
NNAAMME

SSYYNNOOPPSSIIS
 expri xxxxxxx..exp
 expro xxxxxxx..e xxxxxx.dat
 expreessi xxxxxx
 expreessd xxxxxx

DDEESSCCRRIIPPTTIIOON
xpri xprout

e_ r_e_

xpreessi

xpreessd

e_ r_e_s_ o_

e_ r_e_s_ e_ r_e_s_

e_ r_e_s_
 expri xpro t2

e_ r_e_s_ t2 xpri xprout
t2

xpri
xpro

e e

E e

EXPRIN(1) EXPRIN(1)

E

exprin, exprout, expression, expressdat - create and con­

vert data for use in PROM lookup tables

S

exprin >x exp
n >

ut <x exp >
exprout < xp >x x.dat

expr ssion x x
on

expr ssdat x x
at

N

n
The two programs exprin and exprout together form a

"friendly" system for generating PROM data for an _x_ -
p_ s_

_i_n of a single input variable.
s_o_

Applications might include:

1) A table lookup for trigonometric values. This would be

useful in games which need to transfer from polar to

Cartesian coordinates.

2) A table lookup for logarithmic values. This would be

useful for logarithmic multiplication.

To create xxxx.ntl which is ready to be sent to the PROM

programmer use the shell script e on
expr ssion :

expression xxxx

To create xxxx.dat use the shell script e at
expr ssdat :

expressdat xxxx

This is helpful when you want to concatenate several

p_ s_ s into a single PROM. Use
x i_n_

cat a.dat b.dat > final.dat

and then edit final.dat to insert the appropriate #

SET_ADDRESS command.

p_ s_o_ p_ s_a_.
On line help is available for _x_ i_n and _x_ d_t_

The shell script _x_ i_n consists of the three programs
p_ s_o_

n , e ut da ntl piped together. The script
exprin exprout , and dat2ntl

p_ s_a_ da ntl program. Exprin
x d_t omits the dat2ntl n and exprout

are described below; dat2ntl
da ntl is described in another man

page.

The first program, e n , is simply an interactive guide
exprin

for creating a file to be used by e ut
exprout shown below. It

may be created and edited using an editor instead of using

MIT EECS Dept.
 1

 expri

xpri xprout

e_ r_e_s_

xpro
t2 tl

FFIILLEES

SSE ALLSSO

BBUUGGS

EXPRIN(1) EXPRIN(1)

exprin.
n.

NUMBER_OF_STEPS = 314;

START_ADDRESS = 0;

INPUT_INITIAL_VALUE = 0;

STEP_SIZE = .01;

128 + 127 * SIN(INPUT);

Example file created by e n and used by e
exprin exprout

The _x_ i_n must obey the following rules.
p_ s_o_

An expression can be of arbitrary size.

It must be in infix form.

It may contain the following binary operators:

+ - * /

and the following unitary functions:

sin, cos, tan, asin, acos, atan, sinh,

cosh, tanh, log, exp, abs, and sqrt.

Parentheses can be used in the usual manner.

It may contain any real number and the single variable:

INPUT.

The variable INPUT takes NUMBER_OF_STEPS steps starting at

the initial value INPUT_INITIAL_VALUE. Each step incre­

ments INPUT by the value of STEP_SIZE. NUMBER_OF_STEPS

outputs will be created to be sent to the PROM programmer

starting at the address START_ADDRESS.

The output will be rounded to the nearest integer.

The parser is not case sensitive. All numbers are interpreted as

decimal. Spaces are ignored.

The output of e ut
exprout is in the standard form used by the

program dat2n
da ntl

S

EE
E A O

dat2ntl(.)

S

MIT EECS Dept.
 2

