
ASSEMBLER(1) ASSEMBLER(1)

NAME
assembler, assem, assem16to8, assem24to8, assem32to8 - translate symbolic microcode into hex integer
file(s)

SYNOPSIS
assembler < xxx.as > xxx.dat
assem xxx
assem16to8 xxx
assem24to8 xxx
assem32to8 xxx

DESCRIPTION
This program translates symbolic microcode instructions into a file of hex integers. An optional listing file
can also be produced which reproduces the source file with the addition of the address and value for each
microinstruction. The assembler output must then be processed by the dat2ntl program to format this file
into one that can be sent to the PROM programmer. The dat2ntl program is described in a separate man-
page. The assembler accommodates a large number of microinstruction formats. The user can (must)
define individual keywords and instruction formats in a specification file.

There are several shell scripts which run both assembler and dat2ntl so these programs do not have to be
run separately. These scripts pipe the output of assembler through the program dat2ntl.

By the recommended convention, the source file name has an extension of .as, i.e., it is of the following
form:

xxx.as

The specification file name is of the form:

xxx.sp

The listing file name should be of the form:

xxx.list

USE OF THE PROGRAM
To use the program one must create a specification file and a source file.

The specification file, xxx.sp, contains the declaration of the command names and the bits which each com­
mand asserts. It also specifies which bits will be used for the address field, the instruction size, and, option-
ally, whether the default assertion for signals is low or high. The microinstructions must all be of the same
length and can only reference a single address.

The source file, xxx.as, contains the assembly code which uses the declarations given in xxx.sp. It must
include a #SPEC_FILE statement in order to know where to look for these declarations. It may also
include a #LIST_FILE statement which provides a file name for the assembler listing, a #SET_ADDRESS
statement to tell the assembler the beginning address for the assembled code, and a #NEW_PROGRAM
statement to tell the assembler to treat the following text as a completely new program. Any other com­
mand statement - "#command_name = value ;" - will be passed through the assembler.

There can be multiple #SET_ADDRESS statements interspersed within the code so that the address can be
changed anywhere in the code. This is useful for subroutines or when a certain part of the code needs to
be put in a specific position in memory. The formats of these statements can be obtained from the examples
or from the man page for dat2ntl.

MIT EECS Dept. 1

ASSEMBLER(1) ASSEMBLER(1)

Note that the LIST_FILE produced by the assembler can be used in your project reports.

WHAT THE ASSEMBLER DOES
The assembler operates in two passes. It first opens xxx.as. From this it determines the name of your spec­
ification file, xxx.sp, and processes this file to determine your instruction formats. The assembler then pro­
ceeds to process xxx.as. During this first pass, the values of all address labels are evaluated and stored.
Except for forward address references, the values of the microinstructions are also determined during this
first pass. During the second pass, the values of the forward referenced address labels are included in the
final microinstruction values; and the final output is produced along with the optional listing file.

To produce an output number for a microinstruction, the assembler first evaluates a token. It then shifts the
value left so that it lines up with the specified field and logically ORs the value into the output number.
While doing this it checks to see if the value is wholly contained within the specified field. If not, it pro­
duces a warning error comment. It also produces a (different) warning if successive tokens cause the same
bit in the output number to be specified more than once. When the statement terminating semicolon is
reached, the assembler increments the address counter and processes the next microinstruction.

You may include multiple, separate programs within the same source file. All of these programs must use
the same specification file. These programs are delineated by the inclusion of a command statement,

new_program = prom_address

This command statement will be translated into a

load_address = prom_address

statement.

HOW TO RUN THE PROGRAM
The assembler by itself translates its input file into a data file of hex integers. This file then has to be pro­
cessed by dat2ntl to create the file, xxx.ntl, before you can program a PROM on a DATA I/O programmer.

assembler <xxx.as >xxx.dat

There are several shell scripts which run both assembler and dat2ntl so these programs do not have to be
run separately. These scripts pipe the output of assembler through the program dat2ntl.

The following shell scripts all process xxx.as:

assem xxx Creates xxx.ntl

assem16to8 xxx Creates byt0xxx.ntl and byt1xxx.ntl

assem24to8 xxx Creates byt0xxx.ntl through byt2xxx.ntl

assem32to8 xxx Creates byt0xxx.ntl through byt3xxx.ntl

INPUT FILE FORMA T
The assembler parses its input into tokens. White space, i.e., spaces, tabs, returns, and newlines, are
ignored, although your file must end with a newline or else the last line will not be read.

The parser is case insensitive. Internally, all upper case characters are mapped into lower case characters.
Since the names of the specification file, xxx.sp, and of the listing file, xxx.list, are specified in the source

MIT EECS Dept. 2

ASSEMBLER(1) ASSEMBLER(1)

file, xxx.as, the actual UNIX file names must not include upper case characters.

Legal characters for labels or symbols include a through z, 0 through 9, . (period), _ (underscore), / (slash),
and %. Labels and symbols must include at least one nonnumeric character.

The same label cannot be used as an address label and a command symbol, as the assembler will consider
this to be a redeclaration error.

Comments are delimited as in C.
For example, /* this is a comment */
/*
* This is also
* a comment.
*/

Integers are normally interpreted as decimal numbers. If you precede an integer with %b or %h, then that
integer will be interpreted as a binary or hex number respectively. For example, %b10001 will be read as
17 and %h1c will be read as 28.

CAUTION - The integer in a #SET_ADDRESS, #LOAD_ADDRESS, or #NEW_PROGRAM command
statement is ALWAYS interpreted as a HEX number.

All statements must be terminated with a ; (semicolon). The assembler attempts to give meaningful error
comments. However, if you do not understand the error comment, check for a missing semicolon.

SPECIFICATION FILE
Fields are specified by the construct <n:m> or <n> where n > m and both n and m are in the range 0
through 31. This construct is used to simplify the specification of symbol values and to enable range tests.

The first entry in the xxx.sp should specify the instruction length. The maximum allowed length for an
instruction is 32 bits, and this is also the default.

op <n:0>;

You must specify the address field. You can only have a single address, and the field must be a single con­
tiguous block of bits. If you must have the address field in split fields, then you can simply wire your
PROM outputs accordingly.

address op <n:m>;

You may optionally specify a field into which integer values are placed by including

value op <n:m>;

The default value for a field is all zeros, and ones are ORed into the field. If you wish, you may specify the
default value to be all ones by

assert_low op <n:m>;

Then zeros will be ORed into those fields. Note that you must also invert the symbol definitions to be used
in that field. This has an effect similar to inverting those PROM outputs.

You may specify noncontiguous bit fields, e.g.,

MIT EECS Dept. 3

ASSEMBLER(1) ASSEMBLER(1)

assert_low op <7:6> op <3:2> op <0>;

Command symbols are defined by

NAME op <n:m> = NUMBER; or
NAME op <n> = NUMBER;

where NAME is any symbol you wish and NUMBER is an integer. Non-contiguous bit fields can be speci­
fied, e.g.,

NAME op <7:6> = 2 op <4:3> = 1;

One can also define new NAMES in terms of previously defined NAMES. Or one can mix NAMES with
bit field specifications. Forward references are not allowed. Examples are:

load op<3> = 1;
shift op<2:0> = %b110;
new load shift;
new1 op<2:0> = 2 load;
new2 op<2:0> = 2 op<3> = 1;

As a special case, you may wish to define a symbol (or symbols) that does not do anything, i.e., contribute
to the output value or produce an error comment. You accomplish this by

NAME nop;

Look at the example file to see how this feature can be used to make your microcode more readable.

SOURCE FILE
The source file, xxx.as, consists of command statements, microcode statements, and, of course, comments.
Command statements begin with a # and are of the form

key_word = value;

The first statement in your source file must be

SPEC_FILE = xxx.sp;

where xxx can be anything you like. Note that the actual UNIX file name must not include upper case char­
acters as the assembler maps all upper case characters to lower case characters.

Normally a listing file is desired, so you should include the listing file name specification.

LIST_FILE = xxx.list;

You may include the following statements to specify the beginning address for your program. If you omit
these two statements, then the assembler assumes the default of zero for both NUMBER_SA and NUM-
BER_NP.

SET_ADDRESS = NUMBER_SA;

NEW_PROGRAM = NUMBER_NP;

This statement is transformed into a

MIT EECS Dept. 4

ASSEMBLER(1) ASSEMBLER(1)

LOAD_ADDRESS = NUMBER_SA + NUMBER_NP;

statement which is passed through so the dat2ntl program can use it to determine where your program is to
be loaded into your PROM.

If you wish to have your program loaded into your PROM at a different address, you can also include

LOAD_ADDRESS = NUMBER;

to specify that. The effects of #SET_ADDRESS and #LOAD_ADDRESS differ in that #SET_ADDRESS
is interpreted by the assembler to set the internal location counter. All label references are thus affected.
The #LOAD_ADDRESS statement, on the other hand, is not used by the assembler at all, but merely
affects the PROM locations that are programmed.

The #NEW_PROGRAM statement is used to delineate multiple programs within the same file and to spec­
ify the beginning PROM address for this new program. Thus, it is possible to have multiple programs in a
single PROM and select a given program by switching the high order address bits.

Other command statements to be interpreted by the dat2ntl program may be included and will simply be
passed through to the output without affecting your assembly.

You are required to include a #SPEC_FILE statement before any assembly code, but you are not required to
include a #LIST_FILE statement or a #SET_ADDRESS statement. If no #LIST_FILE statement is
included, no list file will be created. If no #SET_ADDRESS statement appears before the first line of the
microcode, then the assembler will start at address zero. The dat2ntl program requires either a
#SET_ADDRESS or #LOAD_ADDRESS statement. You should include one or the other right after the
#SPEC_FILE statement.

Microcode instructions are of the form

addr_label : symbol1 symbol2 address;

A token is interpreted as defining an address label if it is followed by a : (colon). You need not have an
address label defined on every instruction. Your microcode instruction can consist of an arbitrary number
of symbols, but you may have only one address label among them. The assembler will evaluate each token
and OR it into the field as specified in xxx.sp.

Integers can be put directly into the xxx.as file if a value field has been specified. The integers must fit
within the value field. As in the xxx.sp file, they will be read in decimal unless preceded by a %h or %b.

By using the assert_low command in the xxx.sp file, all the specified bits will default to ones instead of
zeros.

Remember that all statements must be terminated by a ; (semicolon).

FILES
/mit/6.111/handouts/labs/lab3.s95/mcu.as MCU test program
/mit/6.111/handouts/labs/lab3.s95/mcu.sp MCU spec. file
/mit/6.111/handouts/labs/lab3.s95/mcu.pal MCU test PAL
/mit/6.111/prom/examples/encr.as
/mit/6.111/prom/examples/encr.sp
/mit/6.111/prom/examples/encr.list

MIT EECS Dept. 5

ASSEMBLER(1) ASSEMBLER(1)

SEE ALSO
prom(1), dat2ntl(1)

BUGS

MIT EECS Dept. Last change: April 10, 1994 6

