
MIT OpenCourseWare
http://ocw.mit.edu

6.055J / 2.038J The Art of Approximation in Science and Engineering
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

15 15

15 15
2008-01-14 22:31:34 / rev 55add9943bf1

2 Assorted subproblems	 15

errors in the individual pieces are unlikely to point in the same direction. Some pieces will
be underestimates, some will be overestimates, and the product of all the pieces is likely to
be close to the true value.

This numerical example is our first experience with the random walk. Their crucial feature
is that the expected wanderings are significantly smaller than if one walks in a straight line
without switching back and forth. How much smaller is a question that we will answer in
Chapter 8 when we introduce special-cases reasoning.

2.6 The Unix philosophy

Organizing complexity by breaking it into manageable parts is not limited to numerical
estimation; it is a general design principle. It pervades the Unix and its offspring operating
systems such as GNU/Linux and FreeBSD. This section discusses a few examples.

2.6.1 Building blocks and pipelines

Here are a few of Unix’s building-blocks programs:

head: prints the first n lines from the input; for example, head -15 prints the first 15 •

lines.

tail: prints the last n lines from the input; for example, tail -15 prints the last 15 •

lines.

How can you use these building blocks to print the 23rd line of a file? Divide and conquer!
One solution is to break the problem into two parts: printing the first 23 lines and, from
those lines, printing the last line. The first subproblem is solved with head -23. The
second subproblem is solved with tail -1.

To combine solutions, Unix provides the pipe operator. Denoted by the vertical bar |, it
connects the output of one program to the input of another command. In the numerical
estimation problems, we combined the solutions to the subproblems by using multiplica
tion. The pipe operator is analogous to multiplication. Both multiplication in numerical
estimation, and pipes in programming, are examples of composition operators, which are
essential to a divide-and-conquer solution.

To print the 23rd line, use this combination:

head -23 | tail -1

To tell the system where to get the input, there are alternatives:

1.	 Use the preceding combination as is. Then the input comes from the keyboard, and the
combination will read 23 typed lines, print out the final line from those 23 lines, and
then will exit.

2.	 Tell head to get its input from a file. An example file is the dictionary. On my GNU/Linux
laptop it is the file /usr/share/dict/words, with one word per line. To print the 23rd
line (i.e. the 23rd word):

16 16

16 16
2008-01-14 22:31:34 / rev 55add9943bf1

16 6.055 / Art of approximation

head -23 /usr/share/dict/words | tail -1

3.	 Let head read from its idea of the keyboard, but connect the keyboard to a file. This
method uses the < syntax:

head -23 < /usr/share/dict/words | tail -1

The < operator tells the shell (the Unix command interpreter) to connect /usr/share/dict/words
to the input of head.

4.	 Like the preceding method, but use the cat program. The cat program copies its input
file(s) to the output. So this extended pipeline has the same effect as the preceding
alternative:

cat /usr/share/dict/words | head -23 | tail -1

It is slightly less efficient than letting the shell redirect the input itself, because the longer
pipeline requires running one extra program (cat).

This example introduced the Unix philosophy: To enable divide-and-conquer reasoning,
provide useful small utilities and ways to combine them. The next section applies this
philosophy to a whimsical example from a scavenger hunt created by Donald Knuth: Find
the next word in the dictionary after ‘angry’, where the dictionary is alphabetized starting
with the last letter, then the second-to-last letter, etc.

2.6.2 Sorting and searching

So, how do you find the next word in the dictionary after ‘angry’, where the dictionary is
alphabetized starting with the last letter, then the second-to-last letter, etc.?

Divide the problem into two parts:

1.	 Make a reverse dictionary, alphabetized starting with the last letter, then the second-to
last letter, etc.

2. Printing the line after ‘angry’.

The first problem subdivides into:

1.	 Reverse each line of a dictionary.

2.	 Sort the reversed dictionary.

3.	 Unreverse each line.

Unix provides sort for the second subproblem. For the first and third problems, a search
through the Unix toolbox, using man -k, says:

17 17

17 17
2008-01-14 22:31:34 / rev 55add9943bf1

2 Assorted subproblems 17

$ man -k reverse
build-rdeps (1) - find packages that depend on a specific package to
bui...
col (1) - filter reverse line feeds from input
git-rev-list (1) - Lists commit objects in reverse chronological order
rev (1) - reverse lines of a file or files
tac (1) - concatenate and print files in reverse
xxd (1) - make a hexdump or do the reverse.

Ah! rev is just the program for us. So the first subproblem is solved with this pipeline:

rev < /usr/share/dict/words | sort | rev

The second problem – finding the line after ‘angry’ – is a task for the pattern-finding pro
gram grep. In the simplest usage, you tell grep a pattern, and it prints every line from its
input that matches the pattern.

The patterns are regular expressions. Their syntax can become arcane, but the most impor
tant features are simple. For example,

grep ’^angry$’ < /usr/share/dict/words

prints all lines that exactly match angry: The ˆ character matches the beginning of the line,
and the $ character matches the end of the line.

That invocation of grep is not useful except as a spell checker, since it tells us only that
angry is in the dictionary. However, the -A option, you can tell grep how many lines to
print after each matching line. So

grep -A 1 ’^angry$’ < /usr/share/dict/words

will print ‘angry’ and the word after it (in the regular dictionary):

angry
angst

To print just the word after ‘angry’, follow the grep command with tail:

grep -A 1 ’^angry$’ < /usr/share/dict/words | tail -1

Now combine these two solutions into solving the scavenger hunt problem:

rev </usr/share/dict/words | sort | rev | grep -A 1 ’^angry$’ | tail -1

This pipeline fails with the error

rev: stdin: Invalid or incomplete multibyte or wide character

18 18

18 18
2008-01-14 22:31:34 / rev 55add9943bf1

6.055 / Art of approximation 18

The rev program is complaining that it doesn’t understand some of the characters in the
dictionary. rev is from the old, ASCII-only days of Unix, whereas the dictionary is modern
and includes non-ASCII characters such as accented letters.

To solve this unexpected problem, clean the dictionary before passing it to rev. The clean
ing program is again grep, which can allow through only those lines that are pure ASCII.
This command

grep ’^[a-z]*$’ < /usr/share/dict/words

will print a dictionary made up only of unaccented, lowercase letters. In a regular expres
sion, the * operator means ‘match 0 or more occurrences of the preceding regular expres
sion’.

The full pipeline is

grep ’^[a-z]*$’ < /usr/share/dict/words \

| rev | sort | rev \

| grep -A 1 ’^angry$’ | tail -1

where the backslashes at the end of the lines tell the shell to keep reading the command
even though the line ended.

The tree representing this solution is

which produces ‘hungry’.

word after angry in reverse dictionary
grep ’^[a-z]*$’ | rev | sort | rev | grep -A 1 | tail -1

make reverse dictionary
grep ’^[a-z]*$’ | rev | sort | rev

clean dictionary
grep ’^[a-z]*$’

reverse
rev

sort
sort

unreverse
rev

select word after angry
grep -A 1 | tail -1

select angry and next word
grep -A 1

print last of two words
tail -1

2.6.3 Further reading

To learn more about the principles of Unix, especially how the design facilitates divide-
and-conquer programming, see [1, 2, 3].

