

Performance Engineering of Software Systems
Massachusetts Institute of Technology 6.172
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 5

Homework 3: Vectorization

In this homework and recitation you will experiment with Intel Vector Extensions. You will learn how
to vectorize your code, figure out when vectorization has succeeded and debug when vectorization seems to
have worked but you aren’t seeing speedup.

Vectorization is a general optimization technique that can buy you an order of magnitude performance
increase in some cases. It is also a delicate operation. On the one hand, vectorization is automatic: when
clang is told to optimize aggressively, it will automatically try to vectorize every loop in your program.
On the other hand, very small changes to loop structure cause clang to give up and not vectorize at all.
Furthermore, these small changes may allow your code to vectorize but not yield the expected speedup. We
will discuss how to identify these cases so that you can get the most out of your vector units.

1 Getting started

[Note: This assignment makes use of AWS and/or Git features which may not be available to
OCW users.]

Submitting your solutions

For each question we ask (i.e., each sentence with a question mark), respond with a short (1-3 sentence)
responses or a code snippet (if requested). Please ensure that all the times you quote are obtained
from the awsrun machines.

2 Vectorization in clang

Consider a loop that performs elementwise addition between two arrays A and B, storing the
result in array C. This loop is data parallel because the operation during any iteration i1 is inde-
pendent of the operation during any iteration i2 where i1 6= i2. In short, the compiler should be

1

2 Handout 5 — Homework 3: Vectorization

allowed to schedule each iteration in any order, or pack multiple iterations into a single clock
cycle. The first option will be covered in the next homework. The second case is covered by
vectorization, also known as “single instruction, multiple data” or SIMD.

Vectorization is a delicate operation: very small changes to loop structure may cause clang
to give up and not vectorize at all, or to vectorize your code but not yield the expected speedup.
Occasionally, unvectorized code may be faster than vectorized code. Before we can understand
this fragility, we must get a handle on how to interpret what clang is actually doing when it
vectorizes code; in Section 3, you will see the actual performance impacts of vectorizing code.

2.1 Example 1

We will start with the following simple loop:

01 #include <stdint.h>
02 #include <stdlib.h>
03 #include <math.h>
04

05 #define SIZE (1L << 16)
06

07 void test(uint8_t * a, uint8_t * b) {
08 uint64_t i;
09

10 for (i = 0; i < SIZE; i++) {
11 a[i] += b[i];
12 }
13 }

$ make clean; make ASSEMBLE=1 VECTORIZE=1 example1.o

You should see the following output, informing you that the loop has been vectorized. Al-
though clang does tell you this, you should always look at the assembly to see exactly how it has
been vectorized, since it is not guaranteed to be using the vector registers optimally.

14 example1.c:12:3: remark: vectorized loop (vectorization width: 16, interleaved count: 2)
15 [-Rpass=loop-vectorize]
16 for (i = 0; i < SIZE; i++) {

Now, let’s inspect the assembly code in example1.s. You should see something similar to the
following:

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

3 Handout 5 — Homework 3: Vectorization

%bb.0: # %entry
#DEBUG_VALUE: test:a <- %rdi
#DEBUG_VALUE: test:a <- %rdi
#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:i <- 0
.loc 1 12 3 prologue_end # example1.c:12:3

leaq
cmpq
jbe

%bb.1:

65536(%rsi), %rax
%rdi, %rax
.LBB0_2

%entry
#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:a <- %rdi
leaq 65536(%rdi), %rax
cmpq %rsi, %rax
jbe .LBB0_2

%bb.4: # %for.body.preheader
#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:a <- %rdi
.loc 1 0 3 is_stmt 0 # example1.c:0:3

movq $-65536, %rax # imm = 0xFFFF0000

.p2align 4, 0x90
.LBB0_5: # %for.body

=>This Inner Loop Header: Depth=1
#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:a <- %rdi

.Ltmp0:
.loc 1 13 13 is_stmt 1 # example1.c:13:13

movzbl 65536(%rsi,%rax), %ecx
.loc 1 13 10 is_stmt 0 # example1.c:13:10

addb %cl, 65536(%rdi,%rax)
.loc 1 13 13 # example1.c:13:13

movzbl 65537(%rsi,%rax), %ecx
.loc 1 13 10 # example1.c:13:10

addb %cl, 65537(%rdi,%rax)
.loc 1 13 13 # example1.c:13:13

movzbl 65538(%rsi,%rax), %ecx
.loc 1 13 10 # example1.c:13:10

addb %cl, 65538(%rdi,%rax)
.loc 1 13 13 # example1.c:13:13

movzbl 65539(%rsi,%rax), %ecx
.loc 1 13 10 # example1.c:13:10

addb %cl, 65539(%rdi,%rax)

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

4 Handout 5 — Homework 3: Vectorization

.Ltmp1:
.loc 1 12 17 is_stmt 1 # example1.c:12:17

addq
.Ltmp2:

.loc

$4, %rax

1 12 3 is_stmt 0 # example1.c:12:3

jne .LBB0_5
jmp .LBB0_6

.LBB0_2: # %vector.body.preheader
#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:a <- %rdi
.loc 1 0 3 # example1.c:0:3

movq $-65536, %rax # imm = 0xFFFF0000
.p2align 4, 0x90

.LBB0_3: # %vector.body
=>This Inner Loop Header: Depth=1

#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:a <- %rdi

.Ltmp3:
.loc 1 13 13 is_stmt 1 # example1.c:13:13

movdqu 65536(%rsi,%rax), %xmm0
movdqu 65552(%rsi,%rax), %xmm1
.loc 1 13 10 is_stmt 0 # example1.c:13:10

movdqu 65536(%rdi,%rax), %xmm2
paddb %xmm0, %xmm2
movdqu 65552(%rdi,%rax), %xmm0
movdqu 65568(%rdi,%rax), %xmm3
movdqu 65584(%rdi,%rax), %xmm4
movdqu %xmm2, 65536(%rdi,%rax)
paddb %xmm1, %xmm0
movdqu %xmm0, 65552(%rdi,%rax)
.loc 1 13 13 # example1.c:13:13

movdqu 65568(%rsi,%rax), %xmm0
.loc 1 13 10 # example1.c:13:10

paddb %xmm3, %xmm0
.loc 1 13 13 # example1.c:13:13

movdqu 65584(%rsi,%rax), %xmm1
.loc 1 13 10 # example1.c:13:10

movdqu %xmm0, 65568(%rdi,%rax)
paddb %xmm4, %xmm1
movdqu %xmm1, 65584(%rdi,%rax)

.Ltmp4:
.loc 1 12 26 is_stmt 1 # example1.c:12:26

addq $64, %rax
jne .LBB0_3

5 Handout 5 — Homework 3: Vectorization

Write-up 1: Look at the assembly code above. The compiler has translated the code to set
the start index at −216 and adds to it for each memory access. Why doesn’t it set the start
index to 0 and use small positive offsets?

This code first checks if there is a partial overlap between array a and b. If there is an overlap,
then it does a simple non-vectorized code. If there is overlap, then go to .LBB0_2, and do a
vectorized version. The above can, at best, be called partially vectorized. The problem is that the
compiler is constrained by what we tell it about the arrays. If we tell it more, then perhaps it
can do more optimization. The most obvious thing is to inform the compiler that no overlap is
possible. This is done in standard C by using the restrict qualifier for the pointers.

125 void test(uint8_t * restrict a, uint8_t * restrict b) {
126 uint64_t i;
127

128 for (i = 0; i < SIZE; i++) {
129 a[i] += b[i];
130 }
131 }

Now you should see the following assembly code:

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

6 Handout 5 — Homework 3: Vectorization

%bb.0: # %entry
#DEBUG_VALUE: test:a <- %rdi
#DEBUG_VALUE: test:a <- %rdi
#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:b <- %rsi
movq $-65536, %rax # imm = 0xFFFF0000

.Ltmp0:
#DEBUG_VALUE: test:i <- 0
.p2align 4, 0x90

.LBB0_1: # %vector.body
=>This Inner Loop Header: Depth=1

#DEBUG_VALUE: test:b <- %rsi
#DEBUG_VALUE: test:a <- %rdi
.loc 1 13 13 prologue_end # example1.c:13:13

movdqu 65536(%rsi,%rax), %xmm0
.loc 1 13 10 is_stmt 0 # example1.c:13:10

movdqu 65536(%rdi,%rax), %xmm1
paddb %xmm0, %xmm1
movdqu 65552(%rdi,%rax), %xmm0
movdqu 65568(%rdi,%rax), %xmm2
movdqu 65584(%rdi,%rax), %xmm3
movdqu %xmm1, 65536(%rdi,%rax)
.loc 1 13 13 # example1.c:13:13

movdqu 65552(%rsi,%rax), %xmm1
.loc 1 13 10 # example1.c:13:10

paddb %xmm1, %xmm0
movdqu %xmm0, 65552(%rdi,%rax)
.loc 1 13 13 # example1.c:13:13

movdqu 65568(%rsi,%rax), %xmm0
.loc 1 13 10 # example1.c:13:10

paddb %xmm2, %xmm0
.loc 1 13 13 # example1.c:13:13

movdqu 65584(%rsi,%rax), %xmm1
.loc 1 13 10 # example1.c:13:10

movdqu %xmm0, 65568(%rdi,%rax)
paddb %xmm3, %xmm1
movdqu %xmm1, 65584(%rdi,%rax)

.Ltmp1:
.loc 1 12 26 is_stmt 1 # example1.c:12:26

addq $64, %rax
jne .LBB0_1

7 Handout 5 — Homework 3: Vectorization

The generated code is better, but it is assuming the data are NOT 16 bytes aligned (movdqu is
unaligned move). It also means that the loop above can not assume that both arrays are aligned.
If clang were smart, it could test for the cases where the arrays are either both aligned, or both
unaligned, and have a fast inner loop. However, it does not do that currently.

So in order to get the performance we are looking for, we need to tell clang that the arrays are
aligned. There are a couple of ways to do that. The first is to construct a (non-portable) aligned
type, and use that in the function interface. The second is to add an intrinsic or two within the
function itself. The second option is easier to implement on older code bases, as other functions
calling the one to be vectorized do not have to be modified. The intrinsic has for this is called
__builtin_assume_aligned:

182 void test(uint8_t * restrict a, uint8_t * restrict b) {
183 uint64_t i;
184

185 a = __builtin_assume_aligned(a, 16);
186 b = __builtin_assume_aligned(b, 16);
187

188 for (i = 0; i < SIZE; i++) {
189 a[i] += b[i];
190 }
191 }

After you add the instruction __builtin_assume_aligned, you should see something similar
to the following output:

8 Handout 5 — Homework 3: Vectorization

192 # %bb.0: # %entry
193 #DEBUG_VALUE: test:a <- %rdi
194 #DEBUG_VALUE: test:a <- %rdi
195 #DEBUG_VALUE: test:b <- %rsi
196 #DEBUG_VALUE: test:b <- %rsi
197 movq $-65536, %rax # imm = 0xFFFF0000
198 .Ltmp0:
199 #DEBUG_VALUE: test:i <- 0
200 .p2align 4, 0x90
201 .LBB0_1: # %vector.body
202 # =>This Inner Loop Header: Depth=1
203 #DEBUG_VALUE: test:b <- %rsi
204 #DEBUG_VALUE: test:a <- %rdi
205 .loc 1 16 10 prologue_end # example1.c:16:10
206

207 movdqa 65536(%rdi,%rax), %xmm0
208 movdqa 65552(%rdi,%rax), %xmm1
209 movdqa 65568(%rdi,%rax), %xmm2
210 movdqa 65584(%rdi,%rax), %xmm3
211 paddb 65536(%rsi,%rax), %xmm0
212 paddb 65552(%rsi,%rax), %xmm1
213 movdqa %xmm0, 65536(%rdi,%rax)
214 movdqa %xmm1, 65552(%rdi,%rax)
215 paddb 65568(%rsi,%rax), %xmm2
216 paddb 65584(%rsi,%rax), %xmm3
217 movdqa %xmm2, 65568(%rdi,%rax)
218 movdqa %xmm3, 65584(%rdi,%rax)
219 .Ltmp1:
220 .loc 1 15 26 # example1.c:15:26
221

222 addq $64, %rax
223 jne .LBB0_1
224 .Ltmp2:

Now finally, we get the nice tight vectorized code (movdqa is aligned move) we were looking
for, because clang has used packed SSE instructions to add 16 bytes at a time. It also manages
to load and store two at a time, which it did not do last time. The question is now that we
understand what we need to tell the compiler, how much more complex can the loop be before
auto-vectorization fails.

Next, we try to turn on AVX2 instructions using the following command:

$ make clean; make ASSEMBLE=1 VECTORIZE=1 AVX2=1 example1.o

9 Handout 5 — Homework 3: Vectorization

225 # %bb.0: # %entry
226 #DEBUG_VALUE: test:a <- %rdi
227 #DEBUG_VALUE: test:a <- %rdi
228 #DEBUG_VALUE: test:b <- %rsi
229 #DEBUG_VALUE: test:b <- %rsi
230 movq $-65536, %rax # imm = 0xFFFF0000
231 .Ltmp0:
232 #DEBUG_VALUE: test:i <- 0
233 .p2align 4, 0x90
234 .LBB0_1: # %vector.body
235 # =>This Inner Loop Header: Depth=1
236 #DEBUG_VALUE: test:b <- %rsi
237 #DEBUG_VALUE: test:a <- %rdi
238 .loc 1 16 10 prologue_end # example1.c:16:10
239

240 vmovdqu 65536(%rdi,%rax), %ymm0
241 vmovdqu 65568(%rdi,%rax), %ymm1
242 vmovdqu 65600(%rdi,%rax), %ymm2
243 vmovdqu 65632(%rdi,%rax), %ymm3
244 vpaddb 65536(%rsi,%rax), %ymm0, %ymm0
245 vpaddb 65568(%rsi,%rax), %ymm1, %ymm1
246 vpaddb 65600(%rsi,%rax), %ymm2, %ymm2
247 vmovdqu %ymm0, 65536(%rdi,%rax)
248 vmovdqu %ymm1, 65568(%rdi,%rax)
249 vmovdqu %ymm2, 65600(%rdi,%rax)
250 vpaddb 65632(%rsi,%rax), %ymm3, %ymm0
251 vmovdqu %ymm0, 65632(%rdi,%rax)
252 .Ltmp1:
253 .loc 1 15 26 # example1.c:15:26
254

255 addq $128, %rax
256 jne .LBB0_1
257 .Ltmp2:

Write-up 2: This code is still not aligned when using AVX2 registers. Fix the code to make
sure it uses aligned moves for the best performance.

2.2 Example 2

Take a look at the second example below in example2.c:

10 Handout 5 — Homework 3: Vectorization

258 void test(uint8_t * restrict a, uint8_t * restrict b) {
259 uint64_t i;
260

261 uint8_t * x = __builtin_assume_aligned(a, 16);
262 uint8_t * y = __builtin_assume_aligned(b, 16);
263

264 for (i = 0; i < SIZE; i++) {
265 /* max() */
266 if (y[i] > x[i]) x[i] = y[i];
267 }
268 }

Compile example 2 with the following command:

$ make clean; make ASSEMBLE=1 VECTORIZE=1 example2.o

Note that the assembly does not vectorize nicely. Now, change the function to look like the
following:

269 void test(uint8_t * restrict a, uint8_t * restrict b) {
270 uint64_t i;
271

272 a = __builtin_assume_aligned(a, 16);
273 b = __builtin_assume_aligned(b, 16);
274

275 for (i = 0; i < SIZE; i++) {
276 /* max() */
277 a[i] = (b[i] > a[i]) ? b[i] : a[i];
278 }
279 }

Now, you actually see the vectorized assembly with the movdqa and pmaxub instructions.

280

290

300

310

320

11 Handout 5 — Homework 3: Vectorization

%bb.0: # %entry
281 #DEBUG_VALUE: test:a <- %rdi
282 #DEBUG_VALUE: test:a <- %rdi
283 #DEBUG_VALUE: test:b <- %rsi
284 #DEBUG_VALUE: test:b <- %rsi
285 movq $-65536, %rax # imm = 0xFFFF0000
286 .Ltmp0:
287 #DEBUG_VALUE: test:i <- 0
288 .p2align 4, 0x90
289 .LBB0_1: # %vector.body

=>This Inner Loop Header: Depth=1
291 #DEBUG_VALUE: test:b <- %rsi
292 #DEBUG_VALUE: test:a <- %rdi
293 .loc 1 17 15 prologue_end # example2.c:17:15
294

295 movdqa 65536(%rsi,%rax), %xmm0
296 movdqa 65552(%rsi,%rax), %xmm1
297 .loc 1 17 14 is_stmt 0 # example2.c:17:14
298

299 pmaxub 65536(%rdi,%rax), %xmm0
pmaxub 65552(%rdi,%rax), %xmm1

301 .loc 1 17 12 # example2.c:17:12
302

303 movdqa %xmm0, 65536(%rdi,%rax)
304 movdqa %xmm1, 65552(%rdi,%rax)
305 .loc 1 17 15 # example2.c:17:15
306

307 movdqa 65568(%rsi,%rax), %xmm0
308 movdqa 65584(%rsi,%rax), %xmm1
309 .loc 1 17 14 # example2.c:17:14

311 pmaxub 65568(%rdi,%rax), %xmm0
312 pmaxub 65584(%rdi,%rax), %xmm1
313 .loc 1 17 12 # example2.c:17:12
314

315 movdqa %xmm0, 65568(%rdi,%rax)
316 movdqa %xmm1, 65584(%rdi,%rax)
317 .Ltmp1:
318 .loc 1 15 28 is_stmt 1 # example2.c:15:28
319

addq $64, %rax
321 jne .LBB0_1
322 .Ltmp2:

Write-up 3: Provide a theory for why the compiler is generating dramatically different
assembly.

Handout 5 — Homework 3: Vectorization 12

2.3 Example 3

Open up example3.c and run the following command:

$ make clean; make ASSEMBLE=1 VECTORIZE=1 example3.o

323 void test(uint8_t * restrict a, uint8_t * restrict b) {
324 uint64_t i;
325

326 for (i = 0; i < SIZE; i++) {
327 a[i] = b[i + 1];
328 }
329 }

Write-up 4: Inspect the assembly and determine why the assembly does not include
instructions with vector registers. Do you think it would be faster if it did vectorize?
Explain.

2.4 Example 4

Take a look at example4.c.

330 double test(double * restrict a) {
331 size_t i;
332

333 double *x = __builtin_assume_aligned(a, 16);
334

335 double y = 0;
336

337 for (i = 0; i < SIZE; i++) {
338 y += x[i];
339 }
340 return y;
341 }

$ make clean; make ASSEMBLE=1 VECTORIZE=1 example4.o

You should see the non-vectorized code with the addsd instruction.

13 Handout 5 — Homework 3: Vectorization

342 .LBB0_1: # %for.body
343 # =>This Inner Loop Header: Depth=1
344 #DEBUG_VALUE: test:x <- %rdi
345 #DEBUG_VALUE: test:a <- %rdi
346 .Ltmp1:
347 #DEBUG_VALUE: test:y <- %xmm0
348 .loc 1 18 7 prologue_end # example4.c:18:7
349

350 addsd 524288(%rdi,%rax,8), %xmm0
351 .Ltmp2:
352 #DEBUG_VALUE: test:y <- %xmm0
353 addsd 524296(%rdi,%rax,8), %xmm0
354 .Ltmp3:
355 #DEBUG_VALUE: test:y <- %xmm0
356 addsd 524304(%rdi,%rax,8), %xmm0
357 .Ltmp4:
358 #DEBUG_VALUE: test:y <- %xmm0
359 addsd 524312(%rdi,%rax,8), %xmm0
360 .Ltmp5:
361 #DEBUG_VALUE: test:y <- %xmm0
362 addsd 524320(%rdi,%rax,8), %xmm0
363 .Ltmp6:
364 #DEBUG_VALUE: test:y <- %xmm0
365 addsd 524328(%rdi,%rax,8), %xmm0
366 .Ltmp7:
367 #DEBUG_VALUE: test:y <- %xmm0
368 addsd 524336(%rdi,%rax,8), %xmm0
369 .Ltmp8:
370 #DEBUG_VALUE: test:y <- %xmm0
371 addsd 524344(%rdi,%rax,8), %xmm0
372 .Ltmp9:
373 #DEBUG_VALUE: test:y <- %xmm0
374 .loc 1 17 17 # example4.c:17:17
375

376 addq $8, %rax
377 .Ltmp10:
378 .loc 1 17 3 is_stmt 0 # example4.c:17:3
379

380 jne .LBB0_1

Notice that this does not actually vectorize as the xmm registers are operating on 8 byte chunks.
The problem here is that clang is not allowed to re-order the operations we give it. Even though
the the addition operation is associative with real numbers, they are not with floating point
numbers. (Consider what happens with signed zeros, for example.)

Furthermore, we need to tell clang that reordering operations is okay with us. To do this, we
need to add another compile-time flag, -ffast-math. Add the compilation flag -ffast-math to
the Makefile and compile the program again.

14 Handout 5 — Homework 3: Vectorization

Write-up 5: Check the assembly and verify that it does in fact vectorize properly. Also what
do you notice when you run the command

$ clang -O3 example4.c -o example4; ./example4

with and without the -ffast-math flag? Specifically, why do you a see a difference in the
output.

15 Handout 5 — Homework 3: Vectorization

381 # %bb.0: # %entry
382 #DEBUG_VALUE: test:a <- %rdi
383 #DEBUG_VALUE: test:a <- %rdi
384 #DEBUG_VALUE: test:x <- %rdi
385 #DEBUG_VALUE: test:x <- %rdi
386 xorpd %xmm0, %xmm0
387 .Ltmp0:
388 #DEBUG_VALUE: test:i <- 0
389 #DEBUG_VALUE: test:y <- 0.000000e+00
390 movq $-65536, %rax # imm = 0xFFFF0000
391 xorpd %xmm1, %xmm1
392 .p2align 4, 0x90
393 .LBB0_1: # %vector.body
394 # =>This Inner Loop Header: Depth=1
395 #DEBUG_VALUE: test:x <- %rdi
396 #DEBUG_VALUE: test:a <- %rdi
397 .Ltmp1:
398 .loc 1 18 7 prologue_end # example4.c:18:7
399

400 addpd 524288(%rdi,%rax,8), %xmm0
401 addpd 524304(%rdi,%rax,8), %xmm1
402 addpd 524320(%rdi,%rax,8), %xmm0
403 addpd 524336(%rdi,%rax,8), %xmm1
404 addpd 524352(%rdi,%rax,8), %xmm0
405 addpd 524368(%rdi,%rax,8), %xmm1
406 addpd 524384(%rdi,%rax,8), %xmm0
407 addpd 524400(%rdi,%rax,8), %xmm1
408 .Ltmp2:
409 .loc 1 17 26 # example4.c:17:26
410

411 addq $16, %rax
412 jne .LBB0_1
413 # %bb.2: # %middle.block
414 #DEBUG_VALUE: test:x <- %rdi
415 #DEBUG_VALUE: test:a <- %rdi
416 .Ltmp3:
417 .loc 1 18 7 # example4.c:18:7
418

419 addpd %xmm0, %xmm1
420 movapd %xmm1, %xmm0
421 movhlps %xmm0, %xmm0 # xmm0 = xmm0[1,1]
422

423 addpd %xmm1, %xmm0

3 Performance Impacts of Vectorization

We will now familiarize ourselves with what code does/does not vectorize, and discuss how to
increase speedup from vectorization.

16 Handout 5 — Homework 3: Vectorization

3.1 The Many Facets of a Data Parallel Loop

In loop.c, we have written a loop that performs elementwise an operation — by default, addition
— between two arrays A and B, storing the result in array C. If you examine the code, you will
see that our loop does no useful work (in the sense that A and B are not filled with any initial
values). We are just using this loop to demonstrate concepts. Further, we have added an outer
loop over I whose purpose is to eliminate measurement error in gettime().

Let’s see what speedup we get from vectorization. Run make and run awsrun ./loop. Record
the elapsed execution time. Then run make VECTORIZE=1 and run awsrun ./loop again. Record
the vectorized elapsed execution time. The flag -mavx2 tells clang to use advanced vector exten-
sions with larger vector registers. Run make VECTORIZE=1 AVX2=1 and run awsrun ./loop again.
Note that you must use the awsrun machines for this; you may otherwise get a message like
Illegal instruction (core dumped). You can check whether or not a machine supports the AVX2
instructions by looking for avx2 in the flags section of the output of cat /proc/cpuinfo. Record
the vectorized elapsed execution time.

Write-up 6: What speedup does the vectorized code achieve over the unvectorized code?
What additional speedup does using -mavx2 give? You may wish to run this experiment
several times and take median elapsed times; you can report answers to the nearest 100%
(e.g., 2×, 3×, etc). What can you infer about the bit width of the default vector registers on
the awsrun machines? What about the bit width of the AVX2 vector registers? Hint: aside
from speedup and the vectorization report, the most relevant information is that the data
type for each array is uint32_t.

3.1.1 Flags to enable and debug vectorization

Vectorization is enabled by default, but can be explicitly turned on with the -fvectorize flag1.
When vectorization is enabled, the -Rpass=loop-vectorize flag identifies loops that were suc-
cessfully vectorized, and the -Rpass-missed=loop-vectorize flag identifies loops that failed vec-
torization and indicates if vectorization was specified (see Makefile). Further, you can add the
flag -Rpass-analysis=loop-vectorize to identify the statements that caused vectorization to fail.

3.1.2 Debugging through assembly code inspection

Another way to see how code is vectorized is to look at the assembly output from the compiler.
Run

$ make ASSEMBLE=1 VECTORIZE=1

1If you open Makefile, you will see we set up things in a slightly different way. We set -O3 regardless of
vectorization—because we want a fair comparison when the vectorization flag is enabled/disabled. We then disable
vectorization for when VECTORIZE=0 by setting the flag -fno-vectorize.

17 Handout 5 — Homework 3: Vectorization

This will produce loop.s, which contains human-readable x86 assembly like perf annotate -f
from Recitation 2. Note that the compilation may “fail” with ASSEMBLE=1 because this flag tells
clang to not produce loop.o.

Write-up 7: Compare the contents of loop.s when the VECTORIZE flag is set/not set. Which
instruction (copy its text here) is responsible for the vector add operation? Which
instruction (copy its text here) is responsible for the vector add operation when you
additionally pass AVX2=1? You can find an x86 instruction manual on LMOD. Look for
MMX and SSE2 instructions, which are vector operations. To make the assembly code more
readable it may be a good idea to remove debug symbols from release builds by moving the
-g and -gdwarf-3 CFLAGS in your Makefile. It might also be a good idea to turn off loop
unrolling with the -fno-unroll-loops flag while you study the assembly code.

3.1.3 Flavors of vector arithmetic

As discussed in lecture, the vector unit is built directly in hardware. To support more flavors of
vector operations (e.g., vector subtract or multiply), additional hardware must be added for each
operation.

Write-up 8: Use the __OP__ macro to experiment with different operators in the data parallel
loop. For some operations, you will get division by zero errors because we initialize array B
to be full of zeros—fix this problem in any way you like. Do any versions of the loop not
vectorize with VECTORIZE=1 AVX2=1? Study the assembly code for << with just VECTORIZE=1
and explain how it differs from the AVX2 version.

The results may surprise you. For example, compare the results for * and << (shift). The
problem is that shifting by a variable amount (B[j]) is not a supported vector instruction unless
we pass -mavx2. Changing B[j] to a constant value should allow the code to be vectorizable
again.

3.1.4 Packing smaller words into vectors

A big class of optimizations you will use in future projects is optimizing data type width for
your application. Consider the arrays A, B, and C which have data type uint32_t (given by the
__TYPE__ macro). Changing the data type for each array has an impact in two places:

1. Memory requirements. A smaller data type per element leads to a smaller memory foot-
print per array.

18 Handout 5 — Homework 3: Vectorization

2. Vector packing. A smaller data type allows more elements to be packed into a single vector
register.

Let’s experiment with the vector packing idea:

Write-up 9: What is the new speedup for the vectorized code, over the unvectorized code,
and for the AVX2 vectorized code, over the unvectorized code, when you change __TYPE__
to uint64_t, uint32_t, uint16_t and uint8_t? For each experiment, set __OP__ to + and do
not change N.

In general, speedup should increase as data type size decreases. This is a fundamental advan-
tage over unvectorized codes where for fixed N, the number of instructions needed to perform
elementwise operations over an array of N elements is mostly independent of the data type width.2

3.1.5 To vectorize or not to vectorize

Performance potential from vectorization is also impacted by what operation you wish to per-
form. Of the operations that vectorize (Section 3.1.3), multiply (*) takes the most clock cycles per
operation.

Write-up 10: You already determined that uint64_t yields the least performance
improvement for vectorized codes (Section 3.1.4). Test a vector multiplication (i.e., __OP__ is
*) using uint64_t arrays. What happens to the AVX2 vectorized code’s speedup relative to
the unvectorized code (also using uint64_t and *)? What about when you set the data type
width to be smaller — say uint8_t?

Write-up 11: Open up the aws-perf-report tool for the AVX2 vectorized multiply code
using uint64_t (as you did in Recitation 2). Remember to first use the awsrun perf record
tool to collect a performance report. Does the vector multiply take the most time? If not,
where is time going instead? Now change __OP__ back to +, rerun the experiment and
inspect aws-perf-report again. How does the percentage of time taken by the AVX2 vector
add instruction compare to the time spent on the AVX2 vector multiply instruction?

2We say “mostly” because depending on your processor’s architecture, arrays with large data types (e.g., 64 bit and
128 bit) are processed in different ways. For example, you can use 128 bit data types using gcc and the type __int128.
But since ALUs in the awsrun machines are only 64 bits wide, the compiler turns each 128 bit operation into several
64 bit operations.

19 Handout 5 — Homework 3: Vectorization

You will see that where time goes changes dramatically when you change * to +. This is partly
due to the data type width (uint64_t) and partly due to the * operation itself. In particular,
the awsrun machine vector units only support 32 × 32 bit multiplication—wider data types are
synthesized from smaller operations. If you experiment with smaller (uint16_t and below) data
types, you should see that the assembly code for * and + look more similar

3.2 Vector Patterns

We will now explore some common vector code patterns. We also recommend https://llvm.
org/docs/Vectorizers.html as a reference guide for when you are optimizing your projects.

3.2.1 Loops with Runtime Bounds

Up to this point, our data parallel loop has been simple for the compiler to handle because N was
known beforehand and was a power of 2. What about when the loop bound is not known ahead
of time?

Write-up 12: Get rid of the #define N 1024 macro and redefine N as: int N = atoi(argv[1]);
(at the beginning of main()). (Setting N through the command line ensures that the compiler
will make no assumptions about it.) Rerun (with various choices of N) and compare the
AVX2 vectorized, non-AVX2 vectorized, and unvectorized codes. Does the speedup change
dramatically relative to the N = 1024 case? Why?

Hint: If you look at loop.s when you apply this change, you will see the compiler adding
termination case code to handle the final loop iterations (i.e., the iterations that do not align
with the vector register width). Test this yourself: as you set __TYPE__ to smaller data types,
you should see that the amount of termination-related assembly code emitted by the compiler
increases.

3.2.2 Striding

Another simplifying feature in our loop is that its stride (or step) equals 1. Stride corresponds
to how big our steps through the array are; e.g., j++, j+=2, etc. The awsrun machine vector units
have some hardware support to accelerate different strides.

For example,

424 for (j = 0; j < N; j+=2) {
425 C[j] = A[j] + B[j];
426 }

https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html

20 Handout 5 — Homework 3: Vectorization

Write-up 13: Set __TYPE__ to uint32_t and __OP__ to +, and change your inner loop to be
strided. Does clang vectorize the code? Why might it choose not to vectorize the code?

clang provides a #pragma Clang loop directive that can be used to control the optimization
of loops, including vectorization. These are described at the following webpage: http://Clang.
llvm.org/docs/LanguageExtensions.html#extensions-for-loop-hint-optimizations

Write-up 14: Use the #vectorize pragma described in the clang language extensions
webpage above to make clang vectorize the strided loop. What is the speedup over
non-vectorized code for non-AVX2 and AVX2 vectorization? What happens if you change
the vectorize_width to 2? Play around with the clang loop pragmas and report the best you
found (that vectorizes the loop). Did you get a speedup over the non-vectorized code?

Once again, inspecting the assembly code to see how striding is vectorized can be insightful.

3.2.3 Strip Mining

A very common operation is to combine elements in an array (somehow) into a single value. For
instance, one might wish to sum up the elements in an array. Replace the data parallel inner loop
with such a reduction:

427 for (j = 0; j < N; j++) {
428 total += A[j];
429 }

To ensure that clang vectorizes the inner loop rather than the outer loop, comment out the
outer loop.

Write-up 15: This code vectorizes, but how does it vectorize? Turn on ASSEMBLE=1, look at
the assembly dump, and explain what the compiler is doing.

As discussed in lecture, this reduction will only vectorize if the combination operation (+) is
associative.

http://Clang.llvm.org/docs/LanguageExtensions.html# extensions-for-loop-hint-optimizations
http://Clang.llvm.org/docs/LanguageExtensions.html# extensions-for-loop-hint-optimizations

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Getting started
	Vectorization in |clang|
	Example 1
	Example 2
	Example 3
	Example 4

	Performance Impacts of Vectorization
	The Many Facets of a Data Parallel Loop
	Flags to enable and debug vectorization
	Debugging through assembly code inspection
	Flavors of vector arithmetic
	Packing smaller words into vectors
	To vectorize or not to vectorize

	Vector Patterns
	Loops with Runtime Bounds
	Striding
	Strip Mining

	cover.pdf
	Blank Page

