
3D PONG

Igor Ginzburg

Introductory Digital Systems Laboratory
5/14/2006

Abstract

3D Pong takes MIT Pong to the next level with a 3D interface. At the heart of the project there
is a hardware based 3D renderer. The renderer takes in a 3D model, specifically a sequence of
colored triangles in a 3D space, and produces a 2D VGA image. The renderer supports
arbitrary translations, rotations, applies flat shading, and uses orthogonal projection. The
renderer’s data path is composed of a Triangle Source which extracts the models from on-chip
ROM, a Triangle Pipeline which applies a series of transformations to each triangle, a Triangle
Shader which rasterizes the triangles, and a Screen Buffer which buffers the generated frames in
off-chip RAM before they are sent to a VGA monitor. While the game play of 3D pong is
identical to MIT Pong, the game field is game field is made up of 3D objects. The game is
visually pleasing and fun to play.

Contents

1 Overview ...3

2 Description ..5

2.1 Data Path Subsystems ..5

2.2 Control Subsystems ...7

3 Implementation and Testing ..9

4 Conclusion ..10

List of Figures

Figure 1: Game Field Screenshots: Atari Pong, MIT Pong, 3D Pong.....................3

Figure 2: Renderer Screenshots ...4

Figure 3: 3D Pong Block Diagram ..5

Figure 4: Triangle Pipeline Block Diagram...6

Figure 5: Controller FSM State Transition Diagram ...8

2

1. Overview

Pong, developed by Atari in 1972, was the first popular video game. The game is a

simple simulation of table tennis, or ping pong. It was played in arcades and later on home

televisions. The game logic was implemented in digital hardware, consisting mostly of 2- input

NANDs on TI’s SN7400 4-NAND chips. In the Fall of 2005, MIT Pong, a game in the spirit of

the original Atari game, was added to the MIT 6.111 curriculum. This paper takes pong one step

further, proposing 3D Pong, a game with a 3D display. Screenshots of the three different games,

can be seen in Figure 1 in chronological order.

Figure 1: Game Field Screenshots: Atari Pong, MIT Pong, 3D Pong

The game play for 3D pong is identical to MIT Pong. The player controls one

rectangular paddle, which is oriented vertically and placed on the left edge of the game field.

The paddle can be moved up and down on the game field through up and down buttons on the

lab kit. Borders are placed at the top, right, and bottom edges of the screen. The game is played

with one ball, which moves inertially within the screen, or game field. When the ball strikes a

border, it bounces off at the same angle it came in. Collisions with the paddle are more

complicated, in an effort to make the game more difficult. If the ball strikes the left edge of the

game field, the ball freezes, the game is over and the player has lost. There is no way to win, but

the game can last indefinitely, providing continuous entertainment. Three switches control the

initial velocity of the ball, specifying the speeds both in the horizontal and vertical direction.

3

Image removed due to copyright restrictions.
Please see, for example, http://en.wikipedia.org/wiki/Image:Pong.png

http://en.wikipedia.org/wiki/Image:Pong.png

Another three switches control the sensitivity of the paddle buttons. Greater sensitivity allows

the paddle to outrun the ball, but makes precise positioning of the paddle more difficult. While

the initial velocity of the ball only matters on reset, the paddle sensitivity can be changed as the

game progresses.

What makes 3D Pong different from its predecessors is its use of a hardware based 3D

renderer. The renderer is at the heart of the project. Its design is very general, allowing it to

project arbitrary 3D models onto a 2D VGA display. For example, in Figure 2, we see the

renderer used to project a helicopter under different rotations.

Figure 2: Renderer Screenshots

The renderer is feature rich yet simple. It can apply arbitrary 3D rotations and

translations, both to entire models, and to individual objects within the model. Flat shading is

used to simulate lighting effects from a virtual light source. The models can be resized through a

wide range of magnifications. Care is taken so that obstructions in the field of view are rendered

properly. This feature set was selected, because it creates a realistic 3D effect, while allowing

for simple hardware. This can be seen in the fact that the implementation of the renderer does

not use any division.

There are several external inputs to the renderer. A switch is used to select whether the

pong game field or the helicopter model is displayed. A set of six buttons and a switch is used to

4

input arbitrary rotations and translations which the renderer applies to either model in real time.

A global reset button is used to restart the game and place the model into a default orientation.

2. Description

model_select

game_inputs Game FSM
(Lab 4)

Triangle
Source

Triangle
Pipeline

triangle_data
empty
noop
next

Screen Buffertri_data
empty
noop
next

Triangle
Shader
(FSM)

Model
ROMs

Controller (FSM) VGAblanking

x y

em
pty

next_fram
e

Orienter

Trig ROMs

R
am

 1 B
us

R
am

 2 B
us

RGB

switch_buffer

vga*

{x,y,z}
RGB
noop
next

buttons
{ball_x, ball_y,

paddle_y}

zoom
_scalar

ligh_vector
translation_vector
rotation_m

atrix
ball_vector
paddle_vector
rotor_m

atrix

Figure 3: 3D Pong Block Diagram

3D Pong consists of eight main subsystems. These subsystems are further divided into a

total of 62 Verilog modules. Four of these subsystems, in particular the Triangle Source,

Triangle Pipeline, Triangle Shader, and Screen Buffer, comprise the data path for the renderer.

The remaining four subsystems, including the Game Fsm, the Orienter, the Controller FSM, and

the VGA driver, provide control signals for the data path.

2.1 Data Path Subsystems

The Triangle Source subsystem loads a 3D model, one triangle at a time from, from a

ROM module. The triangles are sent out the triangle_data output to the Triangle Pipeline, as

requested through the next input. When there is no triangle ready for the current clock cycle, the

noop output is asserted, and the triangle_data output is ignored. If all the triangles that make a

model have been outputted, the empty output is asserted. These handshaking signals (empty,

5

noop, and next) are used throughout the modules on the data path to coordinate data flow. The

next_frame input from the Controller FSM determines when to go back to outputting the first

triangle in the model. The model_select input determines which of the two models, game or

helicopter, to output.

O
ptional

R
otation

t_d
noop

R
egister

triangle_data
noop

empty

t_d
noop

empty

rotor_m
atrix

T
ranslation B

.

empty

next
translation_vector

Point R
eorder

empty

triangle_data
noop

next

Z
oom

 B
lock

empty

zoom
_scalar

L
ight B

lock

empty

light_vector

R
otation B

lk.

empty

rotation_m
atrix

O
pt. T

rans.

empty

paddle_vector

O
pt T

rans B
l.

ball_vector

Figure 4: Triangle Pipeline Block Diagram

The Triangle Pipeline puts the triangles emerging out of the Triangle Source through a

series of transformations. These include rotations, translations, shading, rescaling, and point

reordering. These transformations are controlled by the rotor_matrix, paddle_vector,

ball_vector, rotation_matrix , translation_vector, ligh_vector, and zoom_scalar inputs originating

in the Orienter subsystem. The transformed triangles are sent out to the Triangle Shader

subsystem. The default handshaking signals, in particular empty, noop, and next, are used to

coordinate data transfer between the Triangle Pipeline and the Triangle Shader.

The Triangle Shader rasterizes the triangles presented by the Triangle Pipeline. For each

triangle, the set of points on the screen that fall within the triangle is sent one at a time to the

Screen Buffer subsystem. The handshaking signals between the Screen Buffer and the Triangle

Pipeline are limited to just noop and next signals. An empty signal is however sent to the

Controller FSM when the Triangel Shader. So, the empty signal, which originates at the

6

Traingle Source does not reach the Controller FSM until all triangles in the system have been

rasterized.

The Screen Buffer subsystem maintains two screen buffers in two off-chip ZBT SRAMs.

A pixel stored in the screen buffer takes up one 36-bit word in the SRAM. In addition to 24 bits

of RGB color, a 12 bit z-coordinate is stored for each pixel. This z-coordinate , or z-buffer, is

used to correctly render triangles that overlap in the x-y plane. Objects with higher z coordinates

are assumed to be farther away. Therefore, if the screen buffer is given pixel data with a higher

z-coordinate then the current data stored for the pixel, the new data is ignored. This scheme

requires a read of the old z-coordinate prior to the write. So, two cycles are required to place one

pixel in the screen buffer.

During 3D Pong operation, one SRAM is used for storing pixels produced by the

Triangle Shader, while the other is used to generate the rgb output sent to the DAC which drives

the VGA output. When the rendering of a new frame begins, the switch_buffer input of the

screen buffer is asserted. The two SRAMs switch rolls. The SRAM used for creating the rgb

output can begin working immediately. The contents of the other SRAM must be reset before

new pixels can be written.

2.2 Control Subsystems

The Controller FSM acts as a major FSM. Its job is to decide when to switch the screen

buffers and begin working on the next frame. The Controller FSM’s empty input is asserted by

the Triangle Shader FSM when there are no more triangles to rasterize. The blanking input is

asserted by the VGA driver during the vertical sync phase. The Control FSM’s goal is to keep

the pipeline as busy as possible without switching frames during the vertical active video VGA

phase. This goal is accomplished by following the transition diagram shown below in figure 5.

7

SEND SIGNALS
Next_Frame, Switch Buffer

IDLE

reset

empty & blanking !empty & blanking EMPTY
LOW

!blanking

!empty & !blanking

em
pty &

 !blanking

!empty

blanking

empty &
!blanking

!em
pty &

 !blanking

!empty &
blanking

!empty &
!blanking

blanking

empty

WAIT FOR NEITHER
!empty

BLANKING
BLANKING LOW empty & !blanking LOW

!blanking empty & blanking

Figure 5: Controller FSM State Transition Diagram

The Orienter subsystem generates control signals for the Triangle Pipeline. These

include several rotation matrices, translation vectors, and scalars meant for zoom. These outputs

are based on a combination of inputs, including external buttons and switches, along with

position inputs generated by the Game FSM. In order to keep the system responsive, these

inputs are sampled at a constant rate (equal to the VGA refresh rate). In order to make sure that

all triangles rendered in the same frame are renderer based on the same control signals, the

Orienter buffers the intermediate control signals, only changing its outputs when the next_frame

signals from the Controller FSM is asserted.

The vector and scalar control signals can be easily generated by accumulators which rely

on some signed addition. The rotation matrices are more difficult to generate. Accumulators can

be used to determine, in degrees or radians, an angle of revolution about each of the three axes.

To create a rotation matrix about one axis, the controller uses a Trig Coregen Module which

calculates the sine and cosine of the angle. The controller calculates three intermediate rotation

8

matrices, one per each axis, and multiplies them together to come up with one rotation matrix

output.

The Game FSM contains the logic for MIT Pong and is identical to my Lab 4 Game

FSM. The paddle’s vertical position and the ball’s position in the x/y plane are passed to the

Controller FSM, which in turns them into translation vectors. Several of the parameters to the

Game FSM are tweaked to make the paddle and ball easier to see on a 3D game field.

The VGA module is very similar to its Lab 4 counterpart. Its parameters have been

changed to match the 60hz VGA refresh rate as apposed to the 75hz refresh rate in Lab 4. This

compensates for a reduction in the pixel clock frequency, allowing for more complex

combinational logic in a single pipeline stage. The VGA module produces an additional

Blanking output which is used by the Controller FSM.

3. Implementation and Testing

The implementation of 3D Pong began with a software mock-up written in Java. The

mock up was very useful during the design phase, in determining the structure of the renderer.

Several features in the original mock-up, like perspective rendering, which makes objects farther

away appear smaller, were removed to simplify the hardware implementation. The mock-up was

also used in the design of the models, since compiling all the different iterations of the models

into the ROMs of a hardware renderer would have taken an unreasonable amount of time. The

mock-up, along with an excel spreadsheet, were used to generate the input “.coe” files used to

preload the on-chip ROMs.

The data path subsystems were implemented before the control subsystems. While the

initial implementation was tested using the ModelSim simulator, a logic analyzer was used to

debug the interactions of the Screen Buffer with the ZBT SRAMs.

9

Several problems emerged during the implementation. The VGA output displayed on the

LCD Monitor was very poor in quality. Even for small models covering a small portion of the

display, the black background would be full of little artifacts. These included pixels and sub-

pixels lit in colors not present in the model. After a lot of trial and error, this problem was fixed

by placing a DCM between the renderer’s internal clock and the pixe l clock sent to the VGA.

The assumption is that the internal clock signal may be degraded by the capacitance on the wires

sending the clock to the ZBT SRAMS. While the DCM does not change the clock frequency, it

should regenerate the clock signal, producing a quality square wave. It is possible that either the

DAC creating the analog VGA output or the LCD Monitor requires a well formed clock.

4. Analysis and Conclusion

There are several bottlenecks that limit the frame rate of the renderer. The biggest one is

the throughput the Screen Buffer gets to the ZBT SRAMs. Writing every pixel requires two

clock cycles, and clearing the buffer between frames takes a large amount of time. The

throughput can be improved by clocking the SRAMs and the Screen Buffer code at a higher

clock rate than the rest of the pipeline. A global reset for the SRAM would be very helpful in

shortening the time spent on clearing the buffer. In the absence of these improvements, an on-

chip circular pixel buffer, either in registers or on-chip RAM, could be useful for eliminating no-

ops from the pipeline. This simple modification would be able to double the frame rate for

models that take up a large proportion of the screen.

The implementation of 3D Pong is visually pleasing and fun to play. It is a worthy

successor to MIT Pong and the original Atari game. The amount of work entailed in

implementing a hardware renderer, as apposed to the software mock-up, has given me a great

appreciation for the work of digital designers.

10

