
“mcs-ftl” — 2010/9/8 — 0:40 — page 283 — #289

10 Recurrences
A recurrence describes a sequence of numbers. Early terms are specified explic-
itly and later terms are expressed as a function of their predecessors. As a trivial
example, this recurrence describes the sequence 1, 2, 3, etc.:

T1 D 1

Tn D Tn�1 C 1 (for n � 2):

Here, the first term is defined to be 1 and each subsequent term is one more than its
predecessor.

Recurrences turn out to be a powerful tool. In this chapter, we’ll emphasize using
recurrences to analyze the performance of recursive algorithms. However, recur-
rences have other applications in computer science as well, such as enumeration of
structures and analysis of random processes. And, as we saw in Section 9.4, they
also arise in the analysis of problems in the physical sciences.

A recurrence in isolation is not a very useful description of a sequence. One
can not easily answer simple questions such as, “What is the hundredth term?” or
“What is the asymptotic growth rate?” So one typically wants to solve a recurrence;
that is, to find a closed-form expression for the nth term.

We’ll first introduce two general solving techniques: guess-and-verify and plug-
and-chug. These methods are applicable to every recurrence, but their success re-
quires a flash of insight—sometimes an unrealistically brilliant flash. So we’ll also
introduce two big classes of recurrences, linear and divide-and-conquer, that often
come up in computer science. Essentially all recurrences in these two classes are
solvable using cookbook techniques; you follow the recipe and get the answer. A
drawback is that calculation replaces insight. The “Aha!” moment that is essential
in the guess-and-verify and plug-and-chug methods is replaced by a “Huh” at the
end of a cookbook procedure.

At the end of the chapter, we’ll develop rules of thumb to help you assess many
recurrences without any calculation. These rules can help you distinguish promis-
ing approaches from bad ideas early in the process of designing an algorithm.

Recurrences are one aspect of a broad theme in computer science: reducing a big
problem to progressively smaller problems until easy base cases are reached. This
same idea underlies both induction proofs and recursive algorithms. As we’ll see,
all three ideas snap together nicely. For example, one might describe the running
time of a recursive algorithm with a recurrence and use induction to verify the
solution.

1

“mcs-ftl” — 2010/9/8 — 0:40 — page 284 — #290

Chapter 10 Recurrences

Figure 10.1 The initial configuration of the disks in the Towers of Hanoi problem.

10.1 The Towers of Hanoi

According to legend, there is a temple in Hanoi with three posts and 64 gold disks
of different sizes. Each disk has a hole through the center so that it fits on a post.
In the misty past, all the disks were on the first post, with the largest on the bottom
and the smallest on top, as shown in Figure 10.1.

Monks in the temple have labored through the years since to move all the disks
to one of the other two posts according to the following rules:

� The only permitted action is removing the top disk from one post and drop-
ping it onto another post.

� A larger disk can never lie above a smaller disk on any post.

So, for example, picking up the whole stack of disks at once and dropping them on
another post is illegal. That’s good, because the legend says that when the monks
complete the puzzle, the world will end!

To clarify the problem, suppose there were only 3 gold disks instead of 64. Then
the puzzle could be solved in 7 steps as shown in Figure 10.2.

The questions we must answer are, “Given sufficient time, can the monks suc-
ceed?” If so, “How long until the world ends?” And, most importantly, “Will this
happen before the final exam?”

10.1.1 A Recursive Solution

The Towers of Hanoi problem can be solved recursively. As we describe the pro-
cedure, we’ll also analyze the running time. To that end, let Tn be the minimum
number of steps required to solve the n-disk problem. For example, some experi-
mentation shows that T1 D 1 and T2 = 3. The procedure illustrated above shows
that T3 is at most 7, though there might be a solution with fewer steps.

The recursive solution has three stages, which are described below and illustrated
in Figure 10.3. For clarity, the largest disk is shaded in the figures.

2

“mcs-ftl” — 2010/9/8 — 0:40 — page 285 — #291

10.1. The Towers of Hanoi

1

2

3

4

5

6

7

Figure 10.2 The 7-step solution to the Towers of Hanoi problem when there are
n D 3 disks.

1

2

3

Figure 10.3 A recursive solution to the Towers of Hanoi problem.

3

“mcs-ftl” — 2010/9/8 — 0:40 — page 286 — #292

Chapter 10 Recurrences

Stage 1. Move the top n�1 disks from the first post to the second using the solution
for n � 1 disks. This can be done in Tn�1 steps.

Stage 2. Move the largest disk from the first post to the third post. This takes just
1 step.

Stage 3. Move the n � 1 disks from the second post to the third post, again using
the solution for n � 1 disks. This can also be done in Tn�1 steps.

This algorithm shows that Tn, the minimum number of steps required to move n
disks to a different post, is at most Tn�1C1CTn�1 D 2Tn�1C1. We can use this
fact to upper bound the number of operations required to move towers of various
heights:

T3 � 2 � T2 C 1 D 7

T4 � 2 � T3 C 1 � 15

Continuing in this way, we could eventually compute an upper bound on T64, the
number of steps required to move 64 disks. So this algorithm answers our first
question: given sufficient time, the monks can finish their task and end the world.
This is a shame. After all that effort, they’d probably want to smack a few high-fives
and go out for burgers and ice cream, but nope—world’s over.

10.1.2 Finding a Recurrence

We can not yet compute the exact number of steps that the monks need to move
the 64 disks, only an upper bound. Perhaps, having pondered the problem since the
beginning of time, the monks have devised a better algorithm.

In fact, there is no better algorithm, and here is why. At some step, the monks
must move the largest disk from the first post to a different post. For this to happen,
the n � 1 smaller disks must all be stacked out of the way on the only remaining
post. Arranging the n�1 smaller disks this way requires at least Tn�1 moves. After
the largest disk is moved, at least another Tn�1 moves are required to pile the n� 1
smaller disks on top.

This argument shows that the number of steps required is at least 2Tn�1 C 1.
Since we gave an algorithm using exactly that number of steps, we can now write
an expression for Tn, the number of moves required to complete the Towers of
Hanoi problem with n disks:

T1 D 1

Tn D 2Tn�1 C 1 (for n � 2):

4

“mcs-ftl” — 2010/9/8 — 0:40 — page 287 — #293

10.1. The Towers of Hanoi

This is a typical recurrence. These two lines define a sequence of values, T1; T2; T3; : : :.
The first line says that the first number in the sequence, T1, is equal to 1. The sec-
ond line defines every other number in the sequence in terms of its predecessor. So
we can use this recurrence to compute any number of terms in the sequence:

T1 D 1

T2 D 2 � T1 C 1 D 3

T3 D 2 � T2 C 1 D 7

T4 D 2 � T3 C 1 D 15

T5 D 2 � T4 C 1 D 31

T6 D 2 � T5 C 1 D 63:

10.1.3 Solving the Recurrence

We could determine the number of steps to move a 64-disk tower by computing T7,
T8, and so on up to T64. But that would take a lot of work. It would be nice to have
a closed-form expression for Tn, so that we could quickly find the number of steps
required for any given number of disks. (For example, we might want to know how
much sooner the world would end if the monks melted down one disk to purchase
burgers and ice cream before the end of the world.)

There are several methods for solving recurrence equations. The simplest is to
guess the solution and then verify that the guess is correct with an induction proof.
As a basis for a good guess, let’s look for a pattern in the values of Tn computed
above: 1, 3, 7, 15, 31, 63. A natural guess is Tn D 2n� 1. But whenever you guess
a solution to a recurrence, you should always verify it with a proof, typically by
induction. After all, your guess might be wrong. (But why bother to verify in this
case? After all, if we’re wrong, its not the end of the... no, let’s check.)

Claim 10.1.1. Tn D 2n � 1 satisfies the recurrence:

T1 D 1

Tn D 2Tn�1 C 1 (for n � 2):

Proof. The proof is by induction on n. The induction hypothesis is that Tn D
2n � 1. This is true for n D 1 because T1 D 1 D 21 � 1. Now assume that
Tn�1 D 2

n�1 � 1 in order to prove that Tn D 2n � 1, where n � 2:

Tn D 2Tn�1 C 1

D 2.2n�1 � 1/C 1

D 2n � 1:

5

“mcs-ftl” — 2010/9/8 — 0:40 — page 288 — #294

Chapter 10 Recurrences

The first equality is the recurrence equation, the second follows from the induction
assumption, and the last step is simplification. �

Such verification proofs are especially tidy because recurrence equations and
induction proofs have analogous structures. In particular, the base case relies on
the first line of the recurrence, which defines T1. And the inductive step uses the
second line of the recurrence, which defines Tn as a function of preceding terms.

Our guess is verified. So we can now resolve our remaining questions about the
64-disk puzzle. Since T64 D 264 � 1, the monks must complete more than 18
billion billion steps before the world ends. Better study for the final.

10.1.4 The Upper Bound Trap

When the solution to a recurrence is complicated, one might try to prove that some
simpler expression is an upper bound on the solution. For example, the exact so-
lution to the Towers of Hanoi recurrence is Tn D 2n � 1. Let’s try to prove the
“nicer” upper bound Tn � 2n, proceeding exactly as before.

Proof. (Failed attempt.) The proof is by induction on n. The induction hypothesis
is that Tn � 2n. This is true for n D 1 because T1 D 1 � 21. Now assume that
Tn�1 � 2

n�1 in order to prove that Tn � 2n, where n � 2:

Tn D 2Tn�1 C 1

� 2.2n�1/C 1

6� 2n Uh-oh!

The first equality is the recurrence relation, the second follows from the induction
hypothesis, and the third step is a flaming train wreck. �

The proof doesn’t work! As is so often the case with induction proofs, the ar-
gument only goes through with a stronger hypothesis. This isn’t to say that upper
bounding the solution to a recurrence is hopeless, but this is a situation where in-
duction and recurrences do not mix well.

10.1.5 Plug and Chug

Guess-and-verify is a simple and general way to solve recurrence equations. But
there is one big drawback: you have to guess right. That was not hard for the
Towers of Hanoi example. But sometimes the solution to a recurrence has a strange
form that is quite difficult to guess. Practice helps, of course, but so can some other
methods.

6

“mcs-ftl” — 2010/9/8 — 0:40 — page 289 — #295

10.1. The Towers of Hanoi

Plug-and-chug is another way to solve recurrences. This is also sometimes called
“expansion” or “iteration”. As in guess-and-verify, the key step is identifying a
pattern. But instead of looking at a sequence of numbers, you have to spot a pattern
in a sequence of expressions, which is sometimes easier. The method consists of
three steps, which are described below and illustrated with the Towers of Hanoi
example.

Step 1: Plug and Chug Until a Pattern Appears

The first step is to expand the recurrence equation by alternately “plugging” (apply-
ing the recurrence) and “chugging” (simplifying the result) until a pattern appears.
Be careful: too much simplification can make a pattern harder to spot. The rule
to remember—indeed, a rule applicable to the whole of college life—is chug in
moderation.

Tn D 2Tn�1 C 1

D 2.2Tn�2 C 1/C 1 plug

D 4Tn�2 C 2C 1 chug

D 4.2Tn�3 C 1/C 2C 1 plug

D 8Tn�3 C 4C 2C 1 chug

D 8.2Tn�4 C 1/C 4C 2C 1 plug

D 16Tn�4 C 8C 4C 2C 1 chug

Above, we started with the recurrence equation. Then we replaced Tn�1 with
2Tn�2 C 1, since the recurrence says the two are equivalent. In the third step,
we simplified a little—but not too much! After several similar rounds of plugging
and chugging, a pattern is apparent. The following formula seems to hold:

Tn D 2
kTn�k C 2

k�1
C 2k�2 C : : :C 22 C 21 C 20

D 2kTn�k C 2
k
� 1

Once the pattern is clear, simplifying is safe and convenient. In particular, we’ve
collapsed the geometric sum to a closed form on the second line.

7

“mcs-ftl” — 2010/9/8 — 0:40 — page 290 — #296

Chapter 10 Recurrences

Step 2: Verify the Pattern

The next step is to verify the general formula with one more round of plug-and-
chug.

Tn D 2
kTn�k C 2

k
� 1

D 2k.2Tn�.kC1/ C 1/C 2
k
� 1 plug

D 2kC1Tn�.kC1/ C 2
kC1
� 1 chug

The final expression on the right is the same as the expression on the first line,
except that k is replaced by k C 1. Surprisingly, this effectively proves that the
formula is correct for all k. Here is why: we know the formula holds for k D 1,
because that’s the original recurrence equation. And we’ve just shown that if the
formula holds for some k � 1, then it also holds for k C 1. So the formula holds
for all k � 1 by induction.

Step 3: Write Tn Using Early Terms with Known Values

The last step is to express Tn as a function of early terms whose values are known.
Here, choosing k D n � 1 expresses Tn in terms of T1, which is equal to 1. Sim-
plifying gives a closed-form expression for Tn:

Tn D 2
n�1T1 C 2

n�1
� 1

D 2n�1 � 1C 2n�1 � 1

D 2n � 1:

We’re done! This is the same answer we got from guess-and-verify.

Let’s compare guess-and-verify with plug-and-chug. In the guess-and-verify
method, we computed several terms at the beginning of the sequence, T1, T2, T3,
etc., until a pattern appeared. We generalized to a formula for the nth term, Tn. In
contrast, plug-and-chug works backward from the nth term. Specifically, we started
with an expression for Tn involving the preceding term, Tn�1, and rewrote this us-
ing progressively earlier terms, Tn�2, Tn�3, etc. Eventually, we noticed a pattern,
which allowed us to express Tn using the very first term, T1, whose value we knew.
Substituting this value gave a closed-form expression for Tn. So guess-and-verify
and plug-and-chug tackle the problem from opposite directions.

8

“mcs-ftl” — 2010/9/8 — 0:40 — page 291 — #297

10.2. Merge Sort

10.2 Merge Sort

Algorithms textbooks traditionally claim that sorting is an important, fundamental
problem in computer science. Then they smack you with sorting algorithms until
life as a disk-stacking monk in Hanoi sounds delightful. Here, we’ll cover just one
well-known sorting algorithm, Merge Sort. The analysis introduces another kind
of recurrence.

Here is how Merge Sort works. The input is a list of n numbers, and the output
is those same numbers in nondecreasing order. There are two cases:

� If the input is a single number, then the algorithm does nothing, because the
list is already sorted.

� Otherwise, the list contains two or more numbers. The first half and the
second half of the list are each sorted recursively. Then the two halves are
merged to form a sorted list with all n numbers.

Let’s work through an example. Suppose we want to sort this list:

10, 7, 23, 5, 2, 8, 6, 9.

Since there is more than one number, the first half (10, 7, 23, 5) and the second half
(2, 8, 6, 9) are sorted recursively. The results are 5, 7, 10, 23 and 2, 6, 8, 9. All that
remains is to merge these two lists. This is done by repeatedly emitting the smaller
of the two leading terms. When one list is empty, the whole other list is emitted.
The example is worked out below. In this table, underlined numbers are about to
be emitted.

First Half Second Half Output
5, 7, 10, 23 2, 6, 8, 9
5, 7, 10, 23 6, 8, 9 2
7, 10, 23 6, 8, 9 2, 5
7, 10, 23 8, 9 2, 5, 6
10, 23 8, 9 2, 5, 6, 7
10, 23 9 2, 5, 6, 7, 8
10, 23 2, 5, 6, 7, 8, 9

2, 5, 6, 7, 8, 9, 10, 23

The leading terms are initially 5 and 2. So we output 2. Then the leading terms are
5 and 6, so we output 5. Eventually, the second list becomes empty. At that point,
we output the whole first list, which consists of 10 and 23. The complete output
consists of all the numbers in sorted order.

9

“mcs-ftl” — 2010/9/8 — 0:40 — page 292 — #298

Chapter 10 Recurrences

10.2.1 Finding a Recurrence

A traditional question about sorting algorithms is, “What is the maximum number
of comparisons used in sorting n items?” This is taken as an estimate of the running
time. In the case of Merge Sort, we can express this quantity with a recurrence. Let
Tn be the maximum number of comparisons used while Merge Sorting a list of n
numbers. For now, assume that n is a power of 2. This ensures that the input can
be divided in half at every stage of the recursion.

� If there is only one number in the list, then no comparisons are required, so
T1 D 0.

� Otherwise, Tn includes comparisons used in sorting the first half (at most
Tn=2), in sorting the second half (also at most Tn=2), and in merging the two
halves. The number of comparisons in the merging step is at most n � 1.
This is because at least one number is emitted after each comparison and one
more number is emitted at the end when one list becomes empty. Since n
items are emitted in all, there can be at most n � 1 comparisons.

Therefore, the maximum number of comparisons needed to Merge Sort n items is
given by this recurrence:

T1 D 0

Tn D 2Tn=2 C n � 1 (for n � 2 and a power of 2):

This fully describes the number of comparisons, but not in a very useful way; a
closed-form expression would be much more helpful. To get that, we have to solve
the recurrence.

10.2.2 Solving the Recurrence

Let’s first try to solve the Merge Sort recurrence with the guess-and-verify tech-
nique. Here are the first few values:

T1 D 0

T2 D 2T1 C 2 � 1 D 1

T4 D 2T2 C 4 � 1 D 5

T8 D 2T4 C 8 � 1 D 17

T16 D 2T8 C 16 � 1 D 49:

We’re in trouble! Guessing the solution to this recurrence is hard because there is
no obvious pattern. So let’s try the plug-and-chug method instead.

10

“mcs-ftl” — 2010/9/8 — 0:40 — page 293 — #299

10.2. Merge Sort

Step 1: Plug and Chug Until a Pattern Appears

First, we expand the recurrence equation by alternately plugging and chugging until
a pattern appears.

Tn D 2Tn=2 C n � 1

D 2.2Tn=4 C n=2 � 1/C .n � 1/ plug

D 4Tn=4 C .n � 2/C .n � 1/ chug

D 4.2Tn=8 C n=4 � 1/C .n � 2/C .n � 1/ plug

D 8Tn=8 C .n � 4/C .n � 2/C .n � 1/ chug

D 8.2Tn=16 C n=8 � 1/C .n � 4/C .n � 2/C .n � 1/ plug

D 16Tn=16 C .n � 8/C .n � 4/C .n � 2/C .n � 1/ chug

A pattern is emerging. In particular, this formula seems holds:

Tn D 2
kTn=2k C .n � 2

k�1/C .n � 2k�2/C : : :C .n � 20/

D 2kTn=2k C kn � 2
k�1
� 2k�2 : : : � 20

D 2kTn=2k C kn � 2
k
C 1:

On the second line, we grouped the n terms and powers of 2. On the third, we
collapsed the geometric sum.

Step 2: Verify the Pattern

Next, we verify the pattern with one additional round of plug-and-chug. If we
guessed the wrong pattern, then this is where we’ll discover the mistake.

Tn D 2
kTn=2k C kn � 2

k
C 1

D 2k.2Tn=2kC1 C n=2
k
� 1/C kn � 2k C 1 plug

D 2kC1Tn=2kC1 C .k C 1/n � 2
kC1
C 1 chug

The formula is unchanged except that k is replaced by k C 1. This amounts to the
induction step in a proof that the formula holds for all k � 1.

11

“mcs-ftl” — 2010/9/8 — 0:40 — page 294 — #300

Chapter 10 Recurrences

Step 3: Write Tn Using Early Terms with Known Values

Finally, we express Tn using early terms whose values are known. Specifically, if
we let k D logn, then Tn=2k D T1, which we know is 0:

Tn D 2
kTn=2k C kn � 2

k
C 1

D 2lognTn=2logn C n logn � 2logn
C 1

D nT1 C n logn � nC 1

D n logn � nC 1:

We’re done! We have a closed-form expression for the maximum number of com-
parisons used in Merge Sorting a list of n numbers. In retrospect, it is easy to see
why guess-and-verify failed: this formula is fairly complicated.

As a check, we can confirm that this formula gives the same values that we
computed earlier:

n Tn n logn � nC 1
1 0 1 log 1 � 1C 1 D 0
2 1 2 log 2 � 2C 1 D 1
4 5 4 log 4 � 4C 1 D 5
8 17 8 log 8 � 8C 1 D 17
16 49 16 log 16 � 16C 1 D 49

As a double-check, we could write out an explicit induction proof. This would be
straightforward, because we already worked out the guts of the proof in step 2 of
the plug-and-chug procedure.

10.3 Linear Recurrences

So far we’ve solved recurrences with two techniques: guess-and-verify and plug-
and-chug. These methods require spotting a pattern in a sequence of numbers or
expressions. In this section and the next, we’ll give cookbook solutions for two
large classes of recurrences. These methods require no flash of insight; you just
follow the recipe and get the answer.

10.3.1 Climbing Stairs

How many different ways are there to climb n stairs, if you can either step up one
stair or hop up two? For example, there are five different ways to climb four stairs:

1. step, step, step, step

12

“mcs-ftl” — 2010/9/8 — 0:40 — page 295 — #301

10.3. Linear Recurrences

2. hop, hop

3. hop, step, step

4. step, hop step

5. step, step, hop

Working through this problem will demonstrate the major features of our first cook-
book method for solving recurrences. We’ll fill in the details of the general solution
afterward.

Finding a Recurrence

As special cases, there is 1 way to climb 0 stairs (do nothing) and 1 way to climb
1 stair (step up). In general, an ascent of n stairs consists of either a step followed
by an ascent of the remaining n � 1 stairs or a hop followed by an ascent of n � 2
stairs. So the total number of ways to climb n stairs is equal to the number of ways
to climb n � 1 plus the number of ways to climb n � 2. These observations define
a recurrence:

f .0/ D 1

f .1/ D 1

f .n/ D f .n � 1/C f .n � 2/ for n � 2:

Here, f .n/ denotes the number of ways to climb n stairs. Also, we’ve switched
from subscript notation to functional notation, from Tn to fn. Here the change is
cosmetic, but the expressiveness of functions will be useful later.

This is the Fibonacci recurrence, the most famous of all recurrence equations.
Fibonacci numbers arise in all sorts of applications and in nature. Fibonacci intro-
duced the numbers in 1202 to study rabbit reproduction. Fibonacci numbers also
appear, oddly enough, in the spiral patterns on the faces of sunflowers. And the
input numbers that make Euclid’s GCD algorithm require the greatest number of
steps are consecutive Fibonacci numbers.

Solving the Recurrence

The Fibonacci recurrence belongs to the class of linear recurrences, which are es-
sentially all solvable with a technique that you can learn in an hour. This is some-
what amazing, since the Fibonacci recurrence remained unsolved for almost six
centuries!

In general, a homogeneous linear recurrence has the form

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/

13

“mcs-ftl” — 2010/9/8 — 0:40 — page 296 — #302

Chapter 10 Recurrences

where a1; a2; : : : ; ad and d are constants. The order of the recurrence is d . Com-
monly, the value of the function f is also specified at a few points; these are called
boundary conditions. For example, the Fibonacci recurrence has order d D 2 with
coefficients a1 D a2 D 1 and g.n/ D 0. The boundary conditions are f .0/ D 1

and f .1/ D 1. The word “homogeneous” sounds scary, but effectively means “the
simpler kind”. We’ll consider linear recurrences with a more complicated form
later.

Let’s try to solve the Fibonacci recurrence with the benefit centuries of hindsight.
In general, linear recurrences tend to have exponential solutions. So let’s guess that

f .n/ D xn

where x is a parameter introduced to improve our odds of making a correct guess.
We’ll figure out the best value for x later. To further improve our odds, let’s neglect
the boundary conditions, f .0/ D 0 and f .1/ D 1, for now. Plugging this guess
into the recurrence f .n/ D f .n � 1/C f .n � 2/ gives

xn D xn�1 C xn�2:

Dividing both sides by xn�2 leaves a quadratic equation:

x2 D x C 1:

Solving this equation gives two plausible values for the parameter x:

x D
1˙
p
5

2
:

This suggests that there are at least two different solutions to the recurrence, ne-
glecting the boundary conditions.

f .n/ D

1C
p
5

2

!n
or f .n/ D

1 �
p
5

2

!n
A charming features of homogeneous linear recurrences is that any linear com-

bination of solutions is another solution.

Theorem 10.3.1. If f .n/ and g.n/ are both solutions to a homogeneous linear
recurrence, then h.n/ D sf .n/C tg.n/ is also a solution for all s; t 2 R.

Proof.

h.n/ D sf .n/C tg.n/

D s .a1f .n � 1/C : : :C adf .n � d//C t .a1g.n � 1/C : : :C adg.n � d//

D a1.sf .n � 1/C tg.n � 1//C : : :C ad .sf .n � d/C tg.n � d//

D a1h.n � 1/C : : :C adh.n � d/

14

“mcs-ftl” — 2010/9/8 — 0:40 — page 297 — #303

10.3. Linear Recurrences

The first step uses the definition of the function h, and the second uses the fact that
f and g are solutions to the recurrence. In the last two steps, we rearrange terms
and use the definition of h again. Since the first expression is equal to the last, h is
also a solution to the recurrence. �

The phenomenon described in this theorem—a linear combination of solutions is
another solution—also holds for many differential equations and physical systems.
In fact, linear recurrences are so similar to linear differential equations that you can
safely snooze through that topic in some future math class.

Returning to the Fibonacci recurrence, this theorem implies that

f .n/ D s

1C
p
5

2

!n
C t

1 �
p
5

2

!n
is a solution for all real numbers s and t . The theorem expanded two solutions to
a whole spectrum of possibilities! Now, given all these options to choose from,
we can find one solution that satisfies the boundary conditions, f .0/ D 1 and
f .1/ D 1. Each boundary condition puts some constraints on the parameters s and
t . In particular, the first boundary condition implies that

f .0/ D s

1C
p
5

2

!0
C t

1 �
p
5

2

!0
D s C t D 1:

Similarly, the second boundary condition implies that

f .1/ D s

1C
p
5

2

!1
C t

1 �
p
5

2

!1
D 1:

Now we have two linear equations in two unknowns. The system is not degenerate,
so there is a unique solution:

s D
1
p
5
�
1C
p
5

2
t D �

1
p
5
�
1 �
p
5

2
:

These values of s and t identify a solution to the Fibonacci recurrence that also
satisfies the boundary conditions:

f .n/ D
1
p
5
�
1C
p
5

2

1C
p
5

2

!n
�

1
p
5
�
1 �
p
5

2

1 �
p
5

2

!n
D

1
p
5

1C
p
5

2

!nC1
�

1
p
5

1 �
p
5

2

!nC1
:

15

“mcs-ftl” — 2010/9/8 — 0:40 — page 298 — #304

Chapter 10 Recurrences

It is easy to see why no one stumbled across this solution for almost six centuries!
All Fibonacci numbers are integers, but this expression is full of square roots of
five! Amazingly, the square roots always cancel out. This expression really does
give the Fibonacci numbers if we plug in n D 0; 1; 2, etc.

This closed-form for Fibonacci numbers has some interesting corollaries. The
first term tends to infinity because the base of the exponential, .1 C

p
5/=2 D

1:618 : : : is greater than one. This value is often denoted � and called the “golden
ratio”. The second term tends to zero, because .1 �

p
5/=2 D �0:618033988 : : :

has absolute value less than 1. This implies that the nth Fibonacci number is:

f .n/ D
�nC1
p
5
C o.1/:

Remarkably, this expression involving irrational numbers is actually very close to
an integer for all large n—namely, a Fibonacci number! For example:

�20
p
5
D 6765:000029 : : : � f .19/:

This also implies that the ratio of consecutive Fibonacci numbers rapidly approaches
the golden ratio. For example:

f .20/

f .19/
D
10946

6765
D 1:618033998 : : : :

10.3.2 Solving Homogeneous Linear Recurrences

The method we used to solve the Fibonacci recurrence can be extended to solve
any homogeneous linear recurrence; that is, a recurrence of the form

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/

where a1; a2; : : : ; ad and d are constants. Substituting the guess f .n/ D xn, as
with the Fibonacci recurrence, gives

xn D a1x
n�1
C a2x

n�2
C : : :C adx

n�d :

Dividing by xn�d gives

xd D a1x
d�1
C a2x

d�2
C : : :C ad�1x C ad :

This is called the characteristic equation of the recurrence. The characteristic equa-
tion can be read off quickly since the coefficients of the equation are the same as
the coefficients of the recurrence.

The solutions to a linear recurrence are defined by the roots of the characteristic
equation. Neglecting boundary conditions for the moment:

16

“mcs-ftl” — 2010/9/8 — 0:40 — page 299 — #305

10.3. Linear Recurrences

� If r is a nonrepeated root of the characteristic equation, then rn is a solution
to the recurrence.

� If r is a repeated root with multiplicity k then rn, nrn, n2rn, . . . , nk�1rn

are all solutions to the recurrence.

Theorem 10.3.1 implies that every linear combination of these solutions is also a
solution.

For example, suppose that the characteristic equation of a recurrence has roots s,
t , and u twice. These four roots imply four distinct solutions:

f .n/ D sn f .n/ D tn f .n/ D un f .n/ D nun:

Furthermore, every linear combination

f .n/ D a � sn C b � tn C c � un C d � nun (10.1)

is also a solution.
All that remains is to select a solution consistent with the boundary conditions

by choosing the constants appropriately. Each boundary condition implies a linear
equation involving these constants. So we can determine the constants by solving
a system of linear equations. For example, suppose our boundary conditions were
f .0/ D 0, f .1/ D 1, f .2/ D 4, and f .3/ D 9. Then we would obtain four
equations in four unknowns:

f .0/ D 0) a � s0 C b � t0 C c � u0 C d � 0u0 D 0

f .1/ D 1) a � s1 C b � t1 C c � u1 C d � 1u1 D 1

f .2/ D 4) a � s2 C b � t2 C c � u2 C d � 2u2 D 4

f .3/ D 9) a � s3 C b � t3 C c � u3 C d � 3u3 D 9

This looks nasty, but remember that s, t , and u are just constants. Solving this sys-
tem gives values for a, b, c, and d that define a solution to the recurrence consistent
with the boundary conditions.

10.3.3 Solving General Linear Recurrences

We can now solve all linear homogeneous recurrences, which have the form

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/:

Many recurrences that arise in practice do not quite fit this mold. For example, the
Towers of Hanoi problem led to this recurrence:

f .1/ D 1

f .n/ D 2f .n � 1/C 1 (for n � 2):

17

“mcs-ftl” — 2010/9/8 — 0:40 — page 300 — #306

Chapter 10 Recurrences

The problem is the extra C1; that is not allowed in a homogeneous linear recur-
rence. In general, adding an extra function g.n/ to the right side of a linear recur-
rence gives an inhomogeneous linear recurrence:

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/C g.n/:

Solving inhomogeneous linear recurrences is neither very different nor very dif-
ficult. We can divide the whole job into five steps:

1. Replace g.n/ by 0, leaving a homogeneous recurrence. As before, find roots
of the characteristic equation.

2. Write down the solution to the homogeneous recurrence, but do not yet use
the boundary conditions to determine coefficients. This is called the homo-
geneous solution.

3. Now restore g.n/ and find a single solution to the recurrence, ignoring bound-
ary conditions. This is called a particular solution. We’ll explain how to find
a particular solution shortly.

4. Add the homogeneous and particular solutions together to obtain the general
solution.

5. Now use the boundary conditions to determine constants by the usual method
of generating and solving a system of linear equations.

As an example, let’s consider a variation of the Towers of Hanoi problem. Sup-
pose that moving a disk takes time proportional to its size. Specifically, moving the
smallest disk takes 1 second, the next-smallest takes 2 seconds, and moving the nth
disk then requires n seconds instead of 1. So, in this variation, the time to complete
the job is given by a recurrence with aCn term instead of aC1:

f .1/ D 1

f .n/ D 2f .n � 1/C n for n � 2:

Clearly, this will take longer, but how much longer? Let’s solve the recurrence with
the method described above.

In Steps 1 and 2, dropping the Cn leaves the homogeneous recurrence f .n/ D
2f .n � 1/. The characteristic equation is x D 2. So the homogeneous solution is
f .n/ D c2n.

In Step 3, we must find a solution to the full recurrence f .n/ D 2f .n � 1/C n,
without regard to the boundary condition. Let’s guess that there is a solution of the

18

“mcs-ftl” — 2010/9/8 — 0:40 — page 301 — #307

10.3. Linear Recurrences

form f .n/ D anC b for some constants a and b. Substituting this guess into the
recurrence gives

anC b D 2.a.n � 1/C b/C n

0 D .aC 1/nC .b � 2a/:

The second equation is a simplification of the first. The second equation holds for
all n if both a C 1 D 0 (which implies a D �1) and b � 2a D 0 (which implies
that b D �2). So f .n/ D anC b D �n � 2 is a particular solution.

In the Step 4, we add the homogeneous and particular solutions to obtain the
general solution

f .n/ D c2n � n � 2:

Finally, in step 5, we use the boundary condition, f .1/ D 1, determine the value
of the constant c:

f .1/ D 1) c21 � 1 � 2 D 1

) c D 2:

Therefore, the function f .n/ D 2 � 2n � n � 2 solves this variant of the Towers
of Hanoi recurrence. For comparison, the solution to the original Towers of Hanoi
problem was 2n � 1. So if moving disks takes time proportional to their size, then
the monks will need about twice as much time to solve the whole puzzle.

10.3.4 How to Guess a Particular Solution

Finding a particular solution can be the hardest part of solving inhomogeneous
recurrences. This involves guessing, and you might guess wrong.1 However, some
rules of thumb make this job fairly easy most of the time.

� Generally, look for a particular solution with the same form as the inhomo-
geneous term g.n/.

� If g.n/ is a constant, then guess a particular solution f .n/ D c. If this doesn’t
work, try polynomials of progressively higher degree: f .n/ D bnC c, then
f .n/ D an2 C bnC c, etc.

� More generally, if g.n/ is a polynomial, try a polynomial of the same degree,
then a polynomial of degree one higher, then two higher, etc. For example,
if g.n/ D 6nC 5, then try f .n/ D bnC c and then f .n/ D an2 C bnC c.

1In Chapter 12, we will show how to solve linear recurrences with generating functions—it’s a
little more complicated, but it does not require guessing.

19

“mcs-ftl” — 2010/9/8 — 0:40 — page 302 — #308

Chapter 10 Recurrences

� If g.n/ is an exponential, such as 3n, then first guess that f .n/ D c3n.
Failing that, try f .n/ D bn3n C c3n and then an23n C bn3n C c3n, etc.

The entire process is summarized on the following page.

10.4 Divide-and-Conquer Recurrences

We now have a recipe for solving general linear recurrences. But the Merge Sort
recurrence, which we encountered earlier, is not linear:

T .1/ D 0

T .n/ D 2T .n=2/C n � 1 (for n � 2):

In particular, T .n/ is not a linear combination of a fixed number of immediately
preceding terms; rather, T .n/ is a function of T .n=2/, a term halfway back in the
sequence.

Merge Sort is an example of a divide-and-conquer algorithm: it divides the in-
put, “conquers” the pieces, and combines the results. Analysis of such algorithms
commonly leads to divide-and-conquer recurrences, which have this form:

T .n/ D

kX
iD1

aiT .bin/C g.n/

Here a1; : : : ak are positive constants, b1; : : : ; bk are constants between 0 and 1,
and g.n/ is a nonnegative function. For example, setting a1 D 2, b1 D 1=2, and
g.n/ D n � 1 gives the Merge Sort recurrence.

10.4.1 The Akra-Bazzi Formula

The solution to virtually all divide and conquer solutions is given by the amazing
Akra-Bazzi formula. Quite simply, the asymptotic solution to the general divide-
and-conquer recurrence

T .n/ D

kX
iD1

aiT .bin/C g.n/

is

T .n/ D ‚

�
np
�
1C

Z n

1

g.u/

upC1
du

��
(10.2)

20

“mcs-ftl” — 2010/9/8 — 0:40 — page 303 — #309

10.4. Divide-and-Conquer Recurrences

Short Guide to Solving Linear Recurrences
A linear recurrence is an equation

f .n/ D a1f .n � 1/C a2f .n � 2/C : : :C adf .n � d/„ ƒ‚ …
homogeneous part

C g.n/„ ƒ‚ …
inhomogeneous part

together with boundary conditions such as f .0/ D b0, f .1/ D b1, etc. Linear
recurrences are solved as follows:

1. Find the roots of the characteristic equation

xn D a1x
n�1
C a2x

n�2
C : : :C ak�1x C ak :

2. Write down the homogeneous solution. Each root generates one term and
the homogeneous solution is their sum. A nonrepeated root r generates the
term crn, where c is a constant to be determined later. A root r with multi-
plicity k generates the terms

d1r
n d2nr

n d3n
2rn : : : dkn

k�1rn

where d1; : : : dk are constants to be determined later.

3. Find a particular solution. This is a solution to the full recurrence that need
not be consistent with the boundary conditions. Use guess-and-verify. If
g.n/ is a constant or a polynomial, try a polynomial of the same degree, then
of one higher degree, then two higher. For example, if g.n/ D n, then try
f .n/ D bnCc and then an2CbnCc. If g.n/ is an exponential, such as 3n,
then first guess f .n/ D c3n. Failing that, try f .n/ D .bnC c/3n and then
.an2 C bnC c/3n, etc.

4. Form the general solution, which is the sum of the homogeneous solution
and the particular solution. Here is a typical general solution:

f .n/ D c2n C d.�1/n„ ƒ‚ …
homogeneous solution

C 3nC 1.„ƒ‚…
inhomogeneous solution

5. Substitute the boundary conditions into the general solution. Each boundary
condition gives a linear equation in the unknown constants. For example,
substituting f .1/ D 2 into the general solution above gives

2 D c � 21 C d � .�1/1 C 3 � 1C 1

) �2 D 2c � d:

Determine the values of these constants by solving the resulting system of
linear equations.

21

“mcs-ftl” — 2010/9/8 — 0:40 — page 304 — #310

Chapter 10 Recurrences

where p satisfies
kX
iD1

aib
p
i D 1: (10.3)

A rarely-troublesome requirement is that the function g.n/ must not grow or
oscillate too quickly. Specifically, jg0.n/j must be bounded by some polynomial.
So, for example, the Akra-Bazzi formula is valid when g.n/ D x2 logn, but not
when g.n/ D 2n.

Let’s solve the Merge Sort recurrence again, using the Akra-Bazzi formula in-
stead of plug-and-chug. First, we find the value p that satisfies

2 � .1=2/p D 1:

Looks like p D 1 does the job. Then we compute the integral:

T .n/ D ‚

�
n

�
1C

Z n

1

u � 1

u2
du

��
D ‚

�
n

�
1C

�
loguC

1

u

�n
1

��
D ‚

�
n

�
lognC

1

n

��
D ‚.n logn/ :

The first step is integration and the second is simplification. We can drop the 1=n
term in the last step, because the logn term dominates. We’re done!

Let’s try a scary-looking recurrence:

T .n/ D 2T .n=2/C 8=9T .3n=4/C n2:

Here, a1 D 2, b1 D 1=2, a2 D 8=9, and b2 D 3=4. So we find the value p that
satisfies

2 � .1=2/p C .8=9/.3=4/p D 1:

Equations of this form don’t always have closed-form solutions, so you may need
to approximate p numerically sometimes. But in this case the solution is simple:
p D 2. Then we integrate:

T .n/ D ‚

�
n2
�
1C

Z n

1

u2

u3
du

��
D ‚

�
n2.1C logn/

�
D ‚

�
n2 logn

�
:

That was easy!

22

“mcs-ftl” — 2010/9/8 — 0:40 — page 305 — #311

10.4. Divide-and-Conquer Recurrences

10.4.2 Two Technical Issues

Until now, we’ve swept a couple issues related to divide-and-conquer recurrences
under the rug. Let’s address those issues now.

First, the Akra-Bazzi formula makes no use of boundary conditions. To see why,
let’s go back to Merge Sort. During the plug-and-chug analysis, we found that

Tn D nT1 C n logn � nC 1:

This expresses the nth term as a function of the first term, whose value is specified
in a boundary condition. But notice that Tn D ‚.n logn/ for every value of T1.
The boundary condition doesn’t matter!

This is the typical situation: the asymptotic solution to a divide-and-conquer
recurrence is independent of the boundary conditions. Intuitively, if the bottom-
level operation in a recursive algorithm takes, say, twice as long, then the overall
running time will at most double. This matters in practice, but the factor of 2 is
concealed by asymptotic notation. There are corner-case exceptions. For example,
the solution to T .n/ D 2T .n=2/ is either ‚.n/ or zero, depending on whether
T .1/ is zero. These cases are of little practical interest, so we won’t consider them
further.

There is a second nagging issue with divide-and-conquer recurrences that does
not arise with linear recurrences. Specifically, dividing a problem of size n may
create subproblems of non-integer size. For example, the Merge Sort recurrence
contains the term T .n=2/. So what if n is 15? How long does it take to sort seven-
and-a-half items? Previously, we dodged this issue by analyzing Merge Sort only
when the size of the input was a power of 2. But then we don’t know what happens
for an input of size, say, 100.

Of course, a practical implementation of Merge Sort would split the input ap-
proximately in half, sort the halves recursively, and merge the results. For example,
a list of 15 numbers would be split into lists of 7 and 8. More generally, a list of n
numbers would be split into approximate halves of size dn=2e and bn=2c. So the
maximum number of comparisons is actually given by this recurrence:

T .1/ D 0

T .n/ D T .dn=2e/C T .bn=2c/C n � 1 (for n � 2):

This may be rigorously correct, but the ceiling and floor operations make the recur-
rence hard to solve exactly.

Fortunately, the asymptotic solution to a divide and conquer recurrence is un-
affected by floors and ceilings. More precisely, the solution is not changed by
replacing a term T .bin/ with either T .dbine/ or T .bbinc/. So leaving floors and

23

“mcs-ftl” — 2010/9/8 — 0:40 — page 306 — #312

Chapter 10 Recurrences

ceilings out of divide-and-conquer recurrences makes sense in many contexts; those
are complications that make no difference.

10.4.3 The Akra-Bazzi Theorem

The Akra-Bazzi formula together with our assertions about boundary conditions
and integrality all follow from the Akra-Bazzi Theorem, which is stated below.

Theorem 10.4.1 (Akra-Bazzi). Suppose that the function T W R! R satisfies the
recurrence

T .x/ D

8̂<̂
:

is nonnegative and bounded for 0 � x � x0
kP
iD1

aiT .bix C hi .x//C g.x/ for x > x0

where:

1. a1; : : : ; ak are positive constants.

2. b1; : : : ; bk are constants between 0 and 1.

3. x0 is large enough so that T is well-defined.

4. g.x/ is a nonnegative function such that jg0.x/j is bounded by a polynomial.

5. jhi .x/j D O.x= log2 x/.

Then

T .x/ D ‚

�
xp
�
1C

Z x

1

g.u/

upC1
du

��
where p satisfies

kX
iD1

aib
p
i D 1:

The Akra-Bazzi theorem can be proved using a complicated induction argument,
though we won’t do that here. But let’s at least go over the statement of the theorem.

All the recurrences we’ve considered were defined over the integers, and that is
the common case. But the Akra-Bazzi theorem applies more generally to functions
defined over the real numbers.

The Akra-Bazzi formula is lifted directed from the theorem statement, except
that the recurrence in the theorem includes extra functions, hi . These functions

24

“mcs-ftl” — 2010/9/8 — 0:40 — page 307 — #313

10.4. Divide-and-Conquer Recurrences

extend the theorem to address floors, ceilings, and other small adjustments to the
sizes of subproblems. The trick is illustrated by this combination of parameters

a1 D 1 b1 D 1=2 h1.x/ D
lx
2

m
�
x

2

a2 D 1 b2 D 1=2 h2.x/ D
jx
2

k
�
x

2

g.x/ D x � 1

which corresponds the recurrence

T .x/ D 1 � T
�x
2
C

�lx
2

m
�
x

2

��
C �T

�x
2
C

�jx
2

k
�
x

2

��
C x � 1

D T
�lx
2

m�
C T

�jx
2

k�
C x � 1:

This is the rigorously correct Merge Sort recurrence valid for all input sizes,
complete with floor and ceiling operators. In this case, the functions h1.x/ and
h2.x/ are both at most 1, which is easily O.x= log2 x/ as required by the theorem
statement. These functions hi do not affect—or even appear in—the asymptotic
solution to the recurrence. This justifies our earlier claim that applying floor and
ceiling operators to the size of a subproblem does not alter the asymptotic solution
to a divide-and-conquer recurrence.

10.4.4 The Master Theorem

There is a special case of the Akra-Bazzi formula known as the Master Theorem
that handles some of the recurrences that commonly arise in computer science. It
is called the Master Theorem because it was proved long before Akra and Bazzi
arrived on the scene and, for many years, it was the final word on solving divide-
and-conquer recurrences. We include the Master Theorem here because it is still
widely referenced in algorithms courses and you can use it without having to know
anything about integration.

Theorem 10.4.2 (Master Theorem). Let T be a recurrence of the form

T .n/ D aT
�n
b

�
C g.n/:

Case 1: If g.n/ D O
�
nlogb.a/��

�
for some constant � > 0, then

T .n/ D ‚
�
nlogb.a/

�
:

25

“mcs-ftl” — 2010/9/8 — 0:40 — page 308 — #314

Chapter 10 Recurrences

Case 2: If g.n/ D ‚
�
nlogb.a/ logk.n/

�
for some constant k � 0, then

T .n/ D ‚
�
nlogb.a/ logkC1.n/

�
:

Case 3: If g.n/ D �
�
nlogb.a/C�

�
for some constant � > 0 and ag.n=b/ < cg.n/

for some constant c < 1 and sufficiently large n, then

T .n/ D ‚.g.n//:

The Master Theorem can be proved by induction on n or, more easily, as a corol-
lary of Theorem 10.4.1. We will not include the details here.

10.4.5 Pitfalls with Asymptotic Notation and Induction

We’ve seen that asymptotic notation is quite useful, particularly in connection with
recurrences. And induction is our favorite proof technique. But mixing the two is
risky business; there is great potential for subtle errors and false conclusions!

False Claim. If

T .1/ D 1 and

T .n/ D 2T .n=2/C n;

then T .n/ D O.n/.

The Akra-Bazzi theorem implies that the correct solution is T .n/ D ‚.n logn/
and so this claim is false. But where does the following “proof” go astray?

Bogus proof. The proof is by strong induction. Let P.n/ be the proposition that
T .n/ D O.n/.

Base case: P.1/ is true because T .1/ D 1 D O.1/.

Inductive step: For n � 2, assume P.1/, P.2/, . . . , P.n � 1/ to prove P.n/. We
have

T .n/ D 2 � T .n=2/C n

D 2 �O.n=2/C n

D O.n/:

The first equation is the recurrence, the second uses the assumption P.n=2/, and
the third is a simplification. �

26

“mcs-ftl” — 2010/9/8 — 0:40 — page 309 — #315

10.5. A Feel for Recurrences

Where’s the bug? The proof is already far off the mark in the second sentence,
which defines the induction hypothesis. The statement “T .n/ D O.n/” is either
true or false; it’s validity does not depend on a particular value of n. Thus the very
idea of trying to prove that the statement holds for n D 1, 2, . . . , is wrong-headed.

The safe way to reason inductively about asymptotic phenomena is to work di-
rectly with the definition of the asymptotic notation. Let’s try to prove the claim
above in this way. Remember that f .n/ D O.n/ means that there exist constants
n0 and c > 0 such that jf .n/j � cn for all n � n0. (Let’s not worry about the
absolute value for now.) If all goes well, the proof attempt should fail in some
blatantly obvious way, instead of in a subtle, hard-to-detect way like the earlier ar-
gument. Since our perverse goal is to demonstrate that the proof won’t work for
any constants n0 and c, we’ll leave these as variables and assume only that they’re
chosen so that the base case holds; that is, T .n0/ � cn.

Proof Attempt. We use strong induction. Let P.n/ be the proposition that T .n/ �
cn.

Base case: P.n0/ is true, because T .n0/ � cn.

Inductive step: For n > n0, assume that P.n0/, . . . , P.n � 1/ are true in order to
prove P.n/. We reason as follows:

T .n/ D 2T .n=2/C n

� 2c.n=2/C n

D cnC n

D .c C 1/n

— cn: �

The first equation is the recurrence. Then we use induction and simplify until the
argument collapses!

In general, it is a good idea to stay away from asymptotic notation altogether
while you are doing the induction. Once the induction is over and done with, then
you can safely use big-Oh to simplify your result.

10.5 A Feel for Recurrences

We’ve guessed and verified, plugged and chugged, found roots, computed integrals,
and solved linear systems and exponential equations. Now let’s step back and look
for some rules of thumb. What kinds of recurrences have what sorts of solutions?

27

“mcs-ftl” — 2010/9/8 — 0:40 — page 310 — #316

Chapter 10 Recurrences

Here are some recurrences we solved earlier:

Recurrence Solution
Towers of Hanoi Tn D 2Tn�1 C 1 Tn � 2

n

Merge Sort Tn D 2Tn=2 C n � 1 Tn � n logn
Hanoi variation Tn D 2Tn�1 C n Tn � 2 � 2

n

Fibonacci Tn D Tn�1 C Tn�2 Tn � .1:618 : : :/
nC1=

p
5

Notice that the recurrence equations for Towers of Hanoi and Merge Sort are some-
what similar, but the solutions are radically different. Merge Sorting n D 64 items
takes a few hundred comparisons, while moving n D 64 disks takes more than
1019 steps!

Each recurrence has one strength and one weakness. In the Towers of Hanoi,
we broke a problem of size n into two subproblem of size n � 1 (which is large),
but needed only 1 additional step (which is small). In Merge Sort, we divided the
problem of size n into two subproblems of size n=2 (which is small), but needed
.n � 1/ additional steps (which is large). Yet, Merge Sort is faster by a mile!

This suggests that generating smaller subproblems is far more important to al-
gorithmic speed than reducing the additional steps per recursive call. For example,
shifting to the variation of Towers of Hanoi increased the last term fromC1 toCn,
but the solution only doubled. And one of the two subproblems in the Fibonacci
recurrence is just slightly smaller than in Towers of Hanoi (size n � 2 instead of
n�1). Yet the solution is exponentially smaller! More generally, linear recurrences
(which have big subproblems) typically have exponential solutions, while divide-
and-conquer recurrences (which have small subproblems) usually have solutions
bounded above by a polynomial.

All the examples listed above break a problem of size n into two smaller prob-
lems. How does the number of subproblems affect the solution? For example,
suppose we increased the number of subproblems in Towers of Hanoi from 2 to 3,
giving this recurrence:

Tn D 3Tn�1 C 1

This increases the root of the characteristic equation from 2 to 3, which raises the
solution exponentially, from ‚.2n/ to ‚.3n/.

Divide-and-conquer recurrences are also sensitive to the number of subproblems.
For example, for this generalization of the Merge Sort recurrence:

T1 D 0

Tn D aTn=2 C n � 1:

28

“mcs-ftl” — 2010/9/8 — 0:40 — page 311 — #317

10.5. A Feel for Recurrences

the Akra-Bazzi formula gives:

Tn D

8̂<̂
:
‚.n/ for a < 2
‚.n logn/ for a D 2
‚.nloga/ for a > 2:

So the solution takes on three completely different forms as a goes from 1.99
to 2.01!

How do boundary conditions affect the solution to a recurrence? We’ve seen
that they are almost irrelevant for divide-and-conquer recurrences. For linear re-
currences, the solution is usually dominated by an exponential whose base is de-
termined by the number and size of subproblems. Boundary conditions matter
greatly only when they give the dominant term a zero coefficient, which changes
the asymptotic solution.

So now we have a rule of thumb! The performance of a recursive procedure is
usually dictated by the size and number of subproblems, rather than the amount
of work per recursive call or time spent at the base of the recursion. In particular,
if subproblems are smaller than the original by an additive factor, the solution is
most often exponential. But if the subproblems are only a fraction the size of the
original, then the solution is typically bounded by a polynomial.

29

“mcs-ftl” — 2010/9/8 — 0:40 — page 312 — #318

30

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

