
 
 

 

            

                

                 
         

                
             

               
                
               

 

 

     

 

  

 

   

            
 

      

 

Performance Engineering of Software Systems 
Massachusetts Institute of Technology 6.172 

Prof. Charles E. Leiserson and Prof. Julian Shun Practice Quiz 3 

Practice Quiz 3 

Name: 

Instructions 

• DO NOT open this quiz booklet until you are instructed to do so. 

• This quiz booklet contains 14 pages, including this one. You have 80 minutes to earn 80 
points. 

• This quiz is closed book, but you may use one handwritten, double-sided 8 1/200 × 1100 crib 
sheet and the Master Method card handed out in lecture. 

• When the quiz begins, please write your name on this coversheet, and write your name 
on the top of each page, since the pages may be separated for grading. 

• Some of the questions are true/false, and some are multiple choice. You need not explain 
these answers unless you wish to receive partial credit if your answer is wrong. For these 
kinds of questions, since incorrect answers will be penalized, do not guess unless you are 
reasonably sure. 

• Good luck! 

Number Question Parts Points Score Grader 

0 Name on Every Page 14 1 

1 True or False 10 20 

2 Caching in Matrix Multiplication 3 12 

3 Dining Philosophers 4 16 

4 Caching for Karatsuba 4 17 

5 Lock-free FIFO Queue 1 14 

Total 80 

1 



      

        

              

 

  

 

  

 

  
  

  

 

   

  

 

 
 

  

2 6.172 Practice Quiz 3 Name 

1 True or False (10 parts, 20 points) 

Incorrect answers will be penalized, so do not guess unless you are reasonably sure. You need 
not justify your answer, unless you want to leave open the possibility of receiving partial credit 
if your answer is wrong. Comments will have no impact on a correct answer. 

1.1 

Parallel pull algorithms are generally slower than parallel push algorithms because they require 
state updates to be atomic. 

True False 

1.2 

Streaming writes avoid the latency of reading cache blocks into the cache. 

True False 

1.3 

Suppose that a program runs on a machine with a fully associative cache of size M and incurs n 
conflict misses. Then we must have n > M. 

True False 

1.4 

In the ideal-cache model, an n × n submatrix of an underlying matrix stored in row-major order 
always fits in a cache of size Θ(n2). 

True False 

1.5 

Suppose that a parallel Cilk program exhibits poor speedup when run on a multicore machine 
with P processing cores. If the cause is insufficient memory bandwidth, it can often be detected 
by executing P copies of the serial elision of the program simultaneously and comparing the 
runtime with that of a single serial elision. 

True False 
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1.6 

6.172 Practice Quiz 3 Name 

Concurrent programs that are data-race free and obey atomicity constraints are deterministic. 

True False 

1.7 

A yielding mutex lock should generally be preferred over a spinning mutex lock when a critical 
section is large. 

True False 

1.8 

Hardware can reorder memory operations by allowing a store to bypass (move earlier in the 
execution order) a load to a different location in order to compensate for memory-system latency. 

True False 

1.9 

Running on a machine with a relaxed-consistency memory model can cause Peterson’s algorithm 
for mutual exclusion to operate incorrectly unless memory fences are used. 

True False 

1.10 

The storage cost of a Compressed Sparse Rows (CSR) representation of a sparse graph with n 
vertices and m edges is Θ(m + n). 

True False 



        

         

  
           
          
          
          
            
  

 

  
 

    
 

   

   

   

   

6.172 Practice Quiz 3 Name 4 

2 Caching in Matrix Multiplication (3 parts, 12 points) 

Ben Bitdiddle writes the following code to multiply two matrices. Ben’s machine has a 32KB 
(32,768 byte) L1 data cache with 64-byte cache lines. Assume that Ben’s machine has a fully 
associative cache with least-recently-used (LRU) replacement and code executes on a single pro-
cessor. � 
1 
2 
3 
4 
5 
6 

void matrix_multiply ( int32_t *a, int32_t *b , int32_t *c , 
for ( size_t row = 0; row < n; row ++) 

for ( size_t col = 0; col < n; col ++) 
for ( size_t i = 0; i < n; i ++) 

c[ row *n + col ] += a[ row *n + i] * b[i*n + col ]; 

�} 

size_t n) { 

� 
Estimate the number of L1-cache misses each of the following three calls incurs. 

2.1 

matrix_multiply (a , � b, c , 64) ; 
� 
� 

A 

B 

C 

D 

(64 · 3)/16 = 12 

64 · 3 = 192 

(642 · 3)/16 = 768 

642 + (642 · 2)/16 = 4,608 



        

  
 

    
 

   

    

   

    

  
 

    
 

   

    

    

   

6.172 Practice Quiz 3 Name 5 

2.2 

matrix_multiply (a , � b, c , 256) ; 
� 
� 

A 

B 

C 

D 

(2562 · 3)/16 = 12,288 

(2563 + 2562 · 2)/16 = 1,056,768 

(2563 · 3)/16 = 3,145,728 

2563 + 2562 + 2562/16 = 16,846,848 

2.3 � 
matrix_multiply(a, b, c, 1024); � � 
A (10242 · 3)/16 = 196,608 

B (10243 + 10242 · 2)/16 = 67,239,936 

C (10243 · 2)/16 + 10242 = 135,266,304 

D 10243 + (10243 + 10242)/16 = 1,140,916,224 



        

       

 

   
    
  
  
     
   
     
      
  

 

 

 
 

   

   

   

   

6 6.172 Practice Quiz 3 Name 

3 Dining Philosophers (4 parts, 16 points) 

In the Dining Philosophers problem introduced in lecture, each of n philosophers needs the two 
chopsticks on either side of his/her plate to eat his/her noodles. Consider the pseudocode for 
philosopher i below, which uses fair mutexes: � 
1 while (1) { 
2 think(); 
3 lock(& chopstick[i].L); 
4 lock (& chopstick [(i+1)%n].L); 
5 eat (); 
6 unlock (& chopstick [i].L); 
7 unlock (& chopstick [(i +1)%n].L); 
8 �} � 

We saw in lecture that a deadlock may occur with this code. 

3.1 

In a first attempt to solve this problem, Ben Bitdiddle sets a time limit t. If a philosopher holds 
his or her first chopstick for t seconds without acquiring the second chopstick, the philosopher 
puts down the first chopstick, waits another t seconds, and then restarts the chopstick-acquisition 
protocol. 

Which of the following may happen? 

A A critical-section violation may occur Yes No 

B Deadlock may occur Yes No 

C Starvation may occur Yes No 

D Livelock may occur Yes No 



        

 

  

    
      
    
   
     
          
  
     
   
     
      
    
      
    
  
  
  

 

   

   

   

   

6.172 Practice Quiz 3 Name 7 

3.2 

In a second attempt to solve the Dining Philosophers problem, Alyssa P. Hacker decides to keep 
track of how many philosophers are attempting to eat, and only allow at most n − 1 philoso-
phers to attempt eating at the same time. Alyssa uses the atomic compare-and-swap operation 
CAS(address, old, new). � 
1 volatile int count = 0; 
2 while (1) { 
3 think (); 
4 int c = count; 
5 if (c < n-1 && CAS(&count , c, c+1)) { 
6 lock(& chopstick[i].L); 
7 lock (& chopstick [(i+1)%n].L); 
8 eat (); 
9 unlock (& chopstick [i].L); 
10 unlock (& chopstick [(i +1)%n].L); 
11 c = count; 
12 while (!CAS(&count , c, c-1)) { 
13 c = count; 
14 } 
15 } 
16 �} � 
Which of the following may happen? 

A A critical-section violation may occur Yes No 

B Deadlock may occur Yes No 

C Starvation may occur Yes No 

D Livelock may occur Yes No 



        

  
    
    
      
       
         
    
         
       
  
   
      
         
  

 

 

 

 

 

 

 

  

  

  

  

 

   

   

   

   

8 6.172 Practice Quiz 3 Name 

In a third attempt to solve the Dining Philosophers problem, Professor Kung writes the following 
code: � 
1 while (1) { 
2 think(); 
3 if (i & 1) { 
4 lock (& chopstick [i].L); 
5 lock (& chopstick [(i+1) %n].L); 
6 } else { 
7 lock (& chopstick [(i+1) %n].L); 
8 lock (& chopstick [i].L); 
9 } 
10 eat (); 
11 unlock (& chopstick [i].L); 
12 unlock (& chopstick [(i +1)%n].L); 
13 �} � 
3.3 

Which of the following may happen? 

A A critical-section violation may occur Yes No 

B Deadlock may occur Yes No 

C Starvation may occur Yes No 

D Livelock may occur Yes No 

3.4 

Assume that n is an even number. Which of the following may happen? 

A A critical-section violation may occur Yes No 

B Deadlock may occur Yes No 

C Starvation may occur Yes No 

D Livelock may occur Yes No 



        

        

 

 

 
  

  

  

    
   

  

  

     

    

9 6.172 Practice Quiz 3 Name 

4 Caching for Karatsuba (4 parts, 17 points) 

For this problem, assume an ideal cache model (fully associative with an optimal or LRU replace-
ment policy, as appropriate) with cache size M and cache-line length B. 

Recall that a polynomial in the variable x is a formal sum 

n−1X 
A(x) = ajxj , 

j=0 

where the values a0, a1, . . . , an−1 are the coefficients of the polynomial and n − 1 is its degree. Any 
integer strictly greater than the degree of a polynomial is a degree-bound of that polynomial. 

Computing the product of two polynomials with degree-bound n takes Θ(n2) work if the normal 
grade-school multiplication algorithm is used. In 1962, however, Karatsuba invented a faster 
way based on a clever scheme for multiplying two linear polynomials a1x + a2 and b1x + b2. 
The product is a1b1x2 + (a1b2 + a2b1)x + a2b2, which normally involves four multiplications of 
coefficients. Karatsuba’s algorithm accomplishes it in three: 

m1 = a1 · b1 , 

m2 = a2 · b2 , 

m3 = (a1 + a2) · (b1 + b2) . 

The product of the two polynomials is then m1x2 + (m3 − m1 − m2)x + m2. 

This algorithm can be performed recursively using divide-and-conquer, similar to Strassen’s 
algorithm for multiplying matrices. The code for Karatsuba polynomial multiplication is given 
on the following page, where each polynomial is represented as an array of its coefficients. (Do 
not spend time trying to understand the code. You only need to understand its performance 
characteristics.) 
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� 
1 // Compute the polynomial product C(x) = A(x) * B(x). 
2 // A(x) and B(x) each have degree -bound n ( and n elements ). 
3 // C(x) has degree -bound 2n -1 ( and 2n -1 elements ). 
4 // Each polynomial is represented as an array of coefficients . 

6 void karatsuba ( double * A , double * B, int n, double * C) { 
7 assert (( n & (-n)) == n); // n must be an exact power of 2. 
8 
9 if (n == 1) // degree 0 

C [0] = A [0] * B [0]; 
11 else { 
12 double M1 [n -1] , M2 [n -1] , M3[n -1] , AA [n /2] , BB [n /2]; 
13 
14 double * A1 = A; 

double * A2 = A + n /2; 
16 double * B1 = B; 
17 double * B2 = B + n /2; 
18 
19 karatsuba (A1 , B1 , n /2 , M1 ); // M1(x) = A1 (x) * B1(x) 

21 karatsuba (A2 , B2 , n /2 , M2 ); // M2(x) = A2 (x) * B2(x) 
22 
23 for ( int i = 0; i < n /2; i ++) // AA(x) = A1 (x) + A2(x) 
24 AA[i] = A1 [i] + A2 [i ]; 

26 for ( int i = 0; i < n /2; i ++) // BB(x) = B1 (x) + B2(x) 
27 BB[i] = B1 [i] + B2 [i ]; 
28 
29 karatsuba (AA , BB , n /2 , M3 ); // M3(x) = AA (x) * BB(x) 

31 for ( int i = 0; i < n -1; i ++) { // C(x) = M3 (x) - M2 (x) - M1(x) 
32 C[i] = M1 [i]; 
33 C[i + n] = M2[i ]; 
34 } 

C[n -1] = 0; 
36 for ( int i = 0; i < n -1; i ++) 
37 C[i + n /2] += M3 [i] - M1[i] - M2 [i ]; 
38 } 
39 �} � 
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4.1 

The work T(n) required by this program to multiply two polynomials of degree-bound n satisfies 
the recurrence 

T(n) = 3 T(n/2) + Θ(n) . 

What is the solution to this recurrence? 

A Θ(n) 

B Θ(n lgn) 

log3 2) C Θ(n 

lg3) D Θ(n 

E None of the above 

The worst-case number Q(n) of cache misses incurred by the Karatsuba algorithm is given by � 
Θ(n/B) if n < cM, where c ≤ 1 is a sufficiently small constant, 

Q(n) = 
3 Q(n/2) + Θ(n/B) otherwise. 

4.2 

Explain why Q(n) = 3 Q(n/2) + Θ(n/B) if n is sufficiently large. 

Explain why Q(n) = Θ(n/B) if n < cM. 
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4.4 

Sketch a recursion tree for the recurrence for Q(n). Compute the height and the number of leaves 
of the recursion tree, and label the internal nodes and leaves of the tree with the corresponding 
number of cache misses incurred at them. Solve the recurrence, providing a tight asymptotic 
bound in simple form. 

Height = 

Number of leaves = 

Q(n) = 



        

        

  
     
     
     
 
     
       
 
      
 
  
  
 
     
       
 
       
 
  
   
  

 

  
   

  
   

 

6.172 Practice Quiz 3 Name 13 

5 Lock-free FIFO Queue (1 part, 14 points) 

Consider the following lock-free FIFO queue with blocking semantics for a single enqueuer and 
a single dequeuer. � 
1 int head = 0; 
2 int tail = 0; 
3 double *items = malloc(CAPACITY*sizeof(double)); 
4 
5 void enq(double x) { 
6 while (tail - head == CAPACITY) {} 
7 
8 items[tail % CAPACITY] = x; 
9 
10 tail ++; 
11 } 
12 
13 void deq(double x) { 
14 while (tail - head == 0) {} 
15 
16 double x = items[head % CAPACITY ]; 
17 
18 head ++; 
19 return x; 
20 �} � 
The queue is implemented as an array. Initially, the head and tail fields are equal, and the 
queue is empty. If head and tail differ by exactly CAPACITY, then the queue is full. The enq() 
function reads the head field, and if the queue is full, it repeatedly checks head until the queue is 
no longer full. It then stores the double x in the items array and increments the tail field. The 
dec() function works in a symmetric way. 



        

   
   

   

 

 

 

 

 

 

 

 

 

 

6.172 Practice Quiz 3 Name 14 

For this problem, assume the x86-64 total-store-order memory model discussed in lecture. 

Since the queue is blocking, removing an item from an empty queue or inserting an item into 
a full one causes the thread to block (or wait). The surprising thing about this queue is that it 
requires only atomic loads and stores and not an atomic read-modify-write operation. It may, 
however, require the use of volatile variables, a compiler fence (asm volatile("": : :"memory")), 
or a hardware fence (asm volatile("mfence": : :"memory")). 

For each of the seven missing code snippets, choose one of the following such that the code is 
correct and has the highest performance: 

• /* Nothing */ 

• volatile 

• COMPILER_FENCE(); 

• HARDWARE_FENCE(); 

Line 1: 

Line 2: 

Line 3: 

Line 7: 

Line 9: 

Line 15: 

Line 17: 
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