with the minimum variance.

We now discuss the concept of a sufficient estimator.  Cousider
the n-dimensional sample space for the values x), ©2, . . ., .. In
general, when we go from a point in this space to the corresponding
value of the estimator Q.{x\,z5, . . . ,z.), onc of two things must hap-
pen. Given that our model is correct, either J, eontains all the infor-
mation in the experimental outeome {27, . . . ,%.) relevant to the
estimation of parameter @, or it does not.  For example, it is true for
some estimation problema {(and not for some others) that

Qn = 2 I;

sl
contains all the information relevant to the estimation of  which may
be found in {(z),,2s5 . . . ,x.). The reason we are interested in this

matter is that we would expect to make the best use of experimental
data by using estimators which take advantage of alf relevant informa-
tion in the data. Such estimators are known as sufficient. estimators.
The {ormal definition of sufficiency does not follow in a simple form
from this intuitive discussion.

To state the mathematical definition of a sufficient, estimator,
we shall use the notation

representing an n-dimensional random

T, =,y Xa ' I !
variable
(Za, = T Tea tC T Tne, representing any particular valueof z,

Our model provides us with a PDF for .z, in terms of u parameter @

which we wish to estimate. This PDF for _xr, may be written as

fa,(za) = g{ 7, where g is a function only of =z, and @

If we are given the experimental value of estimator @,, this is at least
partial information about _z , and we could hope to use it to caleulate

the resulting conditional PDF for .r,,

‘fL:.l'q“(l_I_ol ! Qn) = h( Ly JQ.‘Q'I)
where & is o function only of |2y, @, and Q.. If and onlyif the PDF &

does not depend on parameter €} after the value of Q. is given, we
define , to be o suflicient cstimator Tor purameter 9.

A few comments may help to explain the apparent distance
between our simple intuitive notion of a suflicient statistic and the
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formal definition in the above paragraph. Weare estimating § because
we do not know its value.  Let ug aecept for & moment the notion that
Q is {to us) « random variable and that our knowledge about it is given
by some a priori PDI". When we say that a sufficient estimator Q,
will contain all the information about @ which is to be found in

(?;,Iz, e +Zx), the implication is that the conditional PDT for 0,
given Qn, will be identical to the conditional DI for {2, given the values
(TnEa . . . ,z.). Because classieal statistics does not provide o frame-

work for viewing our uncertaintics sbout unknown constants in terms
of such PDTs, the above definition has to be worked around to he in
terms of other PDF's. . Instend of stating that Q. tells us everything
about £ which might be found in (X3, . . . ,r.), our formal definition
states that Q. tells us everything about (TuZz . - . ,%.) that we could
find out by knowing Q.

In this section we have discussed the concepts of consistency,
bias, relative efficiency, and sufficiency of estimators. We should also
hote that actual estimates are normaily accompanied by confidence
fimits.  The statistician specifies o quantity & for which, given that
his model is correct, the probability that the “random interval” @. + 6
}s'i]l fall such that it happens to include the true value of parnmebe; Q
18 equal to some value such as 0.95 or 0.98. Note that it is the location
of the interval centered about the experimental value of the estimator,
and not the true value of parameter &, which is considered to be the
random phenomenon when one states confidence limits. We shall
not cxplore the actual calculation of confidence limits in this text.
Although there are a few special (simple) cases, the general problem is
of an advanced nature,

7-9  Maximum-likelihood Estimation

There are several ways to obtain a desirable estimate for @, an
unl'(nown parameter of a proposed statisticat model. One method of
estimation will be introduced in this section. A rather different
approach will be indicated in our discussion of Bayesian analysis.

To use the method of mazimum-tikelikood estimation, we first
obtain an experimental value for some sample (zy,z2, , . . ,z.). We
then determine which of all possible values of parameter Q maximizes
the a priord probability of the observed experimental value of the
sample (or of some statistic of the sample). Quantity @*, that possible
value of @ which maximizes this a priori probability, is known as the
maximuin-likelihood esiimator for paramcter @,

. The a priori probability of the observed experimental outcome
15 caleulated under the assumption that the model is correct. Before
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expanding on the above definition (which is somewhat incomplete) and
commenting upon the method, we consider a simple example.

Suppose that we are considering a Bernoulli process as the model
for a series of coin flips and that we wish to estimate paramcter P,
the probability of heads (or suceess), by the method of maximum-
likelihood. Our experiment will be the performance of n flips of the
coin and our sample (z1,Z;, . . . ,%.) represents the exact sequence
of resulting Bernoulli random variables. ‘

The a priori probability of any particular sequence of experi-
mental outcomes which contains exactly k heads out of a total of n
flips is given by

P(L—P)rt  k=01...,n

To find P*, the maximum-likelihood estiinator for P, we use elementary
caleulus to determine which value of P, in therange0 < P < 1, maxi-
mizes the above a priori probability for any experimental value of k.
Differentiating with respect to P, setting the derivative equal l,o 7ero,
and cherking that we are in fact maximizing the above expression, we
fnally obtain

pr =k

n
which is the maximum-likelihood estimator for parameter P if we
observe exactly k heads during the n trials.

In our earlier discussion of the Bernoulii law of large number:s
{Sec. 6-3) we established that this particular maximum-likelihood egtl—
(mator satisfies the definition of a consistent cstimator. By performing
the calculation

k 1

E(P%) =E‘(’—1) =EE(’°) = -— =P
we find that this estimator is also unbiased. ‘

Note also that, for this example, maximuni-likelihood estimation
based on either of two different statistics will result in the same expres-
gion for P*.  We may use an n-dimensional statistic (the sample itself)
which is a finest-grain description of the experimental outcome or we
may use the alternative statistic k, the nuinber of heads observed.
(It happens that k/n is a sufficient estimator for parameter P of a
Bernoulli proeess.) N

We now make s necessary expansion of our original deﬁmtlon_ of
maximum-likelihood cstimation. If the model under considera.tl.on
results in a continuous PDF for the statistic of interest, the prob'ab‘tht.y
associated with any particular experimental value of the statistic 13
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zero. For this case, let us, for an n-dimensional statistic, view the
problem in an n-dimensional event space whose coordinates represent
the n components of the statistic.  Our procedure will be to determine
that possible value of @ which maximizes the & priori probability of
the cvent represented by an n-dimensional incremental cube, centered
nbout the point in the event space which represents the observed experi-
mental value of the statistic,

The procedure in the preceding paragraph is entirely similar to
the procedure used earlier for maximum-likelihood estimation when the
statistic is deseribed by a PMT.  For the continuous case, we work with
incremental events centered about the event point representing the
observed experimental outcome.  The result can be restated in a simple
manner. If the statistic employed is deserthed by a continuous PDF,
we maximize the appropriate PDF evaluated af, rather than the proba-
bility af, the observed experimental outeome.

As an example, suppose that our model for an interarrival proe-
ess is that the process is Poisson. This assumption models the first-
order interarrival times as independent random variables, each with
PDF

Jo(xq) = hePn 0> 0

In order to estimate X\, we shall consider a sample (»8,f,u,v) composed
of five independent values of random variable x. Qur statistic is the
sample itself. The compound PDT for this statistic 1s given by

Sentwo{ro,8o,da,to,00)
B [)\c"'v?\e“"v?\c""=)\c““=?\e"‘°- il ro, S, to, Mo, ¥o 2> 0

0 otherwise
- AsgMrateatigtuytey) if *o, So, fo, Ug, Vo > 0
0 otherwise

Maximization of this PDF with respect to X for any particular experi-
mental outcome (rgsq,f,ueve) leads to the maximum-fikelihood
estimator

5

N _ <
ro+ 80+ te + us+ us

which seems reasonable, since this resuit states that the maximum-
likelthood estimator of the average arrival rate happens to be equal to
the experimental value of the average arrival rate. [We used the
(v,5,t,u,2) notation instead of (x;,x, . . . ,x.) to enable us to write out
the compound PDF for the sample in our more usual notation.]
Problem 7.15 assists the reader to show that A* is a consistent
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estimator which is biased but asymiptotically unbiased. 1t also hap-
pens that A* (the number of interarrival times divided by their sum)
i a sufficient estimator for parameter A,

In general, maximum-likelihood estimators can be shown to have
a surprising number of useful properties, both with regard to theoretical
matters and with regurd to the simplicity of practical application of the
method, For situutions involving very lurge samples, there are few
people who disagree with the rensoning which gives rise to this arbitrary
but most useful estimation technique,

However, serious problems do arise if one attempts to use this
estimation technigue for deeision problems involving small samples or
if one attempts to estublish that nmaximum likelihood is o truly funda-
mental technique involving fewer assurnptions than other methods of
estimation.

Suppose that we have to make o large wager based on the true
vitlue of P in the above coin example. There is time to flip the coin
only five times, and we observe four heads.  Very few people would be
willing to use the maximum-likelihood estimate for P, §, as their esti-
mator for parameter P if there were large stakes involved in the aceuracy
of their estimate. Since maximum likelihood depends on & simple
maximization of an unwerghted PDF, there seems to be an uncomfortable
implication that all possible values of parameter P were equally likely
before the experiment was performed.  We shall return to this matter
in our discussion of Bayesian analysis,

7-10 Bayesian Analysis

A Bayesian believes that any quantity whose value he does not know
15 (o him} a random vanable. He belicves that it is possible, at any
time, to express his state of knowledge about such & random variable
in the form of & PDI,  As additiona) experimental evidence becomes
available, Bayes’ theorem is used to combine this evidence with the
previous PDI" in order to obtain a new a posteriori PDF representing
his updated state of knowledge. The PDI expressing the analyst’s
state of knowledge serves as the quantitative basis for any decisions
he 1s required to make.

Consider the Bayesian analysis of @, an unknown parameter of a
postulated probabilistic model of a physicat system. We assyme
that the outcomes of experiments with the system may be deseribed by
the resulting experimental values of continuous random variable z, the
characteristic of interest,

Based on past experience and all other available information, the
Bayesian approach begins with the speeification of a PDT fo(&0), the
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analyst's a priori PDF for the value of parameter ), As before, the
model specifies the PDT for the sample value of characteristic z g’iven
the value of parameter . Since we are now regarding Q as a'nother
'random variable, the PDF for the sample value of r with parameter Q
is to be written as the conditional PDF,

Feolza [ Q) = conflitional PDF for the sample value of characteristic
Z, given that the value of parameter Q is cqual to Q,

E.ach time an experimental value of chargeteristic x is obtained,
the continuous form of Buyes' theorem

forul@u) zo) = FlZol0) - fuolzo] Quo(@) _ _
@) etz Qafo@0 dgs 4%

is used to obtain the a posteriori PDT fo(Q.), describing the analyst’s
new state of knowledge about the value of parameter Q.  This PDF
fq(.Qn). serves as the basis for any present decisions and also as the a
priort PDE for any future experimentation with the physical system,

Tf)e Bayesian analyst utilizes his state-of-knowledge PDT to
resolve issucs such as:

1 Gn.'cn a funetion C(Q1,Q*), which represents the penalty associated with
es't-mmting ¢, the true value of paranmeter , by an estimate @*, deter-
mine that estimator @* which minimizes the expected volue of C’(,Q‘ Q%)
(For example, see I’rob. 2.03.) o

2 Gi\:ren the function C(Q'Q"), which represents the cost of imperfect
estimation, and given another function which represents, as a function
of n, the cost of n repeated experiments on the physical system, specify
the experimental test program which will minimize the cxpected value
of the total cost of experimentation and estimation.

As one example of Bayesian analysis, assume that a Bernoulli
_model_hu.s been accepted for a coin-flipping process and that we wish to
investigate parameter P, the probability of success {heads) for this
model. We shall discuss only a few aspects of this problem. One
should keep in mind that there is probably a cost associated with each
fip o_f t,.he coin and that our general objective is to combine our prior
convictions about the value of P with some experimental evidence to
obtain a suitubly aceurate and economical estimate P*, l

T]ll? Baycsian analyst begins by stating his entire assumptive
struntur? in the form of his a priori PNF fe(Ps).  Although this is
necqssun[y an tnexoct and somewhat arbitrary specification, no esti-
mation procedure, classical or Bayesi an, can avoid this {(or B.I,l equi:'a-
lent) step.  We continue with the example, delerring a more general
diseussion to Sec. 7-12. k
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Four of many possible choices for fz(Py) are shown below:

L) LAR)
PoF (1) POF (@
4 —>P
0?5 10 >F\:J Q 05 10 ']
FAR)
[P(PO) [
+ 1.0
PDF ® POF @
. Sp
01.5 10 >P"3 0 025 05075 10 Q

A priori PDF @ could represent the prior convictions of one
who believes, **Almost all coins are fair or very nearly fair, and I d'onf!,
see anything special about this coin” Tf it is believed that the coin is
probably biased, but the direction of the bias is unkno'wn, }"DF @
might serve as fp(P). There might be a person wh9 claims, 1 don_t,
know anything about parameter F, and the li?ust- biased _npproach is
represented by PDF (. Finally, PDF (¥ is the a priori state of
knowledge for a person who is certain that the valufa.of Pis gqu?l to
0.75. In fact, sinee PDF (@) allocates all its probability t(? this su_lglc
possible value of P, there is nothing to be learned from expenm.cn_tﬂuon.
For PDT (9, the a posteriori PDX will be identical to the a priori PDT,
no matter what experimental outcomes may be obtained.

Because the design of complete test programs is too in\..'olved. for
our introductory discussion, assume that somne external con.SJderat.lonS
have dictated that the coin is to be flipped exactly No times, We
wish to see how the experimental results (exactly Ko heads in N tosses)
are used to update the original a priori PDI fp{Pa). .

The Bernoulli model of the process leads us to the relation

~ (Vo) p o1 — Pyt =01,2 ...,N
pr (Kol Po) = (Ko) Pofo(l - Py)™ Ko )
where we are using a PMI" because of the diserete nature of‘ K, the
characteristic of interest. The cquation for using the expenmeqtn!
outcome to update the a priori PDT fe(Ps) to obtain tohe g, posterior
PDF fp(Py) is thus, from substitution into the continuous form of
Bayes’ theorem, found to be,
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(?éo) Po¥e(l — Po)¥eXefp(Po)
.HD(PD) =fP|K(Pn[Ku) = &

[Pl".o (ﬁ:) PoK‘(l —_ PO)NQ—K.IP(PO) dPo

and we shall continue our consideration of this relation in the following
section.

In general, we would expeect that, the narrower the a priori PDF
fe(Pa), the more the experimental evidence required to obtain an a
posteriori PDI which is appreciubly different from the a priori PDF.
For very large amounts of experimental data, we would expect the
effect of this evidence to dominate all but the most unreasonable a
priori PDF’s, with the a posteriori PDI* f,(P,) becoming heavily con-
centrated near the true value of parameter P,

7-11 Complementary PDF’s for Bayesian Analysis

For the Bayesian analysis of certain parameters of common proba-
bilistic processes, such as the situation in the example of Sec. 7-10, some
convenient and efficient proeedures have been developed.

The general caleulation for an a posteriori PDF is unpleasant,
and although it may be performed for any a priori PDF, it is unlikely
to yield results in a useful form, To simplify his computational burden,
the Bayesian often takes advantage of the obviously imprecise specifi-
cation of his a priori state of knowledge, In particular, he elects that,
whenever it is possible, he will select the a priort PDF from a famity
of PDI"s which has the following three properties:

The family should be rich cnough to aliow him to come repsonably
close Lo a statement of his subjeetive state of knowledge.

Individual members of the family should be determined by specifying
the value of a few parameters. It would not be realistic to pretend
that the a priori ’DYF represents very precise information,

The family should make the above updating calculation as simple as
possible, In particular, if one member of the family is used as the
2 priori PDF, then, for any possible experimental outcome, the result-
tng a posteriori PDF should simply be another member of the family.
One should be able to carry out the updating caleulation by merely
using the experimental results to modify the parameters of the a priori
PDT to obtain the » posteriori PDF.

The third item in the above list is clearly a big order. We shall
not investigate the existence and derivation of such families here.
However, when families of PDI"s with this property do exist for the
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cstimation of parameters of probabilistie processes, such PD¥'s are
said to be complementary {or conjugale) PDF's for the process being
studied. A demonstration will be presented for the example of the

previous section. . .
Consider the beta PDY for random varisble P with parameters
Lo and ng. It is convenient to write this PDT as &p(Po | ko, 70),

defined by 0 < Py <1
-~ G =

(B;:(Poi fn.‘u, 1'?.0) = C(kg,nu)Pu*“fl(l — Pg)"=—"=—‘ ko 2 0
ng = ko
where C(knno) is simply the normalization constant
-1
Clla) = [ [}_q Pt = Pt ape

and severn] members of this family of PDI"'s are shown below:

RLYLNN

AN
Ry =22
ky =11
A0
=8
204 ng=6 fy
k=1 ky =9
n,=2
ko=l
ia
> F
i — 7
0 a2 0.14 06 08 Lo 0

An individual member of thix family muy bhe N;)c(-iﬁeci by sclect-
ing values for its mean and varianee rather than by scleeting (‘Ollh'l:]lillt?'?
Lo and o directly.  Although techniques h:w.e hccn‘n developed tg a o.\\
far more structured D'y, the Bayesiin often finds t.hm. lh(,‘:hC t;\.\o'
parameters E(P) und 077 allow for an adequate expression of his prioy
belicfs about the unknown parameter I" of a B?rnoulll model. .

Direct substitution into the relation for Jp(Pa), the o posterion
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DT for our example, establishes that if the Bayesian starts out with
the o priori PDF

Se(Pe} = ®Rp(Po| ko, ng)

and then observes cxactly Ko suecesses in Ny Bernoulli trials, the
resuiting a posterioni PDI is

f;’(Po) = fpiu(Po| Ko) = ®p(Po| ko + Ko, na + No)

Thus, for the estimation of parameter P for a Bernoulli model, use of
n beta PDF for fo{P;) allows the a posteriori PDT to be determined by
mercly using the experimental values Ky and ¥, to modify the parame-
ters of the a priori PDT, Using the above sketeh, we see, for instanee,
that, if fp(Pa) were the beta DI with £y = 3 and 2y = 6, an experi-
mental outeome of two successes in two trials would lead to the
o posteriori beta PDY with &; = 3 and n, = 8.

It is often the case, as it s for our example, that the determina-
tion of parameters of the a priori PDF can be interpreted as nssuming
a certain equivalent past experience.” Ior instance, if the cost
structure is such that we shall choose our best estimate of parameter
P to be the expeetation of the a posteriori PDF, the resulting estimate
of parameter P, which we call P*, turns oul to be

. _I_{o + ko

* -
P No 4 no

This same result could have been obtained by the method of maximum-
likelihiood estimation, had we agreed to combine o bias of &, successes
in ny hypothetical trials with the actual experimental data.

I'inally, we remnark that the use of the beta family for estimating
parameter P of a Bernoulli process hus several other advantages, It
renders quite simple the otherwise most awkward calenintions for what
is known as preposterior analysis. This term refers to an exploration
of the nature of the 2 posteriori PDI and its consequences before the
tests are performed. It is this feature whieh allows one to optimize g
test program and design effective experiments without becoming
bogged down in hopelessly involved detailed calculations,

7-12 Some Comments on Bayesian Analysis and Classical Statistics

There is « large literature, both mathematieal and philosophical, deal-
ing with the relationship between classical statistics and Bayesian
anulysis.  Inorder toindieate some o the considerations in » relatively
brief manner, some imprecise generalizations necessarily appear in the
following discussion.

The Bayesian approach represents a significant departure from
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the more conservative classical techniques of statistieal analysis,
Classical techniques are often particularly appropriate for purely
scientific investigations and for matters involving large samples.
Classical procedures attempt to require the least severe possible
assumptive strueture on the part of the analyst. Bayesian analysis
involves a more specific assumptive structure and is often described as
being decision-oriented. Some of the most productive applications of
the Bayesian approach are found in situations where prior convictions
and a refatively small amount of experimentation must be combined
in & rational manner to make dectsious among alternative future courses
of action.

There is appreciable controversy about the degree of the differ-
ence between classical and Bayesian statistics, The Bayesian states
his entire assumptive strueture in his a priori PDF; his metheds require
no further arbitrary steps once this PDF is specified. It is true that
he is often willing to state a rather sharp a priori PDI which heavily
weights his prior convictions. But the Bayestan also points out that
all statistical procedures of any type involve similar (although possibly
weaker) statements of prior convietions. The assumptive structures
of classical statistics are less visible, being somewhat submerged in
established statistical tests and the choice of statisties,

Any two DBayesians would begin their nnalyses of the same
problem: with somewhat different a priori PDF’s.  If their work led
to conflicting terminzl decisions, their different assumptions are
apparent in their a priori PDIs and they have a clear cornmon ground
for further diseussions, The common ground between two different
classical procedures which result in conflicting adviee tends to be less
apparent.

Objection is frequently made to the arbitrary nature of the
o priori PDF used by the Bayesian. One frequently hears that this
provides an arbitrary bias to what might otherwise he a scientific
investigation. The Bayesian replies that all tests involve a form of
bizs and that he prefers that Ais bias be rational. For instance, in
consideriug the method of maximum likelihood for the estimation of
parameter P of a Bernoulli process, we noted the implication that all
possible values of P were equally likely before the experiments.
Otherwise, the method of maximum likelihood would maximize a
weighted form of that function of P which represents the a priort proba-
bility of the observed experimental cutcome.

Continuing this line of thought, the Bayesian contends that, for
anybody who has ever seen a eoin, how eould any bias be less rational
than that of a priori PDI () in the example of See. 7-107  Finally, he
would note that there is nothing fundamental in starting out with a

-
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uniform PDF over the possibie values of P as a manifestation of
[ SV . : H
minimum bias,” Parameter P is but one arbitrary way to charac-
terize the process; other parameters might be, for example,
1

==

P V=P 4+Phn(P+1

and professing that all possible values of one of these parameters be
equally likely would lcad to different results from those obtained by
assuming the uniform PDF aver all possible values of parameter P.
The Bayesian believes that, since it ig impossibie to avoid bias, one ean
do no better than to nssume a rational rather than naive form of bias.
. We should remark in closing that, because we considered a par-
ticularly simple estimation problem, we had at our disposal highty
developed Bayesian procedures. TFor multivariate problems or for
tests of nonparametric hypotheses, useful Bayesian formulations do
not necessarily exist.

ROBLEMS

7.01  Random variable 3f,, the sample mean, is defined to be the average

value of n independent cxperimental values of random vanable z.
Del_!,ermme the ezact PDF (or PMF) for M, and its expected value and
variance if

szuk—le—lr;

a fi(zo) = =0T k=123 ;v Lo 20
1
b f:(‘J?) = — e~ lr—8NR — <
P ERE
C pulzy) = ";:,_‘ =012 ...
d p.(xe) = P(1 — Py=t 0 =123...

7.02 Our model for a process states that r is a random variable described

by the PDF

It dfr<n <r 4
Jelzo) = !0 otherwise

and we do not know the value of » For the following questions
nssume that the form of our model is correet, J
a Wemay usethe average value of 48 independent experimental values
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of random: variable = to estimate the value of r from the relation
. +1
My~ E@) = [ zofizo) dry = v +

What is the probability that our estimate of » obtained in this way
will be within 30.01 of the true value? Within +0.05 of the true
value?

b We may use the largest of our 48 experimental values ns our estimate
of the quantity r + 1, thus obtaining another estimate of the value of
parameter r, Whnt iz the probability that our estimate of » obtained
this way is within (4+0,--0.02) of the true value? Within
(+0,—0.10) of the true value?

7.03 a Use methods similur to those of See. 7-3 to derive o reasonably

simple expression for the variance of the sample variance,
b Docs the sequence of sample varianees (S,%,8,?, . . .) for a Gaussian
random variable obey the weak law of large numbers?  Explain.

7.04 There nre 240 students in a literature class {*‘Proust, Joyce, Kafka,

and Mickey Spillane”).  Our model states that z, the numerical grade
for any individual student, iz an independent Gaussian random variable
with a standard deviation equal to 10 /2. Assuming that our model
is correct, we wish to perform a significance lest on the hypothesis that
E(x) is equal to 60.

Determine the highest and lowest class averages which will
result in the acceptance of this hypothesis:
a At the 0.02 level of significance
b At the 0.50 level of significance

7.05 We have accepted a Bernoulli model for a certain physical process

involving n series of discrete trials. We wish to perform a significance

test on the hypothesis that P, the probability of suecess on any trial,

is equal to 0.30. Determine the rejection region for tests at the 0.05

level of significance if we select as our statistie

a Random variable », the number of trials up to and including the
900th success

b Random variable s, the number of successes achieved in a totel of
1,800 trials

The expected number of coin flips for ench of these significance
tests is equal. Discuss the relative merits of these tests. Consider
the two rtatios o/F(r) and o,/E(s). Is the statistic with the snuller
standard-deviation to expected-value ratio necessarily the better
statistic?

.J.:.Illll_..
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1 .
f;(xo) — Z |f0<In$A.
0 otherwise
but we do not know the value of parameter A, Consider the following

statistics, each of which is hused on a set of five independent experi-
mental values (1,25, , . . ,r,) of random variable z:

021+ 22+ - -+ + 1)
8 = max (¥,2z, . .. ,Z5)
L= 0.5z 4 20

We wish to test the hypothesis 4 — 2.0 at the 0.3 level of significance,
(A significance test using statistic », for example, is referred to as T.)
Without doing too much work, ran you suggest possible values
of the data (xy,zs, . . . ,z;} which would result in:
a Acceptance only on 7, (and rejection on T, and T:)? Acceptance
only on 7,7 Acceptance only on T,?
b Rejection ounly on T, (and neceptance on T, and T))? Rejection
only on 7,7 Rejection only on 7.,?
¢ Acceptance on all three tests? Rejection on all three Lests?
If the hypothesis is accepted on all three tests, does that mean

it has passed an equivalent single significance test at the 1 — (0.5)?
level of significance? :

. 7.07 Al the bookie, plans to place a bet on the number of the round in

which Bo might knock out Ci in their coming (second) fight. Al

assumnes only the following details for his model of the fight:

1 Ci can survive exactly 50 solid hits. The 51st =olid hit (if there is
one) finishes Ci.

2 The times between solid hits by Bo are independent random variables
with the PDF

Silta) = x>t th 20
3 Fach round is three minutes,
Al hypoth_esizes that A = 3% (bits per second). Given the
result of‘the.prewol'ls fight (Ci won), at what significance level can Al
accept his hypothesis Ho(A = 4%)? In the first fight Bo failed to come

out for rfmnd 7—Ci lasted at least six rounds.  Discuss any additional
asaumptions you make.
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]

' 'Determ‘me approximately the rejection region for Hy which
maximizes the expeeted value of the outcome of this hypothesis test.

L
{13}

7.08  We are sure that the individual grades in o class are normally dis-

E tribuied about a mean of 60.0 and have standard deviation = equal to

= either 5.0 or B.0. Consider 2 hypothesis test of the null hypothesis 7.11 A Bernoulli process satisfies either & (P =0.5) H(P =

;!_1 Hl;(; = 5.0) with a statistic which is the experimental value of a single Using the number of successes observed i: n tri'ﬂ':)a.s (;rur ultsa.tis;ica?v)é
= grade. wi 12 test in whi B -
= a Deternine the acceptance region for I, if we wish to set the condi- ofif':l::) s:jrefzgg:ol}y[{p:L?se:zlltf]btténo“o?ch ;’;;2: FO;\}?itlonai: probﬂ.lbrht,y .
% tional probability of false rejection (the level of significance) at 0.10. n for which this is Lh:e case if 8 ti‘le ;:onditionlzl ‘ S,?;.;ft V? ‘;e of
= b I'or the above level of significance and eritical region, determine the acceptance of H,, must also be njo ter th [3:0 abtlity of false
%‘ conditional probability of acceptance of H,, given o = 8,0. " greater than 0.051

= ¢ How docs increasing the number of experimental values averaged in 7.12 A hypothesis test based on the statistic

the statistic contribute to your confidence in the outcome of this

= hypothesis test? Moo Btzt -+,
= d Suggest some appropriate statisties for u hypothesis tesi whieh is n

= intended to discriminate between Hofo = 5.0) and Hq (s = 8.0). is to b

= e If we use H, as a model for the grades, what probability dces it allot 13 to be used to choose between two hypotheses
= erades log . 2

% to grades less than 0 or greater than 1007 | HAE(z) = 0, 0, == 2| HUEG) = 1,0, = 4

7.09  Arandom varinblez is known to be characterized by either a Gaussian for the PDF of random variable z which is k to be G
which is known to be Gaussian,

% PDI with E(x) = 20and o, = 4 orby a Gaussian PDF with £(z) = 25 a Make .
= : . \ Alake a sketeh of the possible points {a,8) in an « lane f *
= n.r?da, = 5. Consider the—null l:ypot:heSfIaHoIE(.r) = 20, 7. = 4]. We casesn = landn = 4. (o and 8 are l'es)ect,ivel 'fhp 1 df’f the
= wish to test Hq at the 0.05 level of significance. Qur statistic is to be probabilities of false rejection and fal ; Tesp X }’,) e conditional
= Y ol : . v S alse acceptance,
= the sum o! three experlnlnental \alueg .Of random variable z. b Sketeh the ratio of the two conditional PDI?’S for rand b
= a Determine the conditional probability of false ncceptance of H. M (given Hy, given H)) us a funeti ) random variable
&= b Determine the conditional probability of false rejection of H,. n - 4 Disc:,lss the prlo 01'39:2;: :051 of . g;. for t!qelcases no= 1 and
=] ¢ Determine an upper bound on the probability that we shall arrive at exhibited on such g lobp *9 of a desirable statistic that might be
é an inecorrect conclusion from this hypothesis test. ) plot.
= d If we agree that one may assign an a priori probability of 0.6 to the 713 Expanding on the statement of Prob. 7.06, consider the statisti

sl - 7.06, ¢ statistic

event that ff;is true, determine the probabilities that this hypothesis
tost will result in:
b False acceptance of H,
ii False rejection of Hy
il An mcorrect conclusion

i

$n = max (IhI,, e . r‘t")

A

as an estimator of parameter A.

a Is this estimator biased? I3 it asymptotically biased?

b Is this estimator consistént?

¢ Carefully determine the maximum-likelihood estimator for A, based
only on the experimental value of the statistic & ,

LAl

7.10 A random variable x is known to be the sum of k independent
identically distributed exponential random wvariables, each with an
expected value equal to {kA)"'. We have only two hypotheses for the
value of parameter k; these are Ho(k == 64) and H\(k = 400). Before
we obtain any experimental data, our a priort guess is that these two
hypotheses are equally likely.

7.14 Suppose that we fip a coin until we observe the /th head. Lot n be
the x'mmbor' of ‘tnals up to and including the Ith head. Determine the
maximum-likelihood estimator for P, the probability of heads.

The statistic for our hypoethesis test is to be the sum of four
independent experimental values of .  We estimate that false accept-
ance of Hy will cost us 3100, false rejection of J{, will cost us $200, and
any correct outcome of the test is worth 8500 to us.

IﬁnﬂHﬁmlllIImemﬁﬂlﬂlfi'ﬂ]ﬂ]ﬂmﬂlﬁﬁHﬂﬁﬂHIIL'!HilIJI]LELH]ﬁ]IIHH{L'!HIIJBHIlIIEﬂlﬂ4|HI.’IHHJHlI1I'rlHII]Hliﬂ{H]Il!l]EH!HIIIIilﬁr'ﬂl!PE!'HH1IEEH|IﬂllIlﬂﬂ[Hfliﬁl|II|ﬂﬂﬂﬁ.Pﬁ'ﬂﬂﬂﬂﬁlﬁ'ﬁﬂmWWMWINHUHMWMHIW

Another experiment would involve flipping the coin n (a predetermined
number) times and letting the random variable be /, the number of
heads in the n trials. Determine the maximum-likelthood estimalor
for P for the latter experitnent. Discuss your results.
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f‘-'" ) ) . . If we tet (z4,: ) ! § 7.18 Consider the problem of estimating the parameter P (the probability
B 715 Wewishto estimate A for a Poisson process. o b {,vz.xl' e of heads) for a particular coin. To begin, we agree to assume the
= be independent e¥perimental values of n ﬁ.rst-.or er interarri i following a priori probability mass function for P:
;q we find (Sec. 7-9) that A%, the maximum-likelihood estimator for A, is
g given by 0.1 P,=04
E_; . pp(Po) = 0.8 Po = 0.9
E x: =n (‘EI.I‘)—I = 0.1 ‘ Py = 0.6
§—‘, - . . g We are now told that the coin was Ripped = times. The first
= a Show that E(\Y) = nA/(n — 1). ) d cable A as flip resulted in heads, and the remaining n — 1 flips resulted in tails.
= b Determine the exact value of the variance of random varizoie A | Determine the a posteriori PMF for P as a function of n for
E a function of n and . ) . tasod? n > 2. Prepare neat sketches of this function forn = 2and forn = 5.
% ¢ Is A} e biased estimator for A? Is it asymptotically biased!
= d Is A’ a consistent estimator for A? . est o desirable 7.19  Given a coin from a particular source, we decide that parameter P
= e Based on what we kn'ow :;bO;.lt :';’ can you Sugs {the probability of heads) for a toss of this coin is (to us) a random
= unbiased consistent estimator lor A! . variable with probability density function
§ Another type of maximum-likelihood estimation for the parame- P ¥ density
= ter A of o Poisson process appears in the following problem. fo(P) = K(l — PP O P, <1
% § 0 otherwise
= T 3 ticular event con- . . . .
= 716 Assume tl.mt It I8 I\now‘n ﬂ.mt OCC.l].:IrI'EI:I..CG;It: Of.a \.Irmrtilc:t,e the parame- = We procecd to flip the coin 10 times and note an experimental outcome
= stitute o Poisson proeess in time. e wish to ltr,; eskig % of six heads and four tails. Determine, within a normalizing constant,
= ter ), the average number of arrivals per minute. ‘vals are the resulting a posteriori PDF for random variable P.
= a In n predetermined period of T minutes, exactly n:—'-;“"’:s I |
= . : Jlikeli i A lor ase . . . . .
= observed. Derive the maximum-likelihood estimator % 7.20 Consider a Bayestan estimation of A, the unkpown average arrival
= on this data. P - rate for o Poisson process. Our state of knowledge about X leads us to
= b In 10,000 minutes 40,400 arrivals are observed. At what significance deseribe it as & random variable with the PDF
= level would the hypothesis A = 4 be accepted? ‘ N
.._:;i_c ¢ Prove that the maximum-ikelihood estimator derived in (a} 15 an filhe) = "1’\0_8IF A >0
= unbiased estimator for A, {k — 1)!
== . ' . .. .
= d Determine the variance of A% where k is a positive integer,
= e Is »* a consistent estimator for \? a If we observe the process for o predetermined interval of T units of
= - ‘ b of ni asoline time and observe exactly N arrivals, determine the & posteriori PDF
= 7.17 The volumes of gasoline sold in o month at each o ) n.l-nﬁ tgh PDF for random variable A. Speculate on the general behavior of this
% stations may be considered independent random variables with the PDF for very large values of T.
5—}3 1 e o) 2008 w <o < oo 3 % b Determine the expected value of the a priori and a posteriori PD's
= Tive) = Vore. e ) = v = for A. Comment on your results.
= ' , I ftor § ¢ Before the experiment is performed, we are required to give an esti-
.Z_ a Assummg thate, = 1, ﬁndlE;f,th: Tﬂ:“{“‘:{;‘;‘i"‘::i;}lg:?:j;m:::sg: % mate Ag for the true valueof A.  We shall be paid [00 — 500(hg — A)?
= 1'4.(?’) when we are given only ythe total g =] dollurs as a result of our guess. Determine the value of A; which
— tions, for a particular "‘O“Lh'. o o® and E*. the g maximizes the expected value of the guess.
= b Without making any assumptions about o,, determinc g, an '
| maximum-likelihood estimators for ¢, and E(v).
= ¢ Is the value of E= in (b) an unbiased estimator for E{)?






