
Design and Analysis of Algorithms May 8, 2015
Massachusetts Institute of Technology
Profs. Erik Demaine, Srini Devadas and Nancy Lynch Recitation 11

Cryptography: More Primitives

1 Digital Signatures
In the lecture, we briefly mentioned digital signatures as an application of hashing. Now we intro
duce digital signatures as a stand-alone primitive.

A digital signature scheme has a pair of functions Sign and Verify

σ = Sign(skA,m) (1)
b = Verify(pkA, m, σ) (2)

In the first step, Alice signs a message m she wants to send using her secret key skA, producing
a digital signature σ. Then we want anyone who receives the pair m, σ from Alice to be able to
verify if m indeed originates from Alice, using Alice’s public key pkA.

1.1 What properties do we want from digital signatures?
–	 Correctness: if σ is a signature of m, then b should be true; otherwise, b should be false.

–	 Unforgeability: an adversary who has seen some valid message-signature pairs (m1, σ1),
(m2, σ2), · · · , (mt, σt) should not be able to come up with a forgery for a new message, i.e.,
(m ∗, σ∗) where m ∗ = mi for i ∈ [1..t] such that Verify(pkA,m ∗, σ∗) outputs true.

Notice that there is no (known) way to prevent an adversary from passing along a valid
message-signature pair it has seen before. That’s why we define the unforgeability requirement
in the above way.

1.2 First attempt
In the early years, researchers proposed making digital signatures the inverse of public-key encryp
tion. Sign is decryption, and Verify is encryption and compare. Use RSA as an example, the basic
RSA signature scheme works as follows:

Sign : σ = m d mod n

Verify : b = σe ≡
?
m mod n

where d is the RSA secret key and (n, e) is the RSA public key.

6.046J/18.410J

2 Recitation 11: Cryptography: More Primitives

The hope behind this design is that: (1) think of m as a ciphertext, if we decrypt it and then
encrypt it again, we will get back m, (2) to forge a signature for m ∗, an adversary needs to decrypt
m ∗, which he cannot do without the secret key.

(Can challenge the class to break it.) One problem lies in the malleability (multiplicative homo
morphism) of RSA. If an adversary has seen two valid message-signature pairs (m1, σ1), (m2, σ2),
it can easily come up with a forgery (m1m2, σ1σ2): σ1σ2 = md

1m
d
2 ≡ (m1m2)

d mod n is a valid
signature of message m1m2. Another attack: choose a σ∗, compute m ∗ = σ∗e mod n, then σ∗ is
a valid signature of m ∗ .

1.3 Second attempt
How about just use the hash-then-sign scheme mentioned in the lecture, i.e., replace m with h(m)
in (1) and (2)? A ‘good’ hash function does seem to fix the above problems. It should not be
multiplicative, preventing the first attack; it should be one way, preventing the second attack (if
h(m ∗) = σ∗e, one cannot figure out m ∗). Of course, we have also seen that h needs to be collision-
resistant; otherwise the composed signature scheme is clearly forgeable.

Indeed, this is much better. In fact, there are digital signature standards similar to this approach,
signing the hash of the message with some padding. For example, ANSI X9.31 standard signs
6bbb · · · bbba || h(m) || 33cc. PKCS #1 v1.5 standard signs 0001ff · · · ff00 || length of(h) || h(m).

But how do we know there are no other attacks? Well, we do not. This is a flaw of these designs:
they build on ad-hoc security. We do not know how to break them, but we do not know how to
prove their security, either. This is where modern cryptography departs from this approach. It
tries to reduce the security of a scheme to one or several simple and easy-to-describe assumptions.
Digital signatures in modern cryptography, however, are out of the scope of 6.046.

2 Message Authentication Codes
So far, we have seen three of the most common cryptographic primitives: public-key encryption,
private-key encryption and digital signatures. If we categorize them as ‘confidentiality’ vs. ‘in
tegrity’, ‘asymmetric’ vs. ‘symmetric’, we have

symmetric asymmetric
for confidentiality

for integrity
private-key encryption

message authentication codes
public-key encryption

digital signatures

The remaining one, the “symmetric integrity scheme” is Message Authentication Codes
(MAC). Its definition and requirements are similar to digital signatures’, except that there is only
one key k.

σ = MAC(k, m) (3)

Verification simply checks if σ =
?
MAC(k, m). Correctness and unforgeability are defined similarly

as for digital signatures.

Recitation 11: Cryptography: More Primitives 3

Q: Is a hash not a MAC (What’s the relation/difference between a hash and a MAC)?
A: No, because a hash is a public function that everyone can compute. So, it’s trivial to forge.

But it’s close. A popular way to construct a MAC is to use a keyed hash. The simplest one (and the
standard today) is to use SHA-3 hash on the message with the key prepended, σ = SHA3(k || m),
though not every secure hash function can be turned into a MAC by simply prepending the key.

3 Merkle Tree
Now consider another scenario where we want integrity. Alice stores a bunch of files on a server
(e.g., Google Drive). How does Alice verify her files are not modified? In this scenario, we want
freshness: when Alice accesses a file, it should be the latest version of that file (what Alice wrote
there last time).

In this case, MAC and digital signatures do not help. An attacker (e.g., a malicious server) can
always return Alice an older version of that file with its corresponding MAC/signature (recall their
unforgeability definitions). For this application, we need a new primitive.

A naive method (but maybe reasonable in practice) is to let Alice store a hash of every file
(the most recent version) locally, on her own computer. Assuming data on Alice’s own computer
cannot be modified by an adversary, Alice can detect any modification to the files. Here we say
Alice’s own computer is trusted storage or local storage. If Alice has n files, she needs to store
n hashes locally. This requires O(n) trusted storage, which is arguably not ideal. Alternatively,
Alice could concatenate all her files together, and produce a single hash. Then the trusted storage
requirement becomes O(1), but time complexity is O(n): verifying one file requires downloading
all the files, and updating a single file requires recomputing the hash, which involves all files.

root hash σroot = h(σ4 || σ5)

σ4 = h(σ0 || σ1) σ5 = h(σ2 || σ3)

σ0 = h(x0) σ1 = h(x1) σ2 = h(x2) σ3 = h(x3)

data block x0 data block x1 data block x2 data block x3

Figure 1: A Merkle tree with 4 leaf nodes.

Merkle tree or hash tree [Merkle, 1980] is a solution to this problem. In a Merkle tree, all data
blocks are first hashed at the leaf nodes. Each intermediate node stores a hash of its child hashes

4 Recitation 11: Cryptography: More Primitives

concatenated, until we get a root hash, which is stored in trusted storage. All the intermediate
hashes and all data blocks are stored in untrusted storage and can be modified by an adversary.
Therefore, a Merkle tree needs O(1) trusted storage. It has O(lg n) time complexity for verification
and updating: verifying/updating a block checks/updates a path in the hash tree.

The hash tree is collision resistant if the underlying hash function is collision resistant. Intu
ition: if xi is modified, σi will change; otherwise a collision is found. If σi changes, its parent will
change; otherwise a collision is found ... Repeat the same argument all the way to the root: either
the root hash changes or a collision is found.

4 Review Knapsack Cryptosystems
For this part, review the Merkle-Hellman cryptosystem (super-increasing knapsack as the private
key, general knapsack as the public key), and go over the example on page 9 of the lecture note.

4.1 Why is it broken?
This subsection gives intuition, not a rigorous proof. Let the trapdoor knapsack problem be sk =
{u1, u2, · · · , un}, and the transformed knapsack problem be pk = {w1, w2, · · · , wn}, where wi =
Nui mod M .

First we show that we need M > ui. Let m1m2 · · · mn be the bit decomposition of an input
message m. Encryption of m gives S = miwi. We will then transform the sum S back to the
super-increasing knapsack problem for decryption:

T = N−1S mod M
= N−1 miwi mod M
= N−1 miNui mod M
= miui mod M

If and only if M > ui, solving the trapdoor knapsack problem always gives the same result as
solving the public-key knapsack.

Next, we also need each ui to have a reasonably large range for us to choose from. If the range
is too small, an attacker can brute force all the possible choices of each ui. A reasonable strategy
is to select u1 from [1, t], u2 from [t + 1, 2t], u3 from [3t + 1, 4t], ui from [(2i−1 − 1)t + 1, 2i−1t]
... Then, M should be larger than 2n−1t. Note that the largest element among wi’s will be close to
M . The density is then,

n n n
d = ≈ ≈

max(log2 wi) log2 M n − 1 + log2 t

Now we have a dilemma. If t is small, the range for each ui is small and may be brute-forced.
For reference, there is another class of attack [Shamir, 1984] that can find a trapdoor knapsack

Recitation 11: Cryptography: More Primitives 5

that is not necessarily the same one as sk in polynomial time with high probability when t is
small. If t is large, the density is low and the attack on low-density knapsack problems [Lagarias
and Odlyzko, 1985] will succeed. How low a density is considered low? Lagarias and Odlyzko
conjectured their attack had a high success rate if d < 0.645, and this threshold had been improved.
The original MH scheme [Merkle and Hellman, 1978] proposed setting t = 2n, making the density
roughly 0.5, and is therefore vulnerable to low-density attacks.

While most of the knapsack-based cryptosystems have been broken, there are a few that have
so far resisted all attacks. They are still of interest due to the high encryption/decryption speed, as
well as our desire of a variaty of cryptosystems (if one is broken, we have another one). But the
original motivation of knapsack-based cryptosystems turned out to be unsuccessful: it is unlikely
to base cryptography on NP-completeness. NP-complete problems may be hard only in the worst-
case, while cryptography needs average-case hardness.1

A Clarification for the Lecture
Deciding if a integer N is prime or composite is in P, thanks to the AKS primality algorithm
[Agrawal, Kayal and Saxena, 2004] that checks if a number is a prime in polynomial time. What’s
unknown if in NPC or not is, deciding if N is composite with a factor within a range. (The
lecture note has that extra condition in it but Prof. Devadas did not write it on the board.)

1The best summary on this topic may be Impagliazzo’s “five worlds” in his “A personal view of average-case
complexity”, 1995.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

