
MIT OpenCourseWare 
http://ocw.mit.edu 

6.055J / 2.038J The Art of Approximation in Science and Engineering
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


70 70

70 70
2008-01-14 22:31:34 / rev 55add9943bf1

6.055 / Art of approximation 70 

The volume of the pyramid is V ∼ hb2, and the missing constant must make volume 4/3. 
Since hb2 = 4 for these pyramids, the missing constant is 1/3. Voilà: 

V = 
1

hb2 = 
4 
.

3 3

8.2 Mechanics 

8.2.1 Atwood machine 

The next problem illustrates dimensional analysis and special cases in a physical problem. 
Many of the ideas and methods from the geometry example transfer to this problem, and 
it introduces more methods and ways of reasoning. 

The problem is a staple of first-year physics: Two masses, m1 and m2, are connected and, 

m1

m2

thanks to a pulley, are free to move up and down. What is the acceleration of the masses 
and the tension in the string? You can solve this problem with standard methods from 
first-year physics, which means that you can can check the solution that we derive using 
dimensional analysis, educated guessing, and a feel for functions. 

The first problem is to find the acceleration of, say, m1. Since m1 and m2 are connected 
by a rope, the acceleration of m2 is, depending on your sign convention, either equal to 
m1 or equal to −m1. Let’s call the acceleration a and use dimensional analysis to guess its 
form. The first step is to decide what variables are relevant. The acceleration depends on 
gravity, so g should be on the list. The masses affect the acceleration, so m1 and m2 are on 
the list. And that’s it. You might wonder what happened to the tension: Doesn’t it affect 
the acceleration? It does, but it is itself a consequence of m1, m2, and g. So adding tension to 
the list does not add information; it would instead make the dimensional analysis difficult. 

These variables fall into two pairs where the variables in each pair Var Dim What 
have the same dimensions. So there are two dimensionless groups a LT−2 accel. of m1 

here ripe for picking: G1 = m1/m2 and G2 = a/g. You can make g LT−2 gravity 
any dimensionless group using these two obvious groups, as ex m1 M block mass 
perimentation will convince you. Then, following the usual pat m2 M block mass 
tern, ( ) a 

= f 
m1 , 

g m2 

where f is a dimensionless function. 

Pause a moment. The more thinking that you do to choose a clean representation, the less 
algebra you do later. So rather than find f using m1/m2 as the dimensionless group, first 
choose a better group. The ratio m1/m2 does not respect the symmetry of the problem in 
that only the sign of the acceleration changes when you interchange the labels m1 and m2. 
Whereas m1/m2 turns into its reciprocal. So the function f will have to do lots of work to 
turn the unsymmetric ratio m1/m2 into a symmetric acceleration. 
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Back to the drawing board for how to fix G1. Another option is to use m1 − m2. Wait, the 
difference is not dimensionless! I fix that problem in a moment. For now observe the virtue 
of m1 − m2. It shows a physically reasonable symmetry under mass interchange: G1 → −G1. 
To make it dimensionless, divide it by another mass. One candidate is m1: 

G1 = 
m1 + m2 . 

m1 

That choice, like dividing by m2, abandons the beloved symmetry. But dividing by m1 + m2 

solves all the problems: 

G1 = 
m1 − m2 . 
m1 + m2 

This group is dimensionless and it respects the symmetry of the problem. 

Using this G1, the solution becomes 

a 
= f

m1 − m2 , 
g m1 + m2 

where f is another dimensionless function. 

To guess f (x), where x = G1, try special cases. First imagine that m1 becomes huge. A 

m1

quantity with mass cannot be huge on its own, however. Here huge means huge relative 
to m2, whereupon x ≈ 1. In this thought experiment, m1 falls as if there were no m2 so 
a = −g. Here we’ve chosen a sign convention with positive acceleration being upward. 
If m2 is huge relative to m1, which means x = −1, then m2 falls like a stone pulling m1 

upward with acceleration a = g. A third limiting case is m1 = m2 or x = 0, whereupon the 
masses are in equilibrium so a = 0. 

Here is a plot of our knowledge of f : 

The simplest conjecture – an educated guess – is that f (x) = x. Then we have our result: 

a 
. 

g 

x

f(x)

1-1

1

-1

= 
m1 − m2 

m1 + m2 

Look how simple the result is when derived in a symmetric, dimensionless form using 
special cases! 


