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PROFESSOR: We ask about averages all the time. And in the context of random variables, averages get

abstracted into a lovely concept called the expectation of the random variable. Let's begin with

a motivating example which, as is often the case, will come from gambling.

So there's a game that's actually played in casinos called Carnival Dice where you have three

dice, and the way you play is you pick your favorite number from 1 to 6, whatever it happens

to be. And then you roll the three dice. The dice are assumed to be fair, so each one of them

has a one in six chance of coming up with any given number. And then the payoff goes as

follows.

For every match of your favorite number, you get $1.00. And if none of your favorite-- if none

of the die show your favorite number, then you lose $1.00. OK. Let's do an example.

Suppose your favorite number was five. You announce that to the house, or the dealer, and

then the dice start rolling. Now if your roll happened to come up with the numbers two, three,

and four, well, there's no fives there, so you've lost $1.00. On the other hand, if your rolls

came out five, four, six, there's one five, you've one $1.00. If it came out five, four, five, there's

two fives, you've won $1.00. And if it was all fives, you've actually won $3.00.

Now real carnival dice is often played where you either win or lose $1.00 depending on

whether there's any match at all, but we're playing a more generous game where, if you

double match, you get $2.00. If you triple match, you get $3.00. So the basic question about

this is, is this a fair game. Is this worth playing, and how can we think about that? Well, we're

going to think about it probabilistically.

So let's think about the probability of rolling no fives. If five is my favorite number, what's the

probability that I roll none of them? Well, there's a five out of six chance that I don't roll a five

on the first die, and on the second die and on the third die. And since the die rolls are

assumed to be independent, the dies are independent, the probability of no fives is 5/6 to the

third, which comes out to be 125/216. I'm writing this out because we're going to put all the

numbers over 216 to make them easier to compare.

OK. What's the probability of one five? Well, the probability of any single sequence of die rolls

with a single five is 5/6 of no five times 5/6 of no five times 1/6 of one five. And there are 3

choose 1 possible sequences of dice rolls with one five, and the others non-fives. Likewise, for



two fives, there's 3 choose 2 times 5/6 to the 1, which is one way of choosing the place that

does not have a five. And 1/6 times 1/6, which is the probability of getting fives in the other

places. I didn't say that well, but you can get it straight. OK.

The probability of three fives is the probability of 1/6 of getting a five on the first die, 1/6 of

getting a five on the second die, 1/6 of getting a five on the third die. It's simply 1/6 cubed. OK,

so we can easily calculate these probabilities. This is a familiar exercise. Let's put them in a

chart.

So what we've figured out is that 0 matches has a probability of 125 over 216. And in that

case, I lose $1.00. One match turns out to have a probability of 75 out of 216, and I win $1.00.

Two matches is 15 out of 216, I win $2.00. And three matches, there's one chance in 216 that

I win the $3.00.

So now I can ask about what do I expect to win. Suppose I play 216 games, and the games

split exactly according to these probabilities. Then what I would expect is that I would wind up

with 0 matches about 125 times. That was the probability of there being no matches. It was

125/216. So if I played 216 games, I expect about 125 are going to-- I'm going to win nothing.

Or, I'm going to get no matches, which actually means I'll lose $1.00 on each.

One match I expect about 75 times. 2 matches, 15 times. 3 matches, once. So my average

win is going to be 125 times minus 1, 75 times 1, 15 times 2 plus 1 times 3 divided by 216. So

these numbers on the top were how the 216 rolls split among my choices of losing $1.00,

winning $1.00, winning $2.00, and winning $3.00. And it comes out to be slightly negative. It's

actually minus $0.08-- minus 17/216 of $1.00, which is about minus $0.08. So I'm losing, on

the average, $0.08 per roll. This is not a fair game. It's really biased against me. And if I keep

playing long enough, I'm going to find that I average out a kind of steady loss of about $0.08 a

play.

So we would summarize this by saying that you expect to lose $0.08, meaning that your

average loss is $0.08 and you expect that that's going to be the phenomenon that comes up if

you keep playing the game repeatedly and repeatedly. It's important to notice, of course, you

never actually lose $0.08 on any single play. So what you-- this notion of your expecting to

lose $0.08, it never happens. It's just your average loss. Notice every single play you're either

going to lose $1, win $1, win $2, win $3. There's no $0.08 at all showing up. OK.



So now let's abstract the expected value of a random variable R. So a random variable is this

thing that probabilistically takes on different values with different probabilities. And its expected

value is defined to be its average value where the different values are weighted by their

probabilities. We can write this out as a precise formula. The expectation of a random variable

R is defined to be the sum over all its possible values-- it doesn't indicate what the summation

is, but that's over all possible values v-- of v times the probability that v comes up, the

probability that R equals v. So this is the basic definition of the expected value of a random

variable.

Now let me mention here that this sum works because since we're assuming accountable

sample space, R is defined on only countably many outcomes, which means it can only take

countably many values. So this is a countable sum over all the possible values that R takes,

because there are only countably many of them. And what we've just concluded, then, is the

expected win in the carnival dice game is minus 17/216. Check this formal definition of the

expectation of a random variable versus the random variable defined to be how much you win

on a given play of carnival dice, and it comes out to be that average. Minus 17/216.

Now there's a technical result that's useful in some proofs that says that there's another way to

get the expectation. The expectation can also be expressed by saying it's the sum over all the

possible outcomes in the sample space-- S is the sample space-- of the value of the random

variable at that outcome times the probability of that outcome. So this is another alternative

definition of compared to saying it's the sum over all the values times the probability of that

value. Here, it's the sum over all the outcomes of the value of the random variable, the

outcome times the probability of the outcome. It's not entirely obvious that those two

definitions are equivalent.

This form of the definition turns out to be technically helpful in some proofs, although outside

of proofs you don't use it so much in applications. But it's not a bad exercise to prove this

equivalence. So I'm going to walk you through it. But if it's boring-- it's kind of a boring series of

equations on slides, and you're welcome to skip past it. It is a derivation that I expect you to be

able to carry out. So let's just carry out this derivation. I'm going to prove that the expectation

is equal to the sum over all the outcomes of the value of the random variable at the outcome

times the probability of the outcome. And let's prove it.

In order to prove it, let's begin with one little remark that's useful. Remember that this notation

R equals v describes the event that the random variable takes the value v, which by definition



is an event is the set of outcomes where this property holds. So it's the set of outcomes

omega where R of omega is equal to v. So let's just remember that, that brackets R equals v is

the event that R is equal to v, meaning the set of outcomes where that's true. So what that

tells us in particular is that the probability of R equals v is, by definition, the sum of the

probabilities of the outcomes in the event. So it's the sum over all those outcomes.

Now let's go back to the original definition of the expectation of R. The original definition is--

and the standard one is-- it's the sum over all the values of the value times the probability that

the random variable is equal to the value. Now on the previous slide, we just had a formula for

the probability that R is equal to v. It's simply the sum over all the outcomes of where R is

equal to v, of the probability of that outcome. So I can replace that term by the sum over all the

outcomes of the probability of the outcome.

OK. So I'm trying to head towards an expressions that's only outcomes, which is kind of the

top-level strategy here. So the first thing I did was I got rid of that probability of v and replaced

it by the sum of all these probabilities-- of the probabilities of all the outcomes where R is v.

Well, next step is I'm going to just distribute the v over the inner sum. And I get that this thing

is equal to the sum, again, over all those outcomes in R equals v of v times the probability of

the outcome. But look, these outcomes are the outcomes where R is equal to v. So I could

replace that v by R of omega. That one slipped sideways a little bit, so let's watch that.

This v is simply going to become an R of omega. I'm still [INAUDIBLE] over the same set of

omegas, but now I've gotten rid of pretty much everything but the omegas. So I've got this

inner sum of over all possible omegas in R of v of R of omega times the probability of omega.

And I'm summing over all possible v. But if I'm summing over all possible v and then all

possible outcomes where R is equal to v, I wind up summing over all possible outcomes. And

so I've finished the proof that the expectation of R is equal to the sum over all the outcomes of

R of omega times the probability of omega.

Now I'd never do a proof like this in a lecture, because I think watching a lecturer write stuff on

the board, a whole bunch of symbols and manipulating equations, is really insipid and boring.

Most people can't follow it anyway. I'm hoping that in the video, where you can go back if you

wish and replay it and watch it more slowly, or at your own speed, the derivation will be of

some value to you. But let's step back a little bit and notice some top-level technical things that

we never really paid attention to in the process of doing this manipulative proof.



So the top-level observation, first of all, is that this proof, like many proofs in basic foundations

of probability theory and random variables, in particular, involves taking sums and rearranging

the terms in the sums a lot. So the first question is, why sums? Remember here we were

summing over all the possible variables, all the possible values of some random variable. Why

is that a sum? Well it's a sum because we were assuming that the sample space was

countable. There were only a countable number of values R of omega 0, R of omega 1, R of

omega n, and so on. And so we can be sure that the sum over all the possible values of the

random variable is a countable sum. It's a sum, and we don't have to worry about integrals,

which is the main technical reason why we're doing discrete probability and assuming that

there are only a countable number of outcomes.

There's a second very important technicality that's worth mentioning. All the proofs involved

rearranging terms in sums freely and without care. But that means that we're implicitly

assuming that it's safe to do that, and that, in particular, that the defining sum for expectations

needs to be absolutely convergent. And all of these sums need to be absolutely convergent in

order for that kind of rearrangement to make sense. So remember that absolute convergence

means that the sum of the absolute values of all the terms in the sum converge.

So if we look at this definition of expectation, it said it was the sum over all the values in the

range. We know that's a countable sum of the value times the probability that R was equal to

that value. But the very definition never specified the order in which these terms, v times

probability R equals v, got added up. It better not make a difference. So we're implicitly

assuming absolute convergence of this sum in order for the expectation to even be well-

defined.

As a matter of fact, the terrible pathology that happens-- and you may have learned about this

in first-time calculus, and we actually have a problem in the text about it-- is that you can have

sums like this, that are not absolutely convergent, and then you pick your favorite value and I

can rearrange the terms in the sum so that it converges to that value. When you're dealing

with non-absolute value sums, rearranging is a no-no. The sum depends crucially on the

ordering in which the terms appear, and all of the reasoning and probability theory would be

inapplicable. So we are implicitly assuming that all of these sums are absolutely convergent.

Just to get some vocabulary in place, the expected value is also known as the mean value, or

the mean, or the expectation of the random variable. Now let's connect up expectations with

averages in a more precise way. We said that the expectation was kind of an abstraction of



averages, but it's more intimately connected to averages than that, even. Let's take an

example where suppose you have a pile of graded exams, and you pick one at random. Let's

let S be the score of the randomly picked exam. So I'm turning this process, this random

process of picking an exam from the pile, is defining a random variable, S, where by definition

of picking one at random, I mean uniformly. So S is actually not a uniform random variable, but

I'm picking the exams with equal probability. And then they have different scores, so the

outcomes are of uniform probability. But S is not, because there might be a lot of outcomes, a

lot of exams with the same score. All right. S is a random variable defined by this process of

picking a random exam.

And then you can just check that the expectation of S now exactly equals the average exam

score, which is the typical thing that students want to know when the exam is done, what's the

average score. Actually, the average score is often less informative than the median score, the

middle score, but people somehow rather always want to know about the averages. The

reason why the average may not be so informative is because-- well, it has some weird

properties that I'll illustrate in a second. But the point here of what we did where we took the--

we got at the average score on the exam by defining a random variable based on picking a

random exam. So that's a general process. We can estimate averages in some population of

things by estimating the expectations of random variables based on picking random elements

from the thing that we're averaging over. That's called sampling, and it's a basic idea of

probability theory that we're going to be able to get a hold of averages by abstracting the

calculation of an average into taking-- defining a random variable and calculating its

expectation.

Let's look at an example. It's obviously impossible for all the exams to be above average,

because then the average would be above average. That's absurd. So if you translate that into

a formal statement about expectations, it translates directly-- by the way, I don't know how

many of you listen to the Prairie Home Companion, but one of the sign-offs there is at the town

of Lake Woebegone in Wisconsin, where all the children are above average. Well, t'ain't

possible. That translates into this technical statement that the probability that a random

variable is greater than its expected value is less than 1. It can't always be greater than its

expected value. That's absurd.

On the other hand, it's actually possible for the probability that the random variable is bigger

than its expected value to be as close to 1 as you want. And one way to think about that is



that, for example, almost everyone has an above average number of fingers. Think about that

for a second. Almost everyone has an above average number of fingers. Well, the explanation

is really simple. It's simply because amputation is much more common than polydactylism.

And if you can't understand what I just said, look it up and think about it.


