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and it seems as if even babies own cars. As a guess, then, the number of cars is N ∼ 3× 108. 
The annual miles per car is maybe 15,000. But the N is maybe a bit large, so let’s lower the 
annual miles estimate to 10,000, which has the additional merit of being easier to handle. 
A typical mileage would be 25 miles per gallon. Then comes the tricky part: How large is a 
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imports

cars

N miles/year gallons/mile barrels/gallon

other uses fraction imported

Now guess values for the unnumbered leaves. There are 3×108 people in the United States, 

barrel? One method to estimate it is that a barrel costs about $100, and a gallon of gasoline 
costs about $2.50, so a barrel is roughly 40 gallons. The tree with numbers is: 

imports

cars

N
3× 108

miles/year
104

gallons/mile
1/25

barrels/gallon
1/40

other uses
2

fraction imported
0.5

All the leaves have values, so I can propagate upward to the root. The main operation is 
multiplication. For the ‘cars’ node: 

104 miles 1 gallon 1 barrel

3 × 108 cars × 

1 car–year 
× 

25 miles 
× 

40 gallons 
∼ 3 × 109 barrels/year.


The two adjustment leaves contribute a factor of 2 × 0.5 = 1, so the import estimate is 

3 × 109 barrels/year. 

For 2006, the true value (from the US Dept of Energy) is 3.7 × 109 barrels/year! 

This result, like the pit spacing, is surprisingly accurate. Why? Section 2.5 explains a 
random-walk model for it, which suggests that the more you subdivide, the better. 

But before discussing that model, try one more example. 

2.4 Gold or bills? 

2.5 Random walks 

The estimates in Section 2.1 and Section 2.3 are surprisingly accurate. The true pit spacing 
in a CDROM varies from 1µm to 3µm, according to the so-called Red Book where Philips 
and Sony give the specification of the CDROM; our estimate of 1µm is not too bad. The 
true value for the oil imports is only 10% different from our estimate. 
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Equally important, the estimates are more accurate after doing divide-and-conquer reason
ing. My 95% probability interval for oil imports, if I had to guess a value without subdivid
ing the problem, is say from 106 b/yr to 1012 b/yr. In other words, if someone had claimed 
that the value is 10 million barrels per year, it would have seemed low, but I wouldn’t have 
bet too much against it. After doing the divide-and-conquer estimate, I’d have been sur
prised if the true answer were more than a factor of 10 smaller or larger than the estimate. 

This section presents a model for guessing in order to explain how divide-and-conquer 
reasoning can make estimates more accurate. The idea is that when we guess a value far 
outside our intuitive experience – for example, micron-sized distances or gigabarrels – the 
error in the exponent will be proportional to the exponent. For example, when guessing a 
quantity like 109 in one gulp, I really mean: ‘It could be, say, 106 on the low side or, say, 
1012 on the high side.’ And when guessing a quantity like 1030 (the mass of the sun in 
kilograms), I would like to hedge my bets with a region like 1020 to 1040. So, in this model 
any quantity 10β is really shorthand for 

10β 10β−β/3 . . . 10β+β/3 .→ 

Now further simplify the model: Replace the range of values by its endpoints. So, if we try 
to guess a quantity whose true value is 10β, we are equally likely to guess 102β/3 or 104β/3. 
A more realistic model would include 10β as a likely possibility, but the simplest model is 
easy to simulate and to reason with (that justification is a fancy way to say that I am lazy). 

To see the consequences of the model, I’ll compare subdividing and not subdividing by 
using a numerical example. Suppose that we want to guess a quantity whose true value is 
1012. Without subdividing, we might guess 108 or 1016 (adding or subtracting one-third of 
the exponent), a wide range. 

Compare that range to the range when we subdivide the estimate into 16 equal factors. 
Each factor is 1012/16 = 103/4. When guessing each factor, the model says that we would 
guess 101/2 or 101 each with p = 0.5. Here is an example of choosing 16 such factors ran
domly from 101/2 and 101 and multiplying them: 

100.5 100.5 101 100.5 101 101 
×100.5 101 100.5 100.5 100.5 100.5 

×100.5 100.5 101 100.5 = 1010.5 
· · · · · · · · · · · · ·

Here are three other randomly generated examples: 

101 100.5 101 101 101 101 100.5 101 100.5 101 101 100.5 100.5 101 101 100.5 = 1013.0 
· · · · · · · · · · · · · · · 

101 101 100.5 100.5 101 101 100.5 100.5 100.5 100.5 101 101 101 
× 100.5 100.5 100.5 = 1011.5 

· · · · · · · · · · · · · · 

100.5 100.5 100.5 100.5 100.5 101 100.5 100.5 101 101 101 100.5 
× 100.5 100.5 101 100.5 = 1010.5 

· · · · · · · · · · · · · · 

These estimates are mostly within one factor of 10 from the true answer of 1012, whereas 
the one-shot estimate might be off by four factors of 10. What has happened is that the 
errors in the individual pieces are unlikely to point in the same direction. Some pieces will 
be underestimates, some will be overestimates, and the product of all the pieces is likely to 
be close to the true value. 
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This numerical example is our first experience with the random walk. Their crucial feature 
is that the expected wanderings are significantly smaller than if one walks in a straight line 
without switching back and forth. How much smaller is a question that we will answer in 
Chapter 5 when we introduce special-cases reasoning. 


