
Introduction to Algorithms April 25-April 29, 2005
Massachusetts Institute of Technology 6.046J/18.410J
Professors Charles E. Leiserson and Ronald L. Rivest Quiz 2

Practice Quiz 2

This take-home quiz contains 5 problems worth 25 points each, for a total of 125 points. Each
problem should be answered on a separate sheet (or sheets) of 3-hole punched paper.

Mark the top of each problem with your name, 6.046J/18.410J, the problem number, your
recitation time, and your TA. Your exam is due between 9:00 and 11:00 A.M. on Friday, April
29, 2005. Late exams will not be accepted unless you obtain a Dean’s Excuse or make prior
arrangements with your recitation instructor. You must hand in your own exam in person.

The quiz should take you about 10 hours to do, but you have four days in which to do it. Plan
your time wisely. Do not overwork, and get enough sleep. Ample partial credit will be given for
good solutions, especially if they are well written. Of course, the better your asymptotic bounds,
the higher your score. Bonus points will be given for exceptionally efficient or elegant solutions.

Write-ups: Each problem should be answered on a separate sheet (or sheets, stapled separately
for each problem) of 3-hole punched paper. Mark the top of each problem with your name,
6.046J/18.410J, the problem number, your recitation time, and your TA. Your solution to a prob
lem should start with a topic paragraph that provides an executive summary of your solution. This
executive summary should describe the problem you are solving, the techniques you use to solve
it, any important assumptions you make, and the running time your algorithm achieves.

Write up your solutions cleanly and concisely to maximize the chance that we understand
them. Be explicit about running time and algorithms. For example, don’t just say you sort n
numbers, state that you are using heapsort, which sorts the n numbers in O(n lg n) time in the
worst case. When describing an algorithm, give an English description of the main idea of the
algorithm. Use pseudocode only if necessary to clarify your solution. Give examples, and draw
figures. Provide succinct and convincing arguments for the correctness of your solutions. Do not
regurgitate material presented in class. Cite algorithms and theorems from CLRS, lecture, and
recitation to simplify your solutions.

Part of the goal of this exam is to test engineering common sense. If you find that a question
is unclear or ambiguous, make reasonable assumptions in order to solve the problem, and state
clearly in your write-up what assumptions you have made. Be careful what you assume, however,
because you will receive little credit if you make a strong assumption that renders a problem trivial.

Bugs, etc.: If you think that you’ve found a bug, send email to 6.046 course staff.
Corrections and clarifications will be sent to the class via email and posted on the class website.
Check your email and the class website daily to avoid missing potentially important announcements.
If you did not receive an email last Friday reminding you about Quiz 2, then you are not on the
class email list and you should let your recitation instructor know immediately.

2 6.046J/18.410J Quiz 2

Policy on academic honesty: This quiz is “limited open book.” You may use your course notes,
the CLRS textbook, basic reference materials such as dictionaries, and any of the handouts posted
on the course web page, but no other sources whatsoever may be consulted. For example, you
may not use notes or solutions from other times that this course or other related courses have been
taught, or materials on the World-Wide Web. (These materials will not help you, but you may
not use them anyhow.) Of prime importance, you may not communicate with any person except
members of the 6.046 staff about any aspect of the exam until after noon on Friday, April 29, even
if you have already handed in your exam.

If at any time you feel that you may have violated this policy, it is imperative that you contact
the course staff immediately. If you have any questions about what resources may or may not be
used during the quiz, send email to 6.046 course staff.

Survey: Attached to this exam is a survey on your experiences with the exam, especially as they
relate to academic honesty. Please detach the survey, fill it out, and hand it in when you hand in
your exam. Responses to the survey will be anonymous. No attempt will be made to associate a
response with a person. This information will be used to gauge the usefulness of the exam, and
summary statistics will be provided to the class.

PLEASE REREAD THESE INSTRUCTIONS ONCE A DAY DURING THE EXAM.
GOOD LUCK, AND HAVE FUN!

3 6.046J/18.410J Quiz 2

Problem 1. Static Graph Representation

Let G = (V, E) be a sparse undirected graph, where V = {1, 2, . . . , n}. For a vertex v ⊗ V and
for i = 1, 2, . . . , out-degree(v), define v’s ith neighbor to be the ith smallest vertex u such that
(v, u) ⊗ E, that is, if you sort the vertices adjacent to v, then u is the ith smallest.

Construct a representation of the graph G to support the following queries:

•DEGREE(v): returns the degree of vertex v.

•LINKED(u, v): output TRUE if an edge connects vertices u and v, and FALSE otherwise.

•NEIGHBOR(v, i): returns v’s ith neighbor.

Your data structure should use asymptotically as little space as possible, and the operations should
run asymptotically as fast as possible, but space is more important than time. Analyze your data
structure in terms of both space and time.

Problem 2. Video Game Design

Professor Cloud has been consulting in the design of the most anticipated game of the year: Take-
home Fantasy. One of the levels in the game is a maze that players must navigate through multiple
rooms from an entrance to an exit. Each room can be empty, contain a monster, or contain a life
potion. As the player wanders through the maze, points are added or subtracted from her life
points L. Drinking a life potion increases L, but battling a monster decreases L. If L drops to 0 or
below, the player dies.

As shown in Figure 1, the maze can be represented as a digraph G = (V, E), where vertices
correspond to rooms and edges correspond to (one-way) corridors running from room to room. A

�
vertex-weight function f : V � represents the room contents:

•If f(v) = 0, the room is empty.

•If f(v) > 0, the room contains a life potion. Every time the player enters the room, her life
points L increase by f(v).

•If f(v) < 0, the room contains a monster. Every time the player enters the room, her life
points L drop by |f(v)|, killing her if L becomes nonpositive.

The entrance to the maze is a designated room s ⊗ V , and the exit is another room t ⊗ V . Assume
that a path exists from s to every vertex v ⊗ V , and that a path exists from every vertex v ⊗ V to t.
The player starts at the entrance with L = L0 life points, i.e. L0 is the value of f for the entrance.
The figure shows L0 = 1.

Professor Cloud has designed a program to put monsters and life potions randomly into the maze,
but some mazes may be impossible to safely navigate from entrance to exit unless the player enters
with a sufficient number L0 > 0 of life points. A path from s to t is “safe” if the player stays alive
along the way, i.e., her life-points never become non-positive. Define a maze to be r-admissible if
a safe path through the maze exists when the player begins with L0 = r.

4 6.046J/18.410J Quiz 2

+1

+4−3

−10

Exit

Entrance

Figure 1: An example of a 1-admissible maze.

Help the professor by designing an efficient algorithm to determine the minimum value r so that
a given maze is r-admissible, or determine that no such r exists. (For partial credit, solve the
problem determining whether a maze is r-admissible for a given r.)

Problem 3. Image Filtering

Two-dimensional filtering is a common operation in vision and image processing. An image
is represented as an n × n matrix of real values. As shown in Figure 2, the idea is to pass a
k × k window across the matrix, and for each of the possible placements of the window, the filter
computes the “product” of all the values in the window. The “product” is not typically ordinary
multiplication, however. For this problem, we shall assume it is an associative and commutative
binary operation → with identity element e, that is, x → e = e→ x = x. For example, the product
could be + with identity element 0, × with 1, min with ←, etc. Importantly, you may not assume
that → has an inverse operation, such as − for +.

To be precise, given an n× n image

⎞ �
a00 a01 . . . a0(n−1)

A =
⎟
⎟
⎟
⎟
⎠

a10
. . .

a11
. . .

. . .
. . .

a1(n−1)
. . .

�
�
�
�
�

,

a(n−1)0 a(n−1)1 . . . a(n−1)(n−1)

PSfrag replacements

5 6.046J/18.410J Quiz 2

n

n
k

k()i, j

Figure 2: The output element bij is the “product” of all the a’s in the shaded square.

the (k × k)-filtered image is the n× n matrix

⎞ �
b00 b01 . . . b0(n−1)

⎟ �
⎟ b10 b11 . . . b1(n−1) �
⎟ �B =
⎟ .. , �
⎠ �

b(n−1)0 b(n−1)1 . . . b(n−1)(n−1)

where for i, j = 0, 1, . . . , n− 1,
i+k−1 j+k−1
⎛ ⎛

bij = axy .
x=i j=y

(For convenience, if x � n or y � n, we assume that axy = e.)

Give an efficient algorithm to compute the (k × k)-filter of an input matrix A. While analyzing
your algorithm, do not treat k as a constant. That is, express your running time in terms of n and k.
(For partial credit, solve the problem in one dimension.)

Problem 4. ViTo Design

You are designing a new-and-improved digital video recorder, called ViTo. In the ViTo software,
a television show i is represented as a triple: a channel number ci, a start time si , and an end
time ei. The ViTo owner inputs a list of n shows to watch and for each show i = 1, 2, . . . , n,
assigns it a pleasure rating ri. Since shows may overlap, and the ViTo can record only one show
at a time, the ViTo should record the subset of the shows that maximize the aggregate “pleasure.”
Since the owner receives no pleasure from watching only part of a show, the ViTo never records
partial shows. Design an efficient algorithm for the ViTo to select the best subset of shows to
record.

6 6.046J/18.410J Quiz 2

Problem 5. Growing a Graph

We wish to build a data structure that supports a dynamically growing directed graph G = (V, E).
Initially, we have V = {1, 2, . . . , n} and E = ≥. The user grows the graph with the following
operation:

•INSERT-EDGE(u, v): Insert a directed edge from vertex u to vertex v, that is, E � E ∞
{(u, v)}.

In addition, at any time the user can query the graph for whether two vertices are connected:

•CHECK-PATH(u, v): Return TRUE if a directed path from vertex u to vertex v exists; other
wise, return FALSE.

The user grows the graph until it is fully connected. Since the number of edges increases monoton
ically and the user never inserts the same edge twice, the total number of INSERT-EDGE operations
is exactly n(n− 1). During the time that the graph is growing, the user performs m CHECK-PATH

operations which are intermixed with the n(n − 1) INSERT-EDGE’s. Design a data structure that
can efficiently support any such sequence of operations.

Introduction to Algorithms May 6, 2005
Massachusetts Institute of Technology 6.046J/18.410J
Professors Charles E. Leiserson and Ronald L. Rivest Quiz 2 Solutions

Quiz 2 Solutions

Problem 1. Static Graph Representation

Let G = (V, E) be a sparse undirected graph, where V = {1, 2, . . . , n}. For a vertex v ⊗ V and
for i = 1, 2, . . . , out-degree(v), define v’s ith neighbor to be the ith smallest vertex u such that
(v, u) ⊗ E, that is, if you sort the vertices adjacent to v, then u is the ith smallest.

Construct a representation of the graph G to support the following queries:

•DEGREE(v): returns the degree of vertex v.

•LINKED(u, v): output TRUE if an edge connects vertices u and v, and FALSE otherwise.

•NEIGHBOR(v, i): returns v’s ith neighbor.

Your data structure should use asymptotically as little space as possible, and the operations should
run asymptotically as fast as possible, but space is more important than time. Analyze your data
structure in terms of both space and time.

Solution: We give a solution that uses �(E) space for the data structure and takes �(1) time for
each of the three operations. Create a hash table that contains key (u, v) if (u, v) ⊗ E or key (u, i)
if vertex u has an i-th neighbor. It is possible that for some u and v = i, vertex u has both an
adjacent vertex v and an i-th neighbor. This is handled by storing satellite data with each record
of the hash table. For the record with key (u, i) in the hash table, if u has a neighbor v = i, then
indicate so using a bit in the record; if u has an i-th neighbor, then store the corresponding neighbor
vertex index in the record. Also, for every vertex u that is connected to some other vertex, store its
degree in the record for key (u, 1).

Thus, for each vertex u in the first coordinate of the key, the hash table has at most degree(u) +
⎝ndegree(u) = 2 degree(u) entries. The total number of entries is thus at most u=1 2 degree(u) =

4|E|. By using perfect hashing, and choosing a suitable hash function through a small number
of random samplings (during data structure construction), we can make the lookup time �(1) and
space requirement linear in the number of entries stored, i.e., �(E) (see CLRS, page 249, Corollary
11.12). We can use the same family of hash functions as in CLRS by converting each 2-tuple (u, v)
into a distinct number (u − 1)n + v in the range of [1 . . . n2]. The total space requirement of the
degree array and hash table is thus �(V + E).

Then, DEGREE(v) looks up the key(v, 1) in the hash table. If found, it returns the degree value
stored in the record. Otherwise, it returns 0, since v is not adjacent to any vertex. This takes �(1)
time. LINKED(u, v) looks up the key (u, v) in the hash table and returns TRUE if it exists and the
associated bit in the record is set. This is �(1) time. NEIGHBOR(v, i) looks up the key (v, i) in
the hash table – if it exists and a neighbor vertex is stored in the record, it returns its index. This is
also �(1) time.

2 6.046J/18.410J Quiz 2 Solutions

+1

+4−3

−10

Entrance

Exit

Figure 1: An example of a 1-admissible maze.

Problem 2. Video Game Design

Professor Cloud has been consulting in the design of the most anticipated game of the year: Take-
home Fantasy. One of the levels in the game is a maze that players must navigate through multiple
rooms from an entrance to an exit. Each room can be empty, contain a monster, or contain a life
potion. As the player wanders through the maze, points are added or subtracted from her life
points L. Drinking a life potion increases L, but battling a monster decreases L. If L drops to 0 or
below, the player dies.

As shown in Figure 1, the maze can be represented as a digraph G = (V, E), where vertices
correspond to rooms and edges correspond to (one-way) corridors running from room to room. A
vertex-weight function f : V � � represents the room contents:

•If f(v) = 0, the room is empty.

•If f(v) > 0, the room contains a life potion. Every time the player enters the room, her life
points L increase by f(v).

•If f(v) < 0, the room contains a monster. Every time the player enters the room, her life
points L drop by |f(v)|, killing her if L becomes nonpositive.

The entrance to the maze is a designated room s ⊗ V , and the exit is another room t ⊗ V . Assume
that a path exists from s to every vertex v ⊗ V , and that a path exists from every vertex v ⊗ V to t.

3 6.046J/18.410J Quiz 2 Solutions

The player starts at the entrance with L = L0 life points, i.e. L0 is the value of f for the entrance.
The figure shows L0 = 1.

Professor Cloud has designed a program to put monsters and life potions randomly into the maze,
but some mazes may be impossible to safely navigate from entrance to exit unless the player enters
with a sufficient number L0 > 0 of life points. A path from s to t is “safe” if the player stays alive
along the way, i.e., her life-points never become non-positive. Define a maze to be r-admissible if
a safe path through the maze exists when the player begins with L0 = r.

Help the professor by designing an efficient algorithm to determine the minimum value r so that
a given maze is r-admissible, or determine that no such r exists. (For partial credit, solve the
problem determining whether a maze is r-admissible for a given r.)

Solution:

We give an algorithm with running time O(V E lg r), where r is the minimum life needed at entry
for the maze to be admissible. The problem is solved in two parts.

•An algorithm to determine if a given maze is admissible for a given r: This is done by using a
modified version of Bellman-Ford. For every node u, this algorithm computes the maximum
number of points q[u] that the player can have on reaching u. Since the player will die if she
reaches u with negative points, the value of q[u] is either −→ (denoting that the player cannot
reach u) or positive. Thus if q[t] is positive (t is the exit node), then the graph is r-admissible.

•We know that the minimum r cannot be less than 1. Thus we use a combination of exponential
and binary search to find the minimum value of r. We use the modified Bellman-Ford log r
times to find the minimum r.

The running time of the algorithm is O(V E log r), where r is the minimum r, where the maze is
r-admissible.

Determining Admissibility for a given r We use a modified version of Bellman-Ford algorithm.
Given an r, for every node u we find the maximum (positive) number of points q[u] the player can
have when she reaches u. If q[t] is positive, then the graph is r-admissible.

For each vertex u ⊗ V , we maintain p[u] which is a lower bound on q[u]. We initialize all the p[u]’s
to −→, except the entrance, which is initialized to r. As we run the Bellman-Ford Algorithm and
relax edges, the value of p[u] increases until it converges to q[u] (if there are no positive weight
cycles). The important point to note is that reaching a node with negative points is as good as not
reaching it at all. Thus, we modify p[u] only it becomes positive, otherwise p[u] remains −→. We
change the relaxation routine to incorporate this as follows.

6.046J/18.410J Quiz 2 Solutions 4

V-RELAX(u, v)
1 if (u, v) ⊗ E
2 then if ((p[v] < p[u] + f [v]) and (p[u] + f [v] > 0))
3 then p[v] � p[u] + f [v]
4 �[v] � u

After all the edges have been relaxed V times, if there are no negative weight cycles, all p[u]’s will
have converged to the corresponding q[u]’s (the maximmum number of points you can have on
reaching vertex u). If q[t] is positive at this point, then the player can reach there with positive life
points and thus the graph is r-admissible. If p[t] is not positive, however, we relax all the edges one
more time (just like Bellman-Ford). If p[u] of any node changes, we have found a positive weight
cycle which is reachable from s starting with r points. Thus the player can go around the cycle
enough times to collect all the necessary points to reach t and thus the graph is r-admissible. If we
dont find a reachable positive weight cycle and p[t] is −→, then the graph is not r admissible. The
correctness of the algorithm follows from the correctness of Bellman-Ford, and the running time
is O(V E).

Finding the minimum r for which the graph is r-admissible Given the above sub-routine, we
now find the minimum r. We first check if the graph is 1-admissible. If it is, we return 1 as the
answer. If it is not, then we check if it is 2-admissible and then 4-admissible and so on. Thus on
the ith step we check if the graph is 2i−1-admissible. Eventually, we find k such that the graph is
not 2k−1-admissible, but it is 2k-admissible. Thus the minimum value of r lies between these two
values. Then we binary search between r = 2k−1 and r = 2k to find the right value of r.

Analysis: The number of iterations is k + O(lg r) = O(lg r), since k = ∅lg r∪. Thus you have to
run Bellman-Ford O(lg r) times, and the total running time is O(V E lg r).

Alternate Solutions Some people visited nodes in DFS or BFS order starting from the exit,
relaxing edges to find the minimum number of points needed to get from any node u to the exit.
The problem with this approach is that in the presence of positive weight cycles, the algorithm runs
for O(M(V + E)) time, where M is the total sum of all monster points. This number can be big
even if the real r is small. Some people did the same thing, except with Bellman-Ford instead of
search, which gives a running time of O(MV E). There were a couple of other clever solutions
which ran in O(V 2E time.

Problem 3. Image Filtering

Two-dimensional filtering is a common operation in vision and image processing. An image
is represented as an n × n matrix of real values. As shown in Figure 2, the idea is to pass a
k × k window across the matrix, and for each of the possible placements of the window, the filter
computes the “product” of all the values in the window. The “product” is not typically ordinary

PSfrag replacements

5 6.046J/18.410J Quiz 2 Solutions

n

n
k

k()i, j

Figure 2: The output element bij is the “product” of all the a’s in the shaded square.

multiplication, however. For this problem, we shall assume it is an associative and commutative
binary operation ≤ with identity element e, that is, x ≤ e = e≤ x = x. For example, the product
could be + with identity element 0, × with 1, min with →, etc. Importantly, you may not assume
that ≤ has an inverse operation, such as − for +.

To be precise, given an n× n image
⎨ �

a00 a01 . . . a0(n−1)
⎩ �
⎩ a10 a11 . . . a1(n−1) �
⎩ �A =
⎩ .. , � . .
⎪ . . �

a(n−1)0 a(n−1)1 . . . a(n−1)(n−1)

the (k × k)-filtered image is the n× n matrix
⎨ �

b00 b01 . . . b0(n−1)
⎩ �
⎩ b10 b11 . . . b1(n−1) �
⎩ �B =
⎩ .. , � . .
⎪ . . �

b(n−1)0 b(n−1)1 . . . b(n−1)(n−1)

where for i, j = 0, 1, . . . , n− 1,
i+k−1 j+k−1
⎛ ⎛

bij = axy .
x=i j=y

(For convenience, if x ← n or y ← n, we assume that axy = e.)

Give an efficient algorithm to compute the (k × k)-filter of an input matrix A. While analyzing
your algorithm, do not treat k as a constant. That is, express your running time in terms of n and k.
(For partial credit, solve the problem in one dimension.)

6 6.046J/18.410J Quiz 2 Solutions

Solution:

We can solve the two-dimensional filtering problem in �(n2) time by first reducing the problem
to two one-dimensional filtering problems and then showing how a one-dimensional filter on n
elements can be solved in �(n) time. We assume that k � n, since filtered values for k > n are
the same as for k = n. The �(n2)-time algorithm is optimal, since there are n2 values to compute.

Define the intermediate matrix C by

⎨ �
c00 c01 . . . c0(n−1)

C =
⎩
⎩
⎩
⎩
⎪

c10
. . .

c11
. . .

. . .
. . .

c1(n−1)
. . .

�
�
�
�
�

,

c(n−1)0 c(n−1)1 . . . c(n−1)(n−1)

where for i, j = 0, 1, . . . , n− 1,
j+k−1
⎛

cij = aiy ,
y=j

that is, C is the one-dimensional k-filter on each row of A. We have

i+k−1 j+k−1
⎛ ⎛

bij = axy
x=i y=j

i+k−1
⎛

= cxj ,
x=i

and thus B is just the one-dimensional k-filter on each column of C.

It remains to devise an efficient method to compute one-dimensional k-filters. The naive algorithm
takes �(kn) time to solve the one-dimensional problem for an array of length n. Using this one-
dimensional algorithm to solve the two-dimensional problem costs �(kn2) to compute C from A
and another �(kn2) to compute B from C, resulting in �(kn2) overall. Many students found a
way to compute the one-dimensional problem in �(n lg k), resulting in a two-dimensional solution
of �(n2 lg k). In fact, as some students discovered, the one-dimensional problem can be solved in

2�(n) time, leading to a two-dimensional solution of �(n).

The �(n)-time solution for the one-dimensional problem works as follows. Let the input array be
A = ∈a0, a1, . . . , an−1� and the k-filtered output array be B = ∈b0, b1, . . . , bn−1�, where

i+k−1
⎛

bi = ax .
x=i

Assume without loss of generality that n is evenly divisible by k, since otherwise, we can pad the
end of a with identity elements e to make n a multiple of k without more than doubling n.

The idea is to divide the arrays into blocks of k elements. Observe that any window of k elements
starting at a given location i consists of the product of a suffix of one block and a prefix of the next

7 6.046J/18.410J Quiz 2 Solutions

block. Thus, we compute prefixes and suffixes of each block as follows. For i = 0, 1, . . . , n − 1,
define

⎜
e if i mod k = 0,

fi =
fi−1 ≤ ai−1 otherwise;

and for i = n− 1, n− 2, . . . , 0, define
⎜

ai if (i + 1) mod k = 0,
gi =

ai ≤ fi+1 otherwise.

b

These two arrays can be computed in �(n) time, and then we obtain the output array by computing,
for i = 0, 1, . . . , n− 1,

i = gi ≤ fi+k ,

which also takes �(n) time.

As an example, consider a one-dimensional 4-filter:

b0 = (a0 ≤ a1 ≤ a2 ≤ a3) = g0 ≤ f4

b1 = (a1 ≤ a2 ≤ a3) ≤ (a4) = g1 ≤ f5

b2 = (a2 ≤ a3) ≤ (a4 ≤ a5) = g2 ≤ f6

b3 = (a3) ≤ (a4 ≤ a5 ≤ a6) = g3 ≤ f7

b4 = (a4 ≤ a5 ≤ a6 ≤ a7) = g4 ≤ f8

b5 = (a5 ≤ a6 ≤ a7) ≤ (a8) = g5 ≤ f9

b6 = (a6 ≤ a7) ≤ (a8 ≤ a9) = g6 ≤ f10
. . .

Problem 4. ViTo Design

You are designing a new-and-improved digital video recorder, called ViTo. In the ViTo software,
a television show i is represented as a triple: a channel number ci, a start time si , and an end
time ei. The ViTo owner inputs a list of n shows to watch and for each show i = 1, 2, . . . , n,
assigns it a pleasure rating ri. Since shows may overlap, and the ViTo can record only one show
at a time, the ViTo should record the subset of the shows that maximize the aggregate “pleasure.”
Since the owner receives no pleasure from watching only part of a show, the ViTo never records
partial shows. Design an efficient algorithm for the ViTo to select the best subset of shows to
record.

Solution: Assume ViTo has enough harddisk space to record any subset of the programs. We use
a dynamic programming approach to the problem.

First let’s show the optimal substructure. Let showi denote the triple (ci, si, ei), shows denote
the whole list of shows show1, ..., shown, and shows(t) denote the subset of shows showj such
that ej < t, i.e. all the shows with ending times before time t. Consider an optimal solution

8 6.046J/18.410J Quiz 2 Solutions

showi1 , showi2 , ..., showik . Then showi1 , showi2 , ..., showik−1 must be an optimal solution to the
subproblem shows(sik) since if not, we could cut and paste a better solution to this subproblem,
append showik to it, and get a better solution than the optimal one.

Sort the shows by ending time, so ei � ej for i < j and if ei = ej then si < sj . (if two or more
shows start and end at the same time, then we can just keep the one with the maximum pleasure ri,
breaking ties arbitrarily). This can be done with counting sort in linear time: with n shows, there
are only a maximum of 2n possible starting/ending times, and there are only 24 hours in a day,
i.e. a limited (constant) amount of time, therefore the range of possible times is O(n). Relabel
the shows so that show1, ..., shown are in sorted order. Let showsi be the list of shows up to and
including the i-th show, i.e. showsi = show1, show2, ..., showi.

Note that shows(t), the subset of shows showj such that ej < t, is equal to showk(t) for some k(t).
The aggregate pleasure p(i) of an optimal solution for shows in showi is:

⎜
0 if i < 1;

p(i) =
max{p(k(si)) + ri, p(i − 1)} otherwise.

The optimal solution is:
⎞
⎧ {} if i < 1;
⎟

record(i) = record(k(si)) ∞ {showi} if p(k(si)) + ri > p(i − 1);
⎧
⎠ record(i − 1) otherwise.

Running Time = time to sort the shows + time to find p(n) = O(n).

Problem 5. Growing a Graph

We wish to build a data structure that supports a dynamically growing directed graph G = (V, E).
Initially, we have V = {1, 2, . . . , n} and E = ≥. The user grows the graph with the following
operation:

•INSERT-EDGE(u, v): Insert a directed edge from vertex u to vertex v, that is, E � E ∞
{(u, v)}.

In addition, at any time the user can query the graph for whether two vertices are connected:

•CHECK-PATH(u, v): Return TRUE if a directed path from vertex u to vertex v exists; other
wise, return FALSE.

The user grows the graph until it is fully connected. Since the number of edges increases monoton
ically and the user never inserts the same edge twice, the total number of INSERT-EDGE operations
is exactly n(n − 1). During the time that the graph is growing, the user performs m CHECK-PATH

operations which are intermixed with the n(n − 1) INSERT-EDGE’s. Design a data structure that
can efficiently support any such sequence of operations.

6.046J/18.410J Quiz 2 Solutions 9

Solution: To solve this problem, we keep an n × n transitive-closure matrix T that keeps track
of whether there exists a directed path between each pair of vertices. We give an algorithm such
that each CHECK-PATH operation takes O(1) time, and a sequence of n(n − 1) INSERT-EDGE

operations take a total of O(n3) time in the worst case. Combining these bounds, any sequence
of m CHECK-PATH and n(n− 1) INSERT-EDGE operations takes a total of O(n3 + m) time. We
later improve the data structure to deal with the case in which m is small, to get a total time of

2O(min {n3 + m, n m}).

Our data structure maintains a transitive-closure matrix T = (tuv) such that

⎜

1 : if there exists a directed path from u to v in G ,
tuv =

0 : otherwise .

The matrix T is similarly to an adjacency matrix, except that instead of keeping track of the exis
tence of edges u � v, it keeps track of paths u
 v. Note that the 1’s in the u-th row correspond
to all the vertices that u can reach, and the 1’s in the u-th column correspond to all the vertices that
can reach u. We initialize tuu = 1 because there is a directed path (of no edges) from a vertex to
itself.

Given T , the implementation of CHECK-PATH(u, v) is straightforward: just query the value of tuv .
This query can be performed in constant time, so CHECK-PATH runs in constant time. Pseudocode
for CHECK-PATH is given below:

CHECK-PATH(u, v)
1 if tuv = 1

2 then return TRUE

3 else return FALSE

The tricky part of the data structure is maintaining the matrix T on an INSERT-EDGE(u, v). When
the edge (u, v) is added, we check each vertex x. If x can reach u, and x cannot already reach v,
then we update the matrix to indicate that u can reach all the vertices that v can reach (in addition
to the vertices that it could reach before). In other words, let Rw be the set of vertices that the
vertex w can reach (i.e., the set of indices of 1’s in the w-th row in T). Then when adding (u, v),
we iterate over all x ⊗ V . For each x such that u ⊗ Rx and v �⊗ Rx, we set Rx � Rx ∞ Rv .
Pseudocode for INSERT-EDGE is given below:

INSERT-EDGE(u, v)

1 for x � 1 to n

2 do if txu = 1 and txv = 0 � x can reach u but not v

3 then for y � 1 to n

4 do txy � max {txy , tvy } � If v
 y, add x
 y to T

Correctness. The following theorem proves that our algorithm is correct.

10 6.046J/18.410J Quiz 2 Solutions

Theorem 1The INSERT-EDGE operation maintains the invariant that txy = 1 iff there exists a
directed path from x to y in G.

Proof. We prove by induction on INSERT-EDGE operations. That is, we assume that the
transitive-closure matrix is correct up to (before) a particular INSERT-EDGE(u, v) operation, and
then we show that it is correct after that operation. We do not have to prove anything for CHECK-PATH

as that operation does not modify the matrix.

First, suppose that x
 y before the edge (u, v) is added. Then txy = 1 before the INSERT-EDGE

operation. The only place txy can be updated is in line 4, and if so, it keeps its value of 1. This
behavior is correct because adding edges cannot destroy a path.

Suppose that x �
 y before the edge (u, v) is added, but x
 y after the edge is added. Therefore,
it must be the case the path from x to y uses the edge (u, v). Therefore, we have x
 u and v
 y
before the INSERT-EDGE(u, v), so by assumption txu = 1 and tvy = 1. Furthermore, it must also

 v before the addition of (u, v), or we would violate the assumption that x �be true that x �
 y.
Thus, we reach line 4, and txy � tvy = 1.

The last case to consider is the one in which x �
 y after the operation. We need to make sure
that we have txy = 0 in this case. If there is no path, then txy = 0 before the addition of (u, v).
Moreover, there is no path that uses (u, v), so either txu = 0 or tvy = 0. If txu = 0, we don’t enter
the loop in line 2, so the update in line 4 is not performed. If txu = 1, then tvy = 0, and line 4 sets
the value of txy � 0.

Analysis. Now let us examine the runtime of our algorithm. Each CHECK-PATH operation is just
a table lookup, which takes O(1) time. The analysis of INSERT-EDGE is slightly more complicated.
We can trivially bound the worst-case cost of INSERT-EDGE to O(n2) because we have nested for
loops, each iterating over n items and doing constant work in line 4. We can show a tighter
bound on a sequence of n(n − 1) INSERT-EDGE operations using aggregate analysis. Each time
INSERT-EDGE runs, the outer loop (line 1) executes, performing the constant work from line 2 on
n items. Thus, the contribution of the outer loop totals to O(n 3). The inner loop (line 3) executes
only when txv = 0, and when it finishes, txv = 1. Thus, for a particular vertex x, the inner loop can
be executed at most n times (actually, n − 1, as we begin with txx = 1). Since there are n vertices,
the inner loop can run at most n2 times in total for a total O(n3) work in the worst case. Thus, the
total runtime for n(n − 1) INSERT-EDGEs and m CHECK-PATHs is O(n3 + m).

Slight improvements. There is another data structure with O(1) cost for each INSERT-EDGE but
O(n2) for each CHECK-PATH . To implement this data structure, we can use an adjacency list: we
keep an array A[1..n] of size n indexed by vertex and keep a (linked) list of all the outgoing edges
from the corresponding vertex. To perform an INSERT-EDGE(u, v), simply insert v at the front
of A[u] in O(1) time. (Note that edges are inserted only once, so we do not have to worry about
v being present in the list already.) To perform CHECK-PATH(u, v), we run some sort of search,
let’s say breadth-first search, starting at vertex u. If v is encountered at any point along the search,

6.046J/18.410J Quiz 2 Solutions 11

return TRUE. If not, return FALSE. Correctness of this algorithm should be somewhat obvious.
BFS takes O(V + E) = O(n2) time. Thus, the total runtime of the sequence of operations is

2O(n 2 + n m).

This data structure is probably worse than the one given above. It seems safe to assume that m � n

2as you probably query each vertex at least once. Assuming that m � n is also reasonable. If

you do not want make these assumptions, and you know m ahead of time, you can choose the
appropriate data structure.

It turns out that we can also combine both data structures to achieve the better of the two bounds
even if m is not known ahead of time. To do this, we use the adjacency-list data structure until there
have been n queries. Once we reach the n-th query (CHECK-PATH), we construct the transitive-
closure matrix and then use the matrix for all subsequent operations. Construction of the matrix
takes O(n3) time by simply running BFS from each vertex u and marking each reachable vertex v
by tuv � 1. Thus, if m � n, we use only the adjacently list, to get a total runtime of O(n2m). If
m ← n, we first use the adjacency list for a total of O(n3) work, then we transform to the transitive-
closure matrix in O(n3) time, then we use the matrix for all subsequent operations, which comes

3 3to a total of O(n + m). Thus, this data structure achieves a runtime of O(min {n + m, n 2 m}) in
the worst case.

