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Problem Set 5 

This problem set is due at 11:59pm on Friday, March 20, 2015. 

Exercise 5-1. Read CLRS, Chapter 11. 

Exercise 5-2. Exercise 11.3-5. 

Exercise 5-3. Read CLRS, Chapter 14. 

Exercise 5-4. Exercise 14.3-3. 

Exercise 5-5. Read CLRS, Chapter 15. 

Exercise 5-6. Exercise 15.1-4. 

Exercise 5-7. Exercise 15.2-4. 

Exercise 5-8. Exercise 15.4-5. 

Problem 5-1. New Operations for Skip Lists [25 points] 

This problem will demonstrate that skip lists, and some augmentations of skip lists, can answer 
some queries about “nearby” elements efficiently. In a dynamic-set data structure, the query 
FINGER-SEARCH(x, k) is given a node x in the data structure and a key k, and it must return 
a node y in the data structure that contains key k. (You may assume that such a node y in fact 
appears in the data structure.) The goal is for FINGER-SEARCH to run faster when nodes x and y 
are nearby in the data structure. 

(a)	 [12 points] Write pseudocode for FINGER-SEARCH(x, k) for skip lists. Assume all
 
keys in the skip list are distinct. Assume that the given node x is in the level-0 list,
 
and the operation should return a node y that stores k in the level-0 list.
 
Your algorithm should run in O(lg m) steps with high probability, where m = 1 + 
|rank(x.key) − rank(k)|. Here, rank(k) refers to the rank (index) of a key k in the 
sorted order of the dynamic set (when the procedure is invoked). “High probability” 
here is with respect to m; more precisely, for any positive integer α, your algorithm 
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should run in O(lg m) time with probability at least 1 − 
m
1 . (The constant implicit in α 

this O may depend on α.) Analyze your algorithm carefully. 
In writing your code, you may assume that the implementation of skip lists stores both 
a −∞ at the front of each level as well as a +∞ as the last element on each level. 

Another query on a dynamic set is RANK-SEARCH(x, r): given a node x in the data structure 
and positive integer r, return a node y in the data structure that contains the key whose rank is 
rank(x) + r. You may assume that such a node appears in the data structure. Rank search can be 
implemented efficiently in skip lists, but this requires augmenting the nodes of the skip list with 
new information. 

(b)	 [6 points] Define a way of augmenting skip lists that will support efficient rank search,
 
and show that your augmentation does not increase the usual high-probability order-

of-magnitude time bounds for the SEARCH, INSERT, and DELETE operations.
 

(c)	 [7 points] Now write pseudocode for RANK-SEARCH(x, r) for skip lists. Again as
sume that all keys in the skip list are distinct. Assume that the given node x is in the
 
level-0 list, and the operation should return a node y in the level-0 list.
 
Your algorithm should run in O(lg m) steps with high probability with respect to m = 
r+1. More precisely, for any positive integer α, your algorithm should run in O(lg m) 
time with probability at least 1 − 

m
1 . Analyze your algorithm carefully. α 

Problem 5-2. Choosing Prizes [25 points] 

In this problem, you are presented with a collection of n prizes from which you are allowed to 
select at most m prizes, where m < n. Each prize p has a nonnegative integer value, denoted 
p.value . Your objective is to maximize the total value of your chosen prizes. 

The problem has several variations, described in parts (a)–(d) below. In each case, you should 
give an efficient algorithm to solve the problem, and analyze your algorithm’s time and space 
requirements. 

In parts (a)–(c), the prizes are presented to you as a sequence P = (p1, p2, . . . , pn), and your 
algorithm must output a subsequence S of P . In other words, the selected prizes S (|S| = m) must 
be listed in the same order as they are in P . 

(a)	 [4 points] Give an algorithm that returns a subsequence S = (s1, s2, . . .) of P of  
length at most m, for which j sj .value is maximum. Analyze your algorithm in 
terms of n and m. 

(b)	 [7 points] Now suppose there are two types of prizes, type A and type B. Each prize’s
 
type is given as an attribute p.type. Give an algorithm that returns a subsequence
  
S = (s1, s2, . . .) of P of length at most m, for which j sj .value is maximum, subject 
to the new constraint that, in S, all the prizes of type A must precede all the prizes of 
type B. Analyze your algorithm in terms of n and m. 
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(c)	 [7 points] As in part (a), there is only one type of prize. Give an algorithm that returns
 
a subsequence S = (s1, s2, . . .) of P of length at most m, for which j sj .value is
 
maximum, subject to the new constraint that, in S, the values of the prizes must form  
a non-decreasing sequence. Analyze your algorithm in terms of n and m.
 

In part (d), the prizes are represented by a rooted binary tree T , with root vertex r, where each 
vertex u has an associated prize, u.prize. Let P be the set of prizes in the tree. As before, each 
prize p has a nonnegative integer attribute p.value. 

(d)	 [7 points] Give an algorithm that returns a set S of at most m prizes for which 
s∈S s.value is maximum, subject to the new constraint that, for any s ∈ S that is 

associated with a non-root node u of T , the prize at node u.parent is also in S. (This 
implies that the selected prizes must be associated with nodes that form a connected 
subtree of T rooted at r.) 

∑

∑
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