Ferrofluid Drops

Studying Ferrofluids with High Speed Video

Arun Agarwal, Elizabeth Reid, Ian Brelinsky, Yun Ji

Today's Agenda

Background

- Ferrofluids & Magnets
- Goals of the Experiment

Qualitative Results

- Procedure
- Observations of Fluid Behavior
- Ways to Improve

Quantitative Results

- Procedure
- Analysis of Drop Data
- Ways to Improve

Future Work

- Future work on ferrofluids

Background - Ferrofluids

- Unique class of liquids that are magnetic
- Composed of nanoscale magnetic particles suspended in a carrier fluid
- Ferrofluid we used was EPH1
 - Hydrocarbon based
 - Non-toxic
 - Stains clothes and some lab equipment!

Background - Ferrofluids

Picture taken with Nikon D100 digital camera. Aperture: 3.5, Focal Length: 24mm, Exposure Time: .0016s

Background - Magnets

- For qualitative results, used a number of magnets to create maximum normal field
- For quantitative results, used Neodymium Iron Boride (NdFeB) magnet

Field at surface = .45T Assuming point charge:

Field = M * 1/ r^2 .45 = M * 1/(.006)^2 Field = 1.62E-5/r^2

This will not be perfect as we are working in near field

Background – Our Goals

- Determine what interesting properties HSV or other imaging techniques can show us about ferrofluid drops
- Make a series of qualitative observations about ferrofluid drops in magnetic fields
- Identify and study quantifiable features in more depth

Qualitative - Procedure

 Observed how ferrofluid's splash was affected by a magnet

• Tested with and without magnet:

- Ferrofluid into Soy Milk
- Soy Milk into Ferrofluid
- Ferrofluid into Ferrofluid
- Ferrofluid onto Glass

Qualitative - Setup

Red numbers indicate distances while blue numbers indicate heights.

Picture taken with Nikon D100 digital camera. Aperture: 3.5, Focal Length: 24mm, Exposure Time: .0016s

Qualitative – HSV Settings

- Resolution: 1024x1024
- Sample Rate: 1000 pps
- Exposure: 100 microseconds
- Post trigger: 1 pixel
- Duration: 1 second
- Lens: 200mm with aperture f/5.6

- Magnetic Fields on Ferrofluids lead to:
 - Elongation of drop
 - Skewing of drop toward magnet
 - Increased impact force
 - Change in crown behavior

Magnet

No Magnet

Better Images

Use a dish with lower edges
 – Some edges are necessary!

Need less blur and more depth of field
 Will require more and cooler lights

Other techniques were not options:
 – Sync-&-Delay Trigger Broken
 – Color HSV would require too much light

Quantitative - Procedure

 Measured how velocity of ferrofluid increased in the presence of a known magnet field

- Compared against water drops

 Measured horizontal distance at which ferrofluid is unaffected by a magnetic field (quantitative analysis pending).

Quantitative – Setup

Red numbers indicate distances while blue numbers indicate heights.

Picture taken with Nikon D100 digital camera. Aperture: 3.5, Focal Length: 24mm, Exposure Time: .0016s

Quantitative – HSV Settings

- Resolution: 1024x1024
- Sample Rate: 1000 pps
- Exposure: 100 microseconds
- Post trigger: 1 pixel
- Duration: 1 second
- Lens: 105mm with aperture f/4

Quantitative - Measurements

Quantitative – Velocity of Ferrofluid vs. Water

Average change in ferrofluid velocity over 3 ms: 1.244 m/s

Quantitative – Ferrofluid Drops (contd.)

- Acceleration due to gravity was negligible due to short (5 millisecond) time frame
 - Velocity of water dropping over same time period remained the same
- Average acceleration for ferrofluid drops was approximately 414 m/s²
- Ferrofluid's magnetic dipoles align almost instantaneously with external magnetic force
 - Magnetic field strength is inversely proportional to square of distance

Quantitative – Velocity of Ferrofluid and Magnetic Field Strength

 Ferrofluid drop velocity correlates with applied magnetic field strength

Quantitative - Skew Studies

Quantitative – Improving Results

- Control drop size better
- Capture at a higher frame rate (5 frames provides limited data)
- Use a more ideal magnetic field
- Improve pictures (as already discussed)

Future Work on Ferrofluids

- Try using an electromagnet

 Exact control on field strength
 Ability to vary field strength
 Suspending drop in mid air.
 Spiky or spherical?
- Horizontal uniform magnetic field
- Drop multiple drops simultaneously

Strobe has been fun! Thank you Dr. Bales, Christina, and classmates!