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5 Proportional reasoning 35 

Since A is the cross-sectional area of the animal, Ah is the volume of air that it sweeps out 
in the jump, and ρAh is the mass of air swept out in the jump. So the relative importance of 
drag has a physical interpretation as a ratio of the mass of air displaced to the mass of the 
animal. 

To find how this ratio depends on animal size, rewrite it in terms of the animal’s side length 
l. In terms of side length, A ∼ l2 and m ∝ l3. What about the jump height h? The simplest 
analysis predicts that all animals have the same jump height, so h ∝ l0. Therefore the 
numerator ρAh is ∝ l1, the denominator m is ∝ l3, and 

Edrag l2 
= l−1 .

Erequired 
∝ 

l3 

So, small animals have a large ratio, meaning that drag affects the jumps of small animals 
more than it affects the jumps of large animals. The missing constant of proportionality 
means that we cannot say at what size an animal becomes ‘small’ for the purposes of drag. 
So the calculation so far cannot tell us whether fleas are included among the small animals. 

The jump data, however, substitutes for the missing constant of proportionality. The ratio 
is 

Edrag ρAh ρl2h 
Erequired 

∼ 
m 
∼ 
ρanimall3 . 

It simplifies to 

Edrag ρ h 
.

Erequired 
∼ 
ρanimal l

As a quick check, verify that the dimensions match. The left side is a ratio of energies, so 
it is dimensionless. The right side is the product of two dimensionless ratios, so it is also 
dimensionless. The dimensions match. 

Now put in numbers. A density of air is ρ ∼ 1 kg m−3. The density of an animal is roughly 
the density of water, so ρanimal ∼ 103 kg m−3. The typical jump height – which is where the 
data substitutes for the constant of proportionality – is 60 cm or roughly 1 m. A flea’s length 
is about 1 mm or l ∼ 10−3 m. So 

Edrag 1 kg m−3 1 m 
Erequired 

∼ 
103 kg m−3 10−3 m 

∼ 1. 

The ratio being unity means that if a flea would jump to 60 cm, overcoming drag would 
require roughly as much as energy as would the jump itself in vacuum. 

Drag provides a plausible explanation for why fleas do not jump as high as the typical 
height to which larger animals jump. 

5.4.3 Cycling 
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This section discusses cycling as an example of how drag affects the performance of people 
as well as fleas. Those results will be used in the analysis of swimming, the example of the 
next section. 

What is the world-record cycling speed? Before looking it up, predict it using armchair 
proportional reasoning. The first task is to define the kind of world record. Let’s say that 
the cycling is on a level ground using a regular bicycle, although faster speeds are possible 
using special bicycles or going downhill. 

To estimate the speed, make a model of where the energy goes. It goes into rolling resis
tance, into friction in the chain and gears, and into drag. At low speeds, the rolling resis
tance and chain friction are probably important. But the importance of drag rises rapidly 
with speed, so at high-enough speeds, drag is the dominant consumer of energy. 

For simplicity, assume that drag is the only consumer of energy. The maximum speed 
happens when the power supplied by the rider equals the power consumed by drag. The 
problem therefore divides into two estimates: the power consumed by drag and the power 
that an athlete can supply. 

The drag power Pdrag is related to the drag force: 

Pdrag = Fdragv ∼ ρv3A. 

It indeed rises rapidly with velocity, supporting the initial assumption that drag is the im
portant effect at world-record speeds. 

Setting Pdrag = Pathlete gives ( )1/3Pathlete vmax ∼ 
ρA 

To estimate how much power an athlete can supply, I ran up one flight of stairs leading 
from the MIT Infinite Corridor. The Infinite Corridor, being an old building, has spacious 
high ceilings, so the vertical climb is perhaps h ∼ 4 m (a typical house is 3 m per storey). 
Leaping up the stairs as fast as I could, I needed t ∼ 5 s for the climb. My mass is 60 kg, so 
my power output was 

Pauthor ∼ 
potential energy supplied 

time to deliver it 

= 
mgh 60 kg × 10 m s−2 

× 4 m 
∼ 500 W. 

t 
∼ 

5 s 

Pathlete should be higher than this peak power since most authors are not Olympic athletes. 
Fortunately I’d like to predict the endurance record. An Olympic athlete’s long-term power 
might well be comparable to my peak power. So I use Pathlete = 500 W. 

The remaining item is the cyclist’s cross-sectional area A. Divide the area into width and 
height. The width is a body width, perhaps 0.4 m. A racing cyclist crouches, so the height 
is maybe 1 m rather than a full 2 m. So A ∼ 0.4 m2. 

Here is the tree that represents this analysis: 
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vmax

Pathlete ∼ Estairs/tstairs

Estairs
2400 J

m
60 kg

g
10 m s−2

h
4 m

tstairs
5 s

Pdrag ∼ ρv3A

ρ
1 kg m−3

v A
0.4 m2

Now combine the estimates to find the maximum speed. Putting in numbers gives ( )1/3 ( )1/3Pathlete 500 W 
vmax ∼ 

ρA 
∼ 

1 kg m−3 × 0.4 m2 . 

The cube root might suggest using a calculator. However, massaging the numbers simpli
fies the arithmetic enough to do it mentally. If only the power were 400 W or, instead, if the 
area were 0.5 m! Therefore, in the words of Captain Jean-Luc Picard, ‘make it so’. The cube 
root becomes easy: ( )1/3400 W 

vmax ∼∼ 
1 kg m−3 × 0.4 m2 ∼ (1000 m3 s−3)1/3 = 10 m s−1 . 

So the world record should be, if this analysis has any correct physics in it, around 10 m s−1 

or 22 mph. 

The world one-hour record – where the contestant cycles as far as possible in one hour – is 
49.7 km or 30.9 mi. The estimate based on drag is reasonable! 

5.4.4 Swimming 

The last section’s analysis of cycling helps predict the world-record speed for swimming. 
The last section showed that ( )1/3Pathlete vmax ∼ 

ρA 
. 

To evaluate the maximum speed for swimming, one could put in a new ρ and A directly 
into that formula. However, that method replicates the work of multiplying, dividing, and 
cube-rooting the various values. 

Instead it is instructive to scale the numerical result for cycling by looking at how the maxi
mum speed depends on the parameters of the situation. In other words, I’ll use the formula 
for vmax to work out the ratio vswimmer/vcyclist, and then use that ratio along with vcyclist to 
work out vswimmer. 

The speed vmax is ( )1/3Pathlete vmax ∼ 
ρA 

. 
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So the ratio of swimming and cycling speeds is 

vswimmer 
( 

Pswimmer 
)1/3 ( 

ρswimmer 
)−1/3 ( 

Aswimmer 
)−1/3 

. 
vcyclist 

∼ 
Pcyclist 

× 
ρcyclist 

× 
Acyclist 

Estimate each factor in turn. The first factor accounts for the relative athletic prowess of 
swimmers and cyclists. Let’s assume that they generate equal amounts of power; then the 
first factor is unity. The second factor accounts for the differing density of the mediums 
in which each athlete moves. Roughly, water is 1000 times denser than air. So the second 
factor contributes a factor of 0.1 to the speed ratio. If the only factors were the first two, 
then the swimming world record would be about 1 m s−1. 

Let’s compare with reality. The actual world record for a 1500-m freestyle (in a 50-m pool) is 
14m34.56s set in July 2001 by Grant Hackett. That speed is 1.713 m s−1, significantly higher 
than the prediction of 1 m s−1. 

The third factor comes to the rescue by accounting for the relative profile of a cyclist and 
a swimmer. A swimmer and a cyclist probably have the same width, but the swimmer’s 
height (depth in the water) is perhaps one-sixth that of a crouched cyclist. So the third 
factor contributes 61/3 to the predicted speed, making it 1.8 m s−1. 

This prediction is close to the actual record, closer to reality than one might expect given 
the approximations in the physics, the values, and the arithmetic. However, the accuracy 
is a result of the form of the estimate, that the maximum speed is proportional to the cube 
root of the athlete’s power and the inverse cube root of the cross-sectional area. Errors in 
either the power or area get compressed by the cube root. For example, the estimate of 
500 W might easily be in error by a factor of 2 in either direction. The resulting error in the 
maximum speed is 21/3 or 1.25, an error of only 25%. The cross-sectional area of a swimmer 
might be in error by a factor of 2 as well, and this mistake would contribute only a 25% 
error to the maximum speed. [With luck, the two errors would cancel!] 

5.4.5 Flying 

In the next example, I scale the drag formula to estimate the fuel efficiency of a jumbo 
jet. Rather than estimating the actual fuel consumption, which would produce a large, 
meaningless number, it is more instructive to estimate the relative fuel efficiency of a plane 
and a car. 

Assume that jet fuel goes mostly to fighting drag. This assumption is not quite right, so at 
the end I’ll discuss it and other troubles in the analysis. The next step is to assume that the 
drag force for a plane is given by the same formula as for a car: 

Fdrag ∼ ρv2A. 

Then the ratio of energy consumed in travelling a distance d is 

Eplane ρup−high 
(vplane 

)2 Aplane d 
.

Ecar 
∼ 
ρlow 

× 
vcar 

× 
Acar 

× 
d
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Estimate each factor in turn. The first factor accounts for the lower air density at a plane’s 
cruising altitude. At 10 km, the density is roughly one-third of the sea-level density, so 
the first factor contributes 1/3. The second factor accounts for the faster speed of a plane. 
Perhaps vplane ∼ 600 mph and vcar ∼ 60 mph, so the second factor contributes a factor of 100. 
The third factor accounts for the greater cross-sectional area of the plane. As a reasonable 
estimate 

Aplane ∼ 6 m × 6 m = 36 m2 , 

whereas 

Acar ∼ 2 m × 1.5 m = 3 m2 , 

so the third factor contributes a factor of 12. The fourth factor contributes unity, since we 
are analyzing the plane and car making the same trip (New York to Los Angeles, say). 

The result of the four factors is 

Eplane 1 
Ecar 

∼ 
3 
× 100 × 12 ∼ 400. 

A plane looks incredibly inefficient. But I neglected the number of people. A jumbo jet 
takes carries 400 people; a typical car, at least in California, carries one person. So the plane 
and car come out equal! 

This analysis leaves out many effects. First, jet fuel is used to generate lift as well as to 
fight drag. However, as a later analysis will show, the energy consumed in generating lift is 
comparable to the energy consumed in fighting drag. Second, a plane is more streamlined 
than a car. Therefore the missing constant in the drag force Fdrag ∼ ρv2A is smaller for a 
plane than for a car. our crude analysis of drag has not included this effect. Fortunately 
this error compensates, or perhaps overcompensates, for the error in neglecting lift. 

5.5 Analysis of algorithms 

Proportional reasoning is the basis of an entire subject of the analysis of algorithms, a core 
part of computer science. How fast does an algorithm run? How much space does it re
quire? A proportional-reasoning analysis helps you decide which algorithms to use. This 
section discusses these decisions using the problem of how to square very large numbers. 

Squaring numbers is a special case of multiplication, but the algebra is simpler for squaring 
than for multiplying since having only one number as the input means there are fewer 
variables in the analysis. 

Here is a divide-and-conquer version of the standard school multiplication algorithm. 


