

 Negative True and VHDL
 Donald E. Troxel
 January 10, 1999
 Revised 01/20/02

 Signals in VHDL are inherently positive true. Normally this is
not a problem as most signals in digital systems are positive true.
That is, a signal is high when it "happens". As such, it is good
practice to have the signal without a bubble at the input or output of
device or block. It is also good practice to have the signal name
without a beginning slash or equivalent beginning to reinforce the fac
that the signal is positive true.

 This is standard with VHDL. Indeed, a slash is not a legal
character for use as a signal name. However, sometimes a signal is
desired to be negative true. That is, a signal is low when it
"happens". As such, it is good practice to have the signal with a
bubble at the input or output of a device or block. It is also good
practice to have the signal name with a beginning distinctive part
such as a slash, or, perhaps, a letter n, or even a syllable such as
n_, not_, or neg_true_. For example, the following are good names to
use for the signal foo:

 /foo
 nfoo
 n_foo
 not_foo
 neg_true_foo

 The first is impossible since a slash is not a legal character
in a VHDL identifier. The second could be troublesome for signals
whose names naturally begin with the letter n. Either of the
remaining three are ok, except that the last one is, perhaps,
excessively verbose. We will use (and recommend for consistency) the
scheme used for the middle name, i.e., using n_ as a prefix to the
signal name.

 If we make up a block from an entity "by hand", then we are
free to choose a bubble or not, depending on whether the signal is
negative or positive true. Most tools which create block symbols from
an entity definition automatically do not produce bubbles on the
inputs or outputs of the block. So, if we use these tools (which is
convenient when they are available), then we have to forgo the use of
bubbles and the readability which they provide.

 Please bear in mind that the equation as listed in the report
file has little, if anything, to do with the negative true or positive
true property of a signal. The polarity of the signal is, in fact,

determined by your interpretation of the signal, not by the equation
or the presence or absence of an inverting architecture of the device.

 We start with the format of the equations as used in the
report file rather than the VHDL format as it is easier to understand
(and type). Perhaps it would be nice to have a tool (program) to
automatically convert this format into that required (accepted) by
VHDL.

 Consider the equation, x = a1 * b1. Is this positive true or
negative true? Our only clue is the choice of signal name! Since the
signal name does not begin with n_ we will call it positive true. The
signal, x, is true (high) when both a and b are true (high).

 Alternatively, consider the equation, n_y = a2 * b2. This is
negative true as we have followed the above recommended convention in
naming the signal. Were we to use a slash, we would have written
/y = a2 * b2. This would mean that the signal, /y, is false (low) whe
a2 and b2 are true (high). This is precisely what we mean by the abov
equation, n_y = a2 * b2.

 To express a positive true signal in VHDL (using VHDL syntax
from now on), we would (naturally) write

 x <= a1 and b1;

 We have two ways (perhaps there are more) of expressing a
negative true signal in VHDL. One way is to declare a signal, y, in
the architecture and to write (in VHDL syntax, again)

 y <= a2 and b2;
 n_y <= not y;

Another way to express a negative true signal is to do this in one
fell swoop and write

 n_z <= not (a3 and b3);

A VHDL file to illustrate these methods is

 library ieee;
 use ieee.std_logic_1164.all;
 entity neg is
 port (a1, b1, a2, b2, a3, b3 :in std_logic;
 x, n_y, n_z: out std_logic);
 end neg;
 architecture equations of neg is
 signal y: std_logic;
 begin
 x <= a1 or b1;

Page 2 of 3

 y <= a2 or b2;
 n_y <= not y;
 n_z <= not (a3 or b3);
 end equations;

 If we run galaxy and choose C16L8 as the device, we get the
following equations from the report file:

 /x =
 /a1 * /b1

 /n_y =
 b2
 + a2

 /n_z =
 b3
 + a3

 This looks suspiciously as if all three were negative true.
However, these equations were chosen as the C16L8 only has an
inverting architecture. If we choose the device, 16V8, then the
equations from the report file are

 n_y =
 /a2 * /b2

 n_z =
 /a3 * /b3

 /x =
 /a1 * /b1

 Well, these are different equations, not what one would
expect, as the first two look like positive true and the last looks
like negative true, which are just the opposite of what we know to be
the case. However, the two chips work exactly the same! The
difference is that the signals n_y and n_z use noninverting
architectures while the signal x uses an inverting architecture. So,
the equations do not provide a clue as to positive or negative
true. Neither does the architecture. The only clue is provided by the
signal names.

 Be careful. Different examples could make it appear as if the
equations in the report file correspond to negative true or positive
true.

Page 3 of 3

