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Practice Quiz 2 

This take-home quiz contains 5 problems worth 25 points each, for a total of 125 points. Each 
problem should be answered on a separate sheet (or sheets) of 3-hole punched paper. 

Mark the top of each problem with your name, 6.046J/18.410J, the problem number, your 
recitation time, and your TA. Your exam is due between 9:00 and 11:00 A.M. on Friday, April 
29, 2005. Late exams will not be accepted unless you obtain a Dean’s Excuse or make prior 
arrangements with your recitation instructor. You must hand in your own exam in person. 

The quiz should take you about 10 hours to do, but you have four days in which to do it. Plan 
your time wisely. Do not overwork, and get enough sleep. Ample partial credit will be given for 
good solutions, especially if they are well written. Of course, the better your asymptotic bounds, 
the higher your score. Bonus points will be given for exceptionally efficient or elegant solutions. 

Write-ups: Each problem should be answered on a separate sheet (or sheets, stapled separately 
for each problem) of 3-hole punched paper. Mark the top of each problem with your name, 
6.046J/18.410J, the problem number, your recitation time, and your TA. Your solution to a prob
lem should start with a topic paragraph that provides an executive summary of your solution. This 
executive summary should describe the problem you are solving, the techniques you use to solve 
it, any important assumptions you make, and the running time your algorithm achieves. 

Write up your solutions cleanly and concisely to maximize the chance that we understand 
them. Be explicit about running time and algorithms. For example, don’t just say you sort n 
numbers, state that you are using heapsort, which sorts the n numbers in O(n lg n) time in the 
worst case. When describing an algorithm, give an English description of the main idea of the 
algorithm. Use pseudocode only if necessary to clarify your solution. Give examples, and draw 
figures. Provide succinct and convincing arguments for the correctness of your solutions. Do not 
regurgitate material presented in class. Cite algorithms and theorems from CLRS, lecture, and 
recitation to simplify your solutions. 

Part of the goal of this exam is to test engineering common sense. If you find that a question 
is unclear or ambiguous, make reasonable assumptions in order to solve the problem, and state 
clearly in your write-up what assumptions you have made. Be careful what you assume, however, 
because you will receive little credit if you make a strong assumption that renders a problem trivial. 

Bugs, etc.: If you think that you’ve found a bug, send email to 6.046 course staff. 
Corrections and clarifications will be sent to the class via email and posted on the class website. 
Check your email and the class website daily to avoid missing potentially important announcements. 
If you did not receive an email last Friday reminding you about Quiz 2, then you are not on the 
class email list and you should let your recitation instructor know immediately. 
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Policy on academic honesty: This quiz is “limited open book.” You may use your course notes, 
the CLRS textbook, basic reference materials such as dictionaries, and any of the handouts posted 
on the course web page, but no other sources whatsoever may be consulted. For example, you 
may not use notes or solutions from other times that this course or other related courses have been 
taught, or materials on the World-Wide Web. (These materials will not help you, but you may 
not use them anyhow.) Of prime importance, you may not communicate with any person except 
members of the 6.046 staff about any aspect of the exam until after noon on Friday, April 29, even 
if you have already handed in your exam. 

If at any time you feel that you may have violated this policy, it is imperative that you contact 
the course staff immediately. If you have any questions about what resources may or may not be 
used during the quiz, send email to 6.046 course staff. 

Survey: Attached to this exam is a survey on your experiences with the exam, especially as they 
relate to academic honesty. Please detach the survey, fill it out, and hand it in when you hand in 
your exam. Responses to the survey will be anonymous. No attempt will be made to associate a 
response with a person. This information will be used to gauge the usefulness of the exam, and 
summary statistics will be provided to the class. 

PLEASE REREAD THESE INSTRUCTIONS ONCE A DAY DURING THE EXAM. 
GOOD LUCK, AND HAVE FUN! 
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Problem 1. Static Graph Representation 

Let G = (V, E) be a sparse undirected graph, where V = {1, 2, . . . , n}. For a vertex v ⊗ V and 
for i = 1, 2, . . . , out-degree(v), define v’s ith neighbor to be the ith smallest vertex u such that 
(v, u) ⊗ E, that is, if you sort the vertices adjacent to v, then u is the ith smallest. 

Construct a representation of the graph G to support the following queries: 

•DEGREE(v): returns the degree of vertex v. 

•LINKED(u, v): output TRUE if an edge connects vertices u and v, and FALSE otherwise. 

•NEIGHBOR(v, i): returns v’s ith neighbor. 

Your data structure should use asymptotically as little space as possible, and the operations should 
run asymptotically as fast as possible, but space is more important than time. Analyze your data 
structure in terms of both space and time. 

Problem 2. Video Game Design 

Professor Cloud has been consulting in the design of the most anticipated game of the year: Take-
home Fantasy. One of the levels in the game is a maze that players must navigate through multiple 
rooms from an entrance to an exit. Each room can be empty, contain a monster, or contain a life 
potion. As the player wanders through the maze, points are added or subtracted from her life 
points L. Drinking a life potion increases L, but battling a monster decreases L. If L drops to 0 or 
below, the player dies. 

As shown in Figure 1, the maze can be represented as a digraph G = (V, E), where vertices 
correspond to rooms and edges correspond to (one-way) corridors running from room to room. A 

�
vertex-weight function f : V � represents the room contents: 

•If f(v) = 0, the room is empty. 

•If f(v) > 0, the room contains a life potion. Every time the player enters the room, her life 
points L increase by f(v). 

•If f(v) < 0, the room contains a monster. Every time the player enters the room, her life 
points L drop by |f(v)|, killing her if L becomes nonpositive. 

The entrance to the maze is a designated room s ⊗ V , and the exit is another room t ⊗ V . Assume 
that a path exists from s to every vertex v ⊗ V , and that a path exists from every vertex v ⊗ V to t. 
The player starts at the entrance with L = L0 life points, i.e. L0 is the value of f for the entrance. 
The figure shows L0 = 1. 

Professor Cloud has designed a program to put monsters and life potions randomly into the maze, 
but some mazes may be impossible to safely navigate from entrance to exit unless the player enters 
with a sufficient number L0 > 0 of life points. A path from s to t is “safe” if the player stays alive 
along the way, i.e., her life-points never become non-positive. Define a maze to be r-admissible if 
a safe path through the maze exists when the player begins with L0 = r. 
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Figure 1: An example of a 1-admissible maze. 

Help the professor by designing an efficient algorithm to determine the minimum value r so that 
a given maze is r-admissible, or determine that no such r exists. (For partial credit, solve the 
problem determining whether a maze is r-admissible for a given r.) 

Problem 3. Image Filtering 

Two-dimensional filtering is a common operation in vision and image processing. An image 
is represented as an n × n matrix of real values. As shown in Figure 2, the idea is to pass a 
k × k window across the matrix, and for each of the possible placements of the window, the filter 
computes the “product” of all the values in the window. The “product” is not typically ordinary 
multiplication, however. For this problem, we shall assume it is an associative and commutative 
binary operation → with identity element e, that is, x → e = e→ x = x. For example, the product 
could be + with identity element 0, × with 1, min with ←, etc. Importantly, you may not assume 
that → has an inverse operation, such as − for +. 

To be precise, given an n× n image 

⎞ � 
a00 a01 . . . a0(n−1) 

A = 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

a10 
. . . 

a11 
. . . 

. . . 
. . . 

a1(n−1) 
. . . 

� 
� 
� 
� 
� 

, 

a(n−1)0 a(n−1)1 . . . a(n−1)(n−1) 
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Figure 2: The output element bij is the “product” of all the a’s in the shaded square. 

the (k × k)-filtered image is the n× n matrix 

⎞ � 
b00 b01 . . . b0(n−1) 

⎟ � 
⎟ b10 b11 . . . b1(n−1) � 
⎟ �B = 
⎟ .. , . . . . .. � 
⎠ . . . . � 

b(n−1)0 b(n−1)1 . . . b(n−1)(n−1) 

where for i, j = 0, 1, . . . , n− 1, 
i+k−1 j+k−1 
⎛ ⎛ 

bij = axy . 
x=i j=y 

(For convenience, if x � n or y � n, we assume that axy = e.) 

Give an efficient algorithm to compute the (k × k)-filter of an input matrix A. While analyzing 
your algorithm, do not treat k as a constant. That is, express your running time in terms of n and k. 
(For partial credit, solve the problem in one dimension.) 

Problem 4. ViTo Design 

You are designing a new-and-improved digital video recorder, called ViTo. In the ViTo software, 
a television show i is represented as a triple: a channel number ci, a start time si , and an end 
time ei. The ViTo owner inputs a list of n shows to watch and for each show i = 1, 2, . . . , n, 
assigns it a pleasure rating ri. Since shows may overlap, and the ViTo can record only one show 
at a time, the ViTo should record the subset of the shows that maximize the aggregate “pleasure.” 
Since the owner receives no pleasure from watching only part of a show, the ViTo never records 
partial shows. Design an efficient algorithm for the ViTo to select the best subset of shows to 
record. 
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Problem 5. Growing a Graph 

We wish to build a data structure that supports a dynamically growing directed graph G = (V, E). 
Initially, we have V = {1, 2, . . . , n} and E = ≥. The user grows the graph with the following 
operation: 

•INSERT-EDGE(u, v): Insert a directed edge from vertex u to vertex v, that is, E � E ∞ 
{(u, v)}. 

In addition, at any time the user can query the graph for whether two vertices are connected: 

•CHECK-PATH(u, v): Return TRUE if a directed path from vertex u to vertex v exists; other
wise, return FALSE. 

The user grows the graph until it is fully connected. Since the number of edges increases monoton
ically and the user never inserts the same edge twice, the total number of INSERT-EDGE operations 
is exactly n(n− 1). During the time that the graph is growing, the user performs m CHECK-PATH 

operations which are intermixed with the n(n − 1) INSERT-EDGE’s. Design a data structure that 
can efficiently support any such sequence of operations. 
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Quiz 2 Solutions 

Problem 1. Static Graph Representation 

Let G = (V, E) be a sparse undirected graph, where V = {1, 2, . . . , n}. For a vertex v ⊗ V and 
for i = 1, 2, . . . , out-degree(v), define v’s ith neighbor to be the ith smallest vertex u such that 
(v, u) ⊗ E, that is, if you sort the vertices adjacent to v, then u is the ith smallest. 

Construct a representation of the graph G to support the following queries: 

•DEGREE(v): returns the degree of vertex v. 

•LINKED(u, v): output TRUE if an edge connects vertices u and v, and FALSE otherwise. 

•NEIGHBOR(v, i): returns v’s ith neighbor. 

Your data structure should use asymptotically as little space as possible, and the operations should 
run asymptotically as fast as possible, but space is more important than time. Analyze your data 
structure in terms of both space and time. 

Solution: We give a solution that uses �(E) space for the data structure and takes �(1) time for 
each of the three operations. Create a hash table that contains key (u, v) if (u, v) ⊗ E or key (u, i) 
if vertex u has an i-th neighbor. It is possible that for some u and v = i, vertex u has both an 
adjacent vertex v and an i-th neighbor. This is handled by storing satellite data with each record 
of the hash table. For the record with key (u, i) in the hash table, if u has a neighbor v = i, then 
indicate so using a bit in the record; if u has an i-th neighbor, then store the corresponding neighbor 
vertex index in the record. Also, for every vertex u that is connected to some other vertex, store its 
degree in the record for key (u, 1). 

Thus, for each vertex u in the first coordinate of the key, the hash table has at most degree(u) + 
⎝ndegree(u) = 2 degree(u) entries. The total number of entries is thus at most u=1 2 degree(u) = 

4|E|. By using perfect hashing, and choosing a suitable hash function through a small number 
of random samplings (during data structure construction), we can make the lookup time �(1) and 
space requirement linear in the number of entries stored, i.e., �(E) (see CLRS, page 249, Corollary 
11.12). We can use the same family of hash functions as in CLRS by converting each 2-tuple (u, v) 
into a distinct number (u − 1)n + v in the range of [1 . . . n2]. The total space requirement of the 
degree array and hash table is thus �(V + E). 

Then, DEGREE(v) looks up the key(v, 1) in the hash table. If found, it returns the degree value 
stored in the record. Otherwise, it returns 0, since v is not adjacent to any vertex. This takes �(1) 
time. LINKED(u, v) looks up the key (u, v) in the hash table and returns TRUE if it exists and the 
associated bit in the record is set. This is �(1) time. NEIGHBOR(v, i) looks up the key (v, i) in 
the hash table – if it exists and a neighbor vertex is stored in the record, it returns its index. This is 
also �(1) time. 
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Figure 1: An example of a 1-admissible maze. 

Problem 2. Video Game Design 

Professor Cloud has been consulting in the design of the most anticipated game of the year: Take-
home Fantasy. One of the levels in the game is a maze that players must navigate through multiple 
rooms from an entrance to an exit. Each room can be empty, contain a monster, or contain a life 
potion. As the player wanders through the maze, points are added or subtracted from her life 
points L. Drinking a life potion increases L, but battling a monster decreases L. If L drops to 0 or 
below, the player dies. 

As shown in Figure 1, the maze can be represented as a digraph G = (V, E), where vertices 
correspond to rooms and edges correspond to (one-way) corridors running from room to room. A 
vertex-weight function f : V � � represents the room contents: 

•If f(v) = 0, the room is empty. 

•If f(v) > 0, the room contains a life potion. Every time the player enters the room, her life 
points L increase by f(v). 

•If f(v) < 0, the room contains a monster. Every time the player enters the room, her life 
points L drop by |f(v)|, killing her if L becomes nonpositive. 

The entrance to the maze is a designated room s ⊗ V , and the exit is another room t ⊗ V . Assume 
that a path exists from s to every vertex v ⊗ V , and that a path exists from every vertex v ⊗ V to t. 
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The player starts at the entrance with L = L0 life points, i.e. L0 is the value of f for the entrance. 
The figure shows L0 = 1. 

Professor Cloud has designed a program to put monsters and life potions randomly into the maze, 
but some mazes may be impossible to safely navigate from entrance to exit unless the player enters 
with a sufficient number L0 > 0 of life points. A path from s to t is “safe” if the player stays alive 
along the way, i.e., her life-points never become non-positive. Define a maze to be r-admissible if 
a safe path through the maze exists when the player begins with L0 = r. 

Help the professor by designing an efficient algorithm to determine the minimum value r so that 
a given maze is r-admissible, or determine that no such r exists. (For partial credit, solve the 
problem determining whether a maze is r-admissible for a given r.) 

Solution: 

We give an algorithm with running time O(V E lg r), where r is the minimum life needed at entry 
for the maze to be admissible. The problem is solved in two parts. 

•An algorithm to determine if a given maze is admissible for a given r: This is done by using a 
modified version of Bellman-Ford. For every node u, this algorithm computes the maximum 
number of points q[u] that the player can have on reaching u. Since the player will die if she 
reaches u with negative points, the value of q[u] is either −→ (denoting that the player cannot 
reach u) or positive. Thus if q[t] is positive (t is the exit node), then the graph is r-admissible. 

•We know that the minimum r cannot be less than 1. Thus we use a combination of exponential 
and binary search to find the minimum value of r. We use the modified Bellman-Ford log r 
times to find the minimum r. 

The running time of the algorithm is O(V E log r), where r is the minimum r, where the maze is 
r-admissible. 

Determining Admissibility for a given r We use a modified version of Bellman-Ford algorithm. 
Given an r, for every node u we find the maximum (positive) number of points q[u] the player can 
have when she reaches u. If q[t] is positive, then the graph is r-admissible. 

For each vertex u ⊗ V , we maintain p[u] which is a lower bound on q[u]. We initialize all the p[u]’s 
to −→, except the entrance, which is initialized to r. As we run the Bellman-Ford Algorithm and 
relax edges, the value of p[u] increases until it converges to q[u] (if there are no positive weight 
cycles). The important point to note is that reaching a node with negative points is as good as not 
reaching it at all. Thus, we modify p[u] only it becomes positive, otherwise p[u] remains −→. We 
change the relaxation routine to incorporate this as follows. 
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V-RELAX(u, v) 
1 if (u, v) ⊗ E 
2 then if ((p[v] < p[u] + f [v]) and (p[u] + f [v] > 0)) 
3 then p[v] � p[u] + f [v] 
4 �[v] � u 

After all the edges have been relaxed V times, if there are no negative weight cycles, all p[u]’s will 
have converged to the corresponding q[u]’s (the maximmum number of points you can have on 
reaching vertex u). If q[t] is positive at this point, then the player can reach there with positive life 
points and thus the graph is r-admissible. If p[t] is not positive, however, we relax all the edges one 
more time (just like Bellman-Ford). If p[u] of any node changes, we have found a positive weight 
cycle which is reachable from s starting with r points. Thus the player can go around the cycle 
enough times to collect all the necessary points to reach t and thus the graph is r-admissible. If we 
dont find a reachable positive weight cycle and p[t] is −→, then the graph is not r admissible. The 
correctness of the algorithm follows from the correctness of Bellman-Ford, and the running time 
is O(V E). 

Finding the minimum r for which the graph is r-admissible Given the above sub-routine, we 
now find the minimum r. We first check if the graph is 1-admissible. If it is, we return 1 as the 
answer. If it is not, then we check if it is 2-admissible and then 4-admissible and so on. Thus on 
the ith step we check if the graph is 2i−1-admissible. Eventually, we find k such that the graph is 
not 2k−1-admissible, but it is 2k-admissible. Thus the minimum value of r lies between these two 
values. Then we binary search between r = 2k−1 and r = 2k to find the right value of r. 

Analysis: The number of iterations is k + O(lg r) = O(lg r), since k = ∅lg r∪. Thus you have to 
run Bellman-Ford O(lg r) times, and the total running time is O(V E lg r). 

Alternate Solutions Some people visited nodes in DFS or BFS order starting from the exit, 
relaxing edges to find the minimum number of points needed to get from any node u to the exit. 
The problem with this approach is that in the presence of positive weight cycles, the algorithm runs 
for O(M(V + E)) time, where M is the total sum of all monster points. This number can be big 
even if the real r is small. Some people did the same thing, except with Bellman-Ford instead of 
search, which gives a running time of O(MV E). There were a couple of other clever solutions 
which ran in O(V 2E time. 

Problem 3. Image Filtering 

Two-dimensional filtering is a common operation in vision and image processing. An image 
is represented as an n × n matrix of real values. As shown in Figure 2, the idea is to pass a 
k × k window across the matrix, and for each of the possible placements of the window, the filter 
computes the “product” of all the values in the window. The “product” is not typically ordinary 
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Figure 2: The output element bij is the “product” of all the a’s in the shaded square. 

multiplication, however. For this problem, we shall assume it is an associative and commutative 
binary operation ≤ with identity element e, that is, x ≤ e = e≤ x = x. For example, the product 
could be + with identity element 0, × with 1, min with →, etc. Importantly, you may not assume 
that ≤ has an inverse operation, such as − for +. 

To be precise, given an n× n image 
⎨ � 

a00 a01 . . . a0(n−1) 
⎩ � 
⎩ a10 a11 . . . a1(n−1) � 
⎩ �A = 
⎩ .. , . . . . .. � . . 
⎪ . . � 

a(n−1)0 a(n−1)1 . . . a(n−1)(n−1) 

the (k × k)-filtered image is the n× n matrix 
⎨ � 

b00 b01 . . . b0(n−1) 
⎩ � 
⎩ b10 b11 . . . b1(n−1) � 
⎩ �B = 
⎩ .. , . . . . .. � . . 
⎪ . . � 

b(n−1)0 b(n−1)1 . . . b(n−1)(n−1) 

where for i, j = 0, 1, . . . , n− 1, 
i+k−1 j+k−1 
⎛ ⎛ 

bij = axy . 
x=i j=y 

(For convenience, if x ← n or y ← n, we assume that axy = e.) 

Give an efficient algorithm to compute the (k × k)-filter of an input matrix A. While analyzing 
your algorithm, do not treat k as a constant. That is, express your running time in terms of n and k. 
(For partial credit, solve the problem in one dimension.) 
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Solution: 

We can solve the two-dimensional filtering problem in �(n2) time by first reducing the problem 
to two one-dimensional filtering problems and then showing how a one-dimensional filter on n 
elements can be solved in �(n) time. We assume that k � n, since filtered values for k > n are 
the same as for k = n. The �(n2)-time algorithm is optimal, since there are n2 values to compute. 

Define the intermediate matrix C by 

⎨ � 
c00 c01 . . . c0(n−1) 

C = 
⎩ 
⎩ 
⎩ 
⎩ 
⎪ 

c10 
. . . 

c11 
. . . 

. . . 
. . . 

c1(n−1) 
. . . 

� 
� 
� 
� 
� 

, 

c(n−1)0 c(n−1)1 . . . c(n−1)(n−1) 

where for i, j = 0, 1, . . . , n− 1, 
j+k−1 
⎛ 

cij = aiy , 
y=j 

that is, C is the one-dimensional k-filter on each row of A. We have 

i+k−1 j+k−1 
⎛ ⎛ 

bij = axy 
x=i y=j 

i+k−1 
⎛ 

= cxj , 
x=i 

and thus B is just the one-dimensional k-filter on each column of C. 

It remains to devise an efficient method to compute one-dimensional k-filters. The naive algorithm 
takes �(kn) time to solve the one-dimensional problem for an array of length n. Using this one-
dimensional algorithm to solve the two-dimensional problem costs �(kn2) to compute C from A 
and another �(kn2) to compute B from C, resulting in �(kn2) overall. Many students found a 
way to compute the one-dimensional problem in �(n lg k), resulting in a two-dimensional solution 
of �(n2 lg k). In fact, as some students discovered, the one-dimensional problem can be solved in 

2�(n) time, leading to a two-dimensional solution of �(n ). 

The �(n)-time solution for the one-dimensional problem works as follows. Let the input array be 
A = ∈a0, a1, . . . , an−1� and the k-filtered output array be B = ∈b0, b1, . . . , bn−1�, where 

i+k−1 
⎛ 

bi = ax . 
x=i 

Assume without loss of generality that n is evenly divisible by k, since otherwise, we can pad the 
end of a with identity elements e to make n a multiple of k without more than doubling n. 

The idea is to divide the arrays into blocks of k elements. Observe that any window of k elements 
starting at a given location i consists of the product of a suffix of one block and a prefix of the next 
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block. Thus, we compute prefixes and suffixes of each block as follows. For i = 0, 1, . . . , n − 1, 
define 

⎜ 
e if i mod k = 0,

fi = 
fi−1 ≤ ai−1 otherwise; 

and for i = n− 1, n− 2, . . . , 0, define 
⎜ 

ai if (i + 1) mod k = 0, 
gi = 

ai ≤ fi+1 otherwise. 

b

These two arrays can be computed in �(n) time, and then we obtain the output array by computing, 
for i = 0, 1, . . . , n− 1, 

i = gi ≤ fi+k , 

which also takes �(n) time. 

As an example, consider a one-dimensional 4-filter: 

b0 = (a0 ≤ a1 ≤ a2 ≤ a3) = g0 ≤ f4 

b1 = (a1 ≤ a2 ≤ a3) ≤ (a4) = g1 ≤ f5 

b2 = (a2 ≤ a3) ≤ (a4 ≤ a5) = g2 ≤ f6 

b3 = (a3) ≤ (a4 ≤ a5 ≤ a6) = g3 ≤ f7 

b4 = (a4 ≤ a5 ≤ a6 ≤ a7) = g4 ≤ f8 

b5 = (a5 ≤ a6 ≤ a7) ≤ (a8) = g5 ≤ f9 

b6 = (a6 ≤ a7) ≤ (a8 ≤ a9) = g6 ≤ f10 
. . . 

Problem 4. ViTo Design 

You are designing a new-and-improved digital video recorder, called ViTo. In the ViTo software, 
a television show i is represented as a triple: a channel number ci, a start time si , and an end 
time ei. The ViTo owner inputs a list of n shows to watch and for each show i = 1, 2, . . . , n, 
assigns it a pleasure rating ri. Since shows may overlap, and the ViTo can record only one show 
at a time, the ViTo should record the subset of the shows that maximize the aggregate “pleasure.” 
Since the owner receives no pleasure from watching only part of a show, the ViTo never records 
partial shows. Design an efficient algorithm for the ViTo to select the best subset of shows to 
record. 

Solution: Assume ViTo has enough harddisk space to record any subset of the programs. We use 
a dynamic programming approach to the problem. 

First let’s show the optimal substructure. Let showi denote the triple (ci, si, ei), shows denote 
the whole list of shows show1, ..., shown, and shows(t) denote the subset of shows showj such 
that ej < t, i.e. all the shows with ending times before time t. Consider an optimal solution 
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showi1 , showi2 , ..., showik . Then showi1 , showi2 , ..., showik−1 must be an optimal solution to the 
subproblem shows(sik ) since if not, we could cut and paste a better solution to this subproblem, 
append showik to it, and get a better solution than the optimal one. 

Sort the shows by ending time, so ei � ej for i < j and if ei = ej then si < sj . (if two or more 
shows start and end at the same time, then we can just keep the one with the maximum pleasure ri, 
breaking ties arbitrarily). This can be done with counting sort in linear time: with n shows, there 
are only a maximum of 2n possible starting/ending times, and there are only 24 hours in a day, 
i.e. a limited (constant) amount of time, therefore the range of possible times is O(n). Relabel 
the shows so that show1, ..., shown are in sorted order. Let showsi be the list of shows up to and 
including the i-th show, i.e. showsi = show1, show2, ..., showi. 

Note that shows(t), the subset of shows showj such that ej < t, is equal to showk(t) for some k(t). 
The aggregate pleasure p(i) of an optimal solution for shows in showi is: 

⎜ 
0 if i < 1; 

p(i) = 
max{p(k(si)) + ri, p(i − 1)} otherwise. 

The optimal solution is: 
⎞ 
⎧ {} if i < 1; 
⎟ 

record(i) = record(k(si)) ∞ {showi} if p(k(si)) + ri > p(i − 1); 
⎧ 
⎠ record(i − 1) otherwise. 

Running Time = time to sort the shows + time to find p(n) = O(n). 

Problem 5. Growing a Graph 

We wish to build a data structure that supports a dynamically growing directed graph G = (V, E). 
Initially, we have V = {1, 2, . . . , n} and E = ≥. The user grows the graph with the following 
operation: 

•INSERT-EDGE(u, v): Insert a directed edge from vertex u to vertex v, that is, E � E ∞ 
{(u, v)}. 

In addition, at any time the user can query the graph for whether two vertices are connected: 

•CHECK-PATH(u, v): Return TRUE if a directed path from vertex u to vertex v exists; other
wise, return FALSE. 

The user grows the graph until it is fully connected. Since the number of edges increases monoton
ically and the user never inserts the same edge twice, the total number of INSERT-EDGE operations 
is exactly n(n − 1). During the time that the graph is growing, the user performs m CHECK-PATH 

operations which are intermixed with the n(n − 1) INSERT-EDGE’s. Design a data structure that 
can efficiently support any such sequence of operations. 
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Solution: To solve this problem, we keep an n × n transitive-closure matrix T that keeps track 
of whether there exists a directed path between each pair of vertices. We give an algorithm such 
that each CHECK-PATH operation takes O(1) time, and a sequence of n(n − 1) INSERT-EDGE 

operations take a total of O(n3) time in the worst case. Combining these bounds, any sequence 
of m CHECK-PATH and n(n− 1) INSERT-EDGE operations takes a total of O(n3 + m) time. We 
later improve the data structure to deal with the case in which m is small, to get a total time of 

2O(min {n3 + m, n m}).


Our data structure maintains a transitive-closure matrix T = (tuv ) such that

⎜ 

1 : if there exists a directed path from u to v in G , 
tuv = 

0 : otherwise . 

The matrix T is similarly to an adjacency matrix, except that instead of keeping track of the exis
tence of edges u � v, it keeps track of paths u 
 v. Note that the 1’s in the u-th row correspond 
to all the vertices that u can reach, and the 1’s in the u-th column correspond to all the vertices that 
can reach u. We initialize tuu = 1 because there is a directed path (of no edges) from a vertex to 
itself. 

Given T , the implementation of CHECK-PATH(u, v) is straightforward: just query the value of tuv . 
This query can be performed in constant time, so CHECK-PATH runs in constant time. Pseudocode 
for CHECK-PATH is given below: 

CHECK-PATH(u, v) 
1 if tuv = 1

2 then return TRUE


3 else return FALSE


The tricky part of the data structure is maintaining the matrix T on an INSERT-EDGE(u, v). When 
the edge (u, v) is added, we check each vertex x. If x can reach u, and x cannot already reach v, 
then we update the matrix to indicate that u can reach all the vertices that v can reach (in addition 
to the vertices that it could reach before). In other words, let Rw be the set of vertices that the 
vertex w can reach (i.e., the set of indices of 1’s in the w-th row in T ). Then when adding (u, v), 
we iterate over all x ⊗ V . For each x such that u ⊗ Rx and v �⊗ Rx, we set Rx � Rx ∞ Rv . 
Pseudocode for INSERT-EDGE is given below: 

INSERT-EDGE(u, v)

1 for x � 1 to n

2 do if txu = 1 and txv = 0 � x can reach u but not v

3 then for y � 1 to n

4 do txy � max {txy , tvy } � If v 
 y, add x 
 y to T


Correctness. The following theorem proves that our algorithm is correct. 
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Theorem 1The INSERT-EDGE operation maintains the invariant that txy = 1 iff there exists a 
directed path from x to y in G. 

Proof. We prove by induction on INSERT-EDGE operations. That is, we assume that the 
transitive-closure matrix is correct up to (before) a particular INSERT-EDGE(u, v) operation, and 
then we show that it is correct after that operation. We do not have to prove anything for CHECK-PATH 

as that operation does not modify the matrix. 

First, suppose that x 
 y before the edge (u, v) is added. Then txy = 1 before the INSERT-EDGE 

operation. The only place txy can be updated is in line 4, and if so, it keeps its value of 1. This 
behavior is correct because adding edges cannot destroy a path. 

Suppose that x �
 y before the edge (u, v) is added, but x 
 y after the edge is added. Therefore, 
it must be the case the path from x to y uses the edge (u, v). Therefore, we have x 
 u and v 
 y 
before the INSERT-EDGE(u, v), so by assumption txu = 1 and tvy = 1. Furthermore, it must also 


 v before the addition of (u, v), or we would violate the assumption that x �be true that x � 
 y. 
Thus, we reach line 4, and txy � tvy = 1. 

The last case to consider is the one in which x �
 y after the operation. We need to make sure 
that we have txy = 0 in this case. If there is no path, then txy = 0 before the addition of (u, v). 
Moreover, there is no path that uses (u, v), so either txu = 0 or tvy = 0. If txu = 0, we don’t enter 
the loop in line 2, so the update in line 4 is not performed. If txu = 1, then tvy = 0, and line 4 sets 
the value of txy � 0. 

Analysis. Now let us examine the runtime of our algorithm. Each CHECK-PATH operation is just 
a table lookup, which takes O(1) time. The analysis of INSERT-EDGE is slightly more complicated. 
We can trivially bound the worst-case cost of INSERT-EDGE to O(n2) because we have nested for 
loops, each iterating over n items and doing constant work in line 4. We can show a tighter 
bound on a sequence of n(n − 1) INSERT-EDGE operations using aggregate analysis. Each time 
INSERT-EDGE runs, the outer loop (line 1) executes, performing the constant work from line 2 on 
n items. Thus, the contribution of the outer loop totals to O(n 3). The inner loop (line 3) executes 
only when txv = 0, and when it finishes, txv = 1. Thus, for a particular vertex x, the inner loop can 
be executed at most n times (actually, n − 1, as we begin with txx = 1). Since there are n vertices, 
the inner loop can run at most n2 times in total for a total O(n3) work in the worst case. Thus, the 
total runtime for n(n − 1) INSERT-EDGEs and m CHECK-PATHs is O(n3 + m). 

Slight improvements. There is another data structure with O(1) cost for each INSERT-EDGE but 
O(n2) for each CHECK-PATH . To implement this data structure, we can use an adjacency list: we 
keep an array A[1..n] of size n indexed by vertex and keep a (linked) list of all the outgoing edges 
from the corresponding vertex. To perform an INSERT-EDGE(u, v), simply insert v at the front 
of A[u] in O(1) time. (Note that edges are inserted only once, so we do not have to worry about 
v being present in the list already.) To perform CHECK-PATH(u, v), we run some sort of search, 
let’s say breadth-first search, starting at vertex u. If v is encountered at any point along the search, 
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return TRUE. If not, return FALSE. Correctness of this algorithm should be somewhat obvious. 
BFS takes O(V + E) = O(n2) time. Thus, the total runtime of the sequence of operations is 

2O(n 2 + n m).


This data structure is probably worse than the one given above. It seems safe to assume that m � n

2as you probably query each vertex at least once. Assuming that m � n is also reasonable. If 

you do not want make these assumptions, and you know m ahead of time, you can choose the 
appropriate data structure. 

It turns out that we can also combine both data structures to achieve the better of the two bounds 
even if m is not known ahead of time. To do this, we use the adjacency-list data structure until there 
have been n queries. Once we reach the n-th query (CHECK-PATH), we construct the transitive-
closure matrix and then use the matrix for all subsequent operations. Construction of the matrix 
takes O(n3) time by simply running BFS from each vertex u and marking each reachable vertex v 
by tuv � 1. Thus, if m � n, we use only the adjacently list, to get a total runtime of O(n2m). If 
m ← n, we first use the adjacency list for a total of O(n3) work, then we transform to the transitive-
closure matrix in O(n3) time, then we use the matrix for all subsequent operations, which comes 

3 3to a total of O(n + m). Thus, this data structure achieves a runtime of O(min {n + m, n 2 m}) in 
the worst case. 




