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Prof. Charles E. Leiserson and Prof. Julian Shun Practice Quiz 2 

Practice Quiz 2 Solutions 

Name: 

Instructions 

• DO NOT open this quiz booklet until you are instructed to do so.

• This quiz booklet contains 17 pages, including this one. You have 80 minutes to earn 80 
points.

• This quiz is closed book, but you may use one handwritten, double-sided 8 1/200 × 1100 crib 
sheet and the Master Method card handed out in lecture.

• When the quiz begins, please write your name on this coversheet, and write your name on 
the top of each page, since the pages may be separated for grading.

• Some of the questions are true/false, and some are multiple choice. You need not explain 
these answers unless you wish to receive partial credit if your answer is wrong. For these 
kinds of questions, since incorrect answers will be penalized, do not guess unless you are 
reasonably sure.

• Good luck!

Number Question Parts Points Score Grader 

0 Name on Every Page 17 1 

1 True or False 9 18 

2 Heap space for Cilk programs 3 7 

3 Concurrent free lists 2 8 

4 Parallel Strassen 5 15 

5 Space usage for Strassen 6 18 

6 Cache-oblivious Strassen 3 13 

Total 80 
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1 True or false (9 parts, 18 points) 

Incorrect answers will be penalized, so do not guess unless you are reasonably sure. You need 
not justify your answer, unless you want to leave open the possibility of receiving partial credit 
if your answer is wrong. Comments will have no impact on a correct answer. 

1.1 

There are generally fewer conflict misses in a set-associative cache than a direct-mapped cache. 

True False 

Answer: True 

1.2 

If there is a TLB miss, then the corresponding cache line is not already in cache. 

True False 

Answer: False 

1.3 

When dealing with multiple pages, a new block should be allocated from the free list for the 
emptiest page to incur the fewest TLB misses. 

True False 

Answer: False 

1.4 

It is generally more important for a memory allocator to quickly allocate small blocks than to 
quickly allocate large blocks. 

True False 

Answer: True 
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1.5 

Streaming writes allow for higher memory bandwidth utilization by bypassing cache with the 
additional cost of higher latency. 

True False 

Answer: True 

1.6 

On x86, sequentially consistent behavior can always be achieved through the use of memory 
fences. 

True False 

Answer: True 

1.7 

If a program that runs on 2 threads protects its critical sections using Peterson’s algorithm, then 
it is free of determinacy races. 

True False 

Answer: False 

1.8 

If a program that runs on 2 threads protects its critical sections using Peterson’s algorithm, then 
it is free of data races. 

True False 

Answer: True 

1.9 

Ignoring the effects of true and false sharing, on x86, a compare-and-swap operation is just as 
fast as an equivalent comparison and assignment. 

True False 

Answer: False 
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2 Heap space for Cilk programs (3 parts, 7 points) 

Consider the following parallel Cilk code. � 
1 void foo(int depth , size_t X) { 
2 if (depth < 1) return; 
3 cilk_spawn foo(depth -1, X); 
4 void *ptr = malloc(X); 
5 cilk_sync; 
6 free(ptr); 
7 �} � 

Assume that the stack is large enough such that for all inputs of depth the code does not overflow 
the stack. Furthermore, assume that foo is run using an optimal allocator that achieves perfect 
utilization. 

2.1 

Suppose that foo is executed using just 1 worker. Argue that the space needed to satisfy the calls 
to malloc from foo is X. 

Answer: X 

Now suppose that foo is executed using 2 workers. In terms of depth and X, what is the maximum 
amount of space needed to satisfy the calls to malloc from foo? (Hint: Consider an execution of 
foo in which one worker steals line 4 from the other worker in every invocation of foo.) 

Answer: depth · X 
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In lecture, we saw a theorem stating that a P-worker execution of any Cilk program uses at most 
P times the space used in a serial execution of that Cilk program. Why does the theorem not 
apply to foo, or does it? 

Answer: The theorem applies to stack allocations, not heap allocations 
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3 Concurrent free lists (2 parts, 8 points) 

Ben Bitdiddle is parallelizing a program that uses a free list to handle the allocation of objects of 
a fixed size X. Ben’s serial code uses a global free-list data structure of type FreeList_t, defined 
as follows: � 
8 typedef struct Node_t { 
9 /* A */ 

10 struct Node_t *next; 
11 } Node_t; 
12 
13 typedef struct { 
14 /* B */ 
15 Node_t *head; 
16 } FreeList_t; 
17 
18 void push(FreeList_t *fl, Node_t *node) { 
19 /* C */ 
20 node ->next = fl ->head; 
21 /* D */ 
22 fl ->head = node; 
23 /* E */ 
24 } 
25 
26 Node_t *pop(FreeList_t *fl) { 
27 /* F */ 
28 Node_t *node = fl ->head; 
29 /* G */ 
30 if (NULL != node) { 
31 /* H */ 
32 fl ->head = node ->next; 
33 /* I */ 
34 } 
35 /* J */ 
36 return node; 
37 �} � 
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Ben considers parallelizing his free list by implementing thread-local free lists. Each thread 
would only push or pop storage from its local free list. If the thread’s local free list is empty, then 
the thread simply calls the system’s malloc. 

Describe a performance problem that Ben might see with thread-local free lists that can cause 
Ben’s parallel program to use much more space than his original serial program. 

Answer: memory drift 

Ben decides to modify his serial free-list code into a global free list, with push and pop oper-
ations synchronized using mutex locks. Ben wants to add as few instructions as possible to his 
free-list code to implement a correct and efficient global free list. Ben’s free list code contains 
convenient labels A through J at lines where Ben might insert a new statement. 

Write an X in each table cell below where Ben should insert the statement in the corresponding 
column at the line specified by the corresponding row. Each row should contain at most one X. 

mutex_t L; lock(fl->L); unlock(fl->L); lock(node->L); unlock(node->L); 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 

Answer: X’s at (B, mutex_t L;), (C, lock(fl->L)), (E, unlock(fl->L)), (F, lock(fl->L)), (J, unlock(fl->L)). 



 8 6.172 Practice Quiz 2 Name 

4 Parallel Strassen (5 parts, 15 points) 

Recall the (cache-oblivious) divide-and-conquer matrix multiplication algorithm from lecture and 
from Homework 8. Given two n × n matrices A and B, where n is a power of 2, the algorithm 
computes the product C = A · B in Θ(n3) work as follows. First, the algorithm partitions the 
matrices A, B, and C into four quadrants: � � � � � � 

A1,1 A1,2 B1,1 B1,2 C1,1 C1,2 A = , B = , C = 
A2,1 A2,2 B2,1 B2,2 C2,1 C2,2 

The algorithm then computes the quadrants of C using eight recursive multiplications: 

C1,1 = A1,1 · B1,1 + A1,2 · B2,1 

C1,2 = A1,1 · B1,2 + A1,2 · B2,2 

C2,1 = A2,1 · B1,1 + A2,2 · B2,1 

C2,2 = A2,1 · B1,2 + A2,2 · B2,2 . 

In 1969 Volker Strassen invented an asymptotically faster matrix-multiplication algorithm and 
showed that the n3 matrix multiplication algorithm was not optimal. Strassen’s algorithm par-
titions the matrices into quadrants as before, but then recursively computes seven intermediate 
matrix products: (Do not waste time verifying that these formulae are correct.) 

M1 = (A1,1 + A2,2) · (B1,1 + B2,2) 

M2 = (A2,1 + A2,2) · B1,1 

M3 = A1,1 · (B1,2 − B2,2) 

M4 = A2,2 · (B2,1 − B1,1) 

M5 = (A1,1 + A1,2) · B2,2 

M6 = (A2,1 − A1,1) · (B1,1 + B1,2) 

M7 = (A1,2 − A2,2) · (B2,1 + B2,2) . 

The quadrants of the C matrix can be computed in terms of M1, M2, . . . , M7 as follows: 

C1,1 = M1 + M4 − M5 + M7 

C1,2 = M3 + M5 

C2,1 = M2 + M4 

C2,2 = M1 − M2 + M3 + M6 . 

The next page presents pseudocode for a parallel implementation of Strassen’s algorithm for 
n × n matrices, where n is an even power of 2. Do not waste time trying to understand how the 
code works. You only need to understand its parallel structure. 



40

45

50

55

60

65

70

75

80

85

6.172 Practice Quiz 2 Name 9 

  � 
38 // Pseudocode for a parallel version of Strassen ’s algorithm to 
39 // multiply two square matrices A , B. The matrices have side length n 

// in each recursive call , where n is an even power of 2. 
41 // Assume that A11 ... A22 , B11 ... B22 , C11 ... C22 are quadrants of A , B, C. 
42 strassen (A , B , n) { 
43 // Coarsened base case 
44 if (n < BASE_CASE_SIZE ) return base_case (A , B, n); 

46 // Compute the quadrants A11 , A12 , etc . for A, B , and C. 
47 // Create 8 temporary matrices of size n ̂ 2/4. 
48 Temp [8]; 
49 for ( int i = 0; i < 8; ++ i) Temp [i] = malloc (n * n / 4); 

51 //////// Block 1 
52 cilk_spawn { Temp [0] = A21 + A22 ; 
53 Temp [1] = strassen ( Temp [0] , B11 , n /2) }; // M2 
54 cilk_spawn { Temp [2] = B12 - B22 ; 

Temp [3] = strassen ( A11 , Temp [2] , n /2) }; // M3 
56 cilk_spawn { Temp [4] = B21 - B11 ; 
57 Temp [5] = strassen ( A22 , Temp [4] , n /2) }; // M4 
58 Temp [6] = A11 + A12 ; 
59 Temp [7] = strassen ( Temp [6] , B22 , n /2) ; // M5 

cilk_sync ; // End block 1 
61 
62 //////// Block 2 
63 cilk_spawn { C11 = Temp [5] - Temp [7] }; // C11 = M4 - M5 
64 cilk_spawn { C12 = Temp [3] + Temp [7] }; // C12 = M3 + M5 

cilk_spawn { C21 = Temp [1] + Temp [5] }; // C21 = M2 + M4 
66 C22 = Temp [3] - Temp [1]; // C22 = M3 - M2 
67 cilk_sync ; // End block 2 
68 
69 //////// Block 3 

cilk_spawn { Temp [0] = A11 + A22 ; 
71 Temp [1] = B11 + B22 ; 
72 Temp [2] = strassen ( Temp [0] , Temp [1] , n /2) }; // M1 
73 cilk_spawn { Temp [3] = A12 - A22 ; 
74 Temp [4] = B21 + B22 ; 

C11 += strassen ( Temp [3] , Temp [4] , n /2) }; // C11 += M7 
76 Temp [5] = A21 - A11 ; 
77 Temp [6] = B11 + B12 ; 
78 C22 += strassen ( Temp [5] , Temp [6] , n /2) ; // C22 += M6 
79 cilk_sync ; // End block 3 

81 //////// Block 4 
82 cilk_spawn { C11 += Temp [2] }; // C11 += M1 
83 C22 += Temp [2]; // C22 += M1 
84 cilk_sync ; // End block 4 

86 for ( int i = 0; i < 8; ++ i) free ( Temp [i ]) ; 
87 return C; 
88 �} � 
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We will first analyze the work and span of this Strassen code. Assume that this Strassen code 
uses a routine for adding or subtracting two n × n matrices in Θ(n2) work and Θ(lgn) span, such 
as in line 52. 

Explain why the recurrence for the work T1(n) of the parallel Strassen code satisfies 

T1(n) = 7T1(n/2) + Θ(n2). (1) 

Answer: We have seven recursive multiplications of matrices of size n/2 × n/2. At each level 
of the recursion, there are a constant number of matrix additions / subtractions to produce the 
intermediate matrices to pass into the next recursive calls. 

4.2 

The solution to the work recurrence (1) is 

T1(n) = Θ(na lgb n) 

for some values a and b. Select the correct values for a and b from the choices below. 

A a = 2, b = 0 

B a = 2, b = 1 

C a = lg7, b = 0 

D a = lg7, b = 1 

E a = 3, b = 0 

F None of the above 

Answer: C 
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The recurrence for the span T∞(n) of this parallel Strassen code is composed from the spans of 
four blocks in the code: Block 1 (lines 51–60), Block 2 (lines 62–67), Block 3 (lines 69–79), and 
Block 4 (lines 81–84). For each block, write an X in the table below to identify the span of that 
block. 

Θ(lgn) T∞(n/2) + Θ(lgn) 3T∞(n/2) + Θ(lgn) 4T∞(n/2) + Θ(lgn) 
Block 1 
Block 2 
Block 3 
Block 4 

Answer: Block 1 has span T∞(n/2) + Θ(log2 n). Block 2 has span Θ(log2 n). Block 3 has span 
T∞(n/2) + Θ(log2 n). Block 4 has span Θ(log2 n). 

Describe how the spans of those four blocks compose to make the recurrence for the span of this 
parallel Strassen code equal to 

T∞(n) = 2T∞(n/2) + Θ(lgn). (2) 

Answer: The spans of the four blocks sum to give T∞(n) = 2T∞(n/2) + Θ(log2 n). 
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4.5 

The solution to the span recurrence (2) is 

T∞(n) = Θ(na lgb n) 

for some values a and b. Select the correct values for a and b from the choices below. 

A a = 0, b = 1 

C a = 1, b = 0 

E a = 2, b = 0 

G a = lg7, b = 0 

I None of the above 

B a = 0, b = 2 

D a = 1, b = 1 

F a = 2, b = 1 

H a = lg7, b = 1 

Answer: C 
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5 Space usage for Strassen (6 parts, 18 points) 

This question studies the space usage during an execution of the parallel Strassen code described 
in Question 4. As lines 48–49 in the pseudocode show, this parallel Strassen code uses Θ(n2) 
temporary space per recursive call. 

5.1 

Describe why the total amount of temporary space S1(n) used by a 1-worker execution of this 
parallel Strassen program satisfies the following recurrence: 

S1(n) = S1(n/2) + Θ(n2). (3) 

Answer: In a serial execution, at any point in time, the execution of parallel Strassen involves 
just a single stack of frames. Each frame on the stack uses Θ(n2) space. Hence the recurrence is 
as stated. 

5.2 

Solve the recurrence (3), and write your answer using Θ-notation. 

Answer: The solution to the recurrence is Θ(n2). 
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Although the Cilk scheduler provides a weak bound on the space used by a P-worker execu-
tion of this parallel Strassen code, we can prove a stronger bound by considering the worst-case 
recursion tree for this code. It turns out that this worst-case recursion tree for space usage is as 
illustrated below: 

…
4

Θ((n/2)2)

Θ((n/2k)2)Θ((n/2k)2) Θ((n/2k)2)…

4

Θ((n/2)2)Θ((n/2)2)

Θ(1) Θ(1) Θ(1)

…
P nodes 

Level 0Θ(n2)

Level 1

Level k

…

This recursion tree recursively branches 4 ways until it reaches the first level k that contains P 
nodes. Each worker then serially executes the computation under a distinct level-k node, which 
the recursion tree models with 1-way branching after level k. 

5.3 

Why is the branching factor 4 for the top part of this recursion tree? 

Answer: The code spawns off at most four recursive calls in parallel at any point during its 
execution, i.e., either in block 1 or block 2. Therefore, the branching factor of the space overhead 
is four because the space allocated is reused across all blocks. 

5.4 

Argue that the total space usage in the top part of the recursion tree, in all levels i ≤ k, is 
Θ(n2 log4 P). 

Answer: The height of the tree is k = log4P. Each level uses Θ(n2) space. The result follows from 
the product of these terms. 
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Argue that the total space usage in the bottom part of the recursion tree, in all levels i > k, is 
Θ(n2). 

Answer: As shown in 5.2, the total space used at the lower levels of the recursion is Θ(n2). 

What is the total worst-case space used by an execution of parallel Strassen? Express your answer 
in Θ-notation. 

Answer: The space usage below any particular node at level k is S1(n/2k) = Θ(n2/4k). Because 
k = log4 P, this equation simplifies to Θ(n2/P). Because there are P nodes at level k, the total 
space usage below level k is Θ(n2). 
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6 Cache-oblivious Strassen (3 parts, 13 points) 

This question examines the cache-efficiency of Strassen’s algorithm for matrix multiplication. For 
this question, we will consider a serial implementation of Strassen’s algorithm, such as the serial 
elision of the parallel implementation described in Question 4. For this problem, assume an 
ideal cache model (fully associative with an optimal or LRU replacement policy, as appropriate) 
with cache size M and cache-line length B. Assume that the cache is tall (i.e. M = ω(B2)). 
Furthermore, assume that Strassen’s algorithm is run using an optimal allocator that achieves 
perfect utilization. Assume that the input matrix is stored in row-major order, and also assume 
that the routine for adding or subtracting two m-by-m submatrices is Θ(m2/B). 

The recurrence for the worst-case number Q(n) of cache misses incurred by Strassen’s algorithm 
when multiplying two n × n matrices is given by ( √ 

Θ(n2/B) if 0 ≤ n < c M for sufficiently small constant c ≤ 1; 
Q(n) = (4) 

7Q(n/2) + Θ(n2/B) otherwise. 

6.1 

Why is Q(n) = 7Q(n/2) + Θ(n2/B) for n sufficiently large? 

Answer: We have seven recursive calls on matrices of size n/2. In addition, there are a constant 
number of matrix additions and subtractions to construct the inputs for the recursive calls, so the 
cache misses to create the inputs is Θ(n2/B). 

6.2 
√ 

Why is Q(n) = Θ(n2/B) for n < c M? 

Answer: All the matrices used by the algorithm have Θ(n2) elements. When n is sufficiently 
small that all these matrices fit into cache, we have n2 ≤ cM. The number of cache misses to 
bring them all into cache is Θ(n2/B). Once in memory, the recursive nature of the program is 
such that no more cache misses are incurred on any subproblems. 
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Sketch the recursion tree for the recurrence for (4). Compute the height and the number of leaves 
of the recursion tree, and label the internal nodes and leaves of the tree with the corresponding 
number of cache misses incurred at them. Solve the recurrence, providing a tight asymptotic 
bound in simple form. 

Sketch of recursion tree for Q(n): 

Height = 

Number of leaves = 

Misses per leaf = 

Q(n) = 

Answer: Height = lgn − lg(cM). 
√ √ 

Number of leaves = 7lgn−lg(c M) = Θ(nlg7/ Mlg7
). 

Misses per leaf = Θ(M/B). 
lg7n Q(n) = Θ( BM(log7)/2−1 ). 
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