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Game Theory: Lecture 2 Introduction 

Outline 

Decisions, utility maximization 

Strategic form games 

Best responses and dominant strategies 

Dominated strategies and iterative elimination of strictly dominated 
strategies 

Nash Equilibrium 

Examples 

Reading: 
Fudenberg and Tirole, Chapter 1. 
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Game Theory: Lecture 2 Introduction 

Motivation


In many social and engineered systems, agents make a variety of

choices.


For example: 

How to map your drive in the morning (or equivalently how to route 
your network traffic). 
How to invest in new technologies. 
Which products to buy. 
How to evaluate information obtained from friends, neighbors, 
coworkers and media. 

In all of these cases, interactions with other agents affect your payoff, 
well-being, utility. 

How to make decisions in such situations? 

→ “multiagent decision theory” or game theory. 
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Game Theory: Lecture 2 Introduction 

“Rational Decision-Making” 

Powerful working hypothesis in economics: individuals act rationally 
in the sense of choosing the option that gives them higher “payoff”. 

Payoff here need not be monetary payoff. Social and psychological 
factors influence payoffs and decisions. 
Nevertheless, the rational decision-making paradigm is useful because it 
provides us with a (testable) theory of economic and social decisions. 

We often need only ordinal information; i.e., two options a and b, 
and we imagine a preference relation � that represents the ranking of 
different options, and we simply check whether a � b or a � b. 

But in game theory we often need cardinal information because 
decisions are made under natural or strategic uncertainty. The theory 
of decision-making under uncertainty was originally developed by 
John von Neumann and Oskar Morgenstern. 
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Game Theory: Lecture 2 Introduction 

Decision-Making under Uncertainty 

von Neumann and Morgenstern posited a number of “reasonable” 
axioms that rational decision-making under uncertainty should satisfy. 
From these, they derived the expected utility theory. 

Under uncertainty, every choice induces a lottery, that is, a probability 
distribution over different outcomes. 

E.g., one choice would be whether to accept a gamble which pays $10 
with probability 1/2 and makes you lose $10 with probability 1/2. 

von Neumann and Morgenstern’s expected utility theory shows that 
(under their axioms) there exists a utility function (also referred to as 
Bernoulli utility function) u (c), which gives the utility of consequence 
(outcome) c . 

Then imagine that choice a induces a probability distribution F a (c) 
over consequences. 
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Game Theory: Lecture 2 Introduction 

Decision-Making under Uncertainty (continued) 

Then the utility of this choice is given by the expected utility 
according to the probability distribution F a (c): 

U (a) = u (c) dF a (c) . 

In other words, this is the expectation of the utility u (c), evaluated

according to the probability distribution F a (c).

More simply, if F a (c) is a continuous distribution with density f a (c),

then �


U (a) = u (c) f a (c) dc,


or if it is a discrete distribution where outcome outcome ci has 
probability pi

a (naturally with ∑i pi
a = 1), then 

aU (a) = ∑ pi u (ci ) . 
i 
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Game Theory: Lecture 2 Introduction 

Decision-Making under Uncertainty (continued) 

Given expected utility theory and our postulate of “rationality,” single 
person decision problems are (at least conceptually) simple. 

If there are two actions, a and b, inducing probability distributions 
F a (c) and F b (c), then the individual chooses a over b only if 

U (a) = u (c) dF a (c) ≥ U (b) = u (c) dF b (c) . 
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Game Theory: Lecture 2 Introduction 

From Single Person to Multiperson Decision Problems 

But in a multi-agent situation, the utility of an agent or probability 
distribution over outcomes depends on actions of others. 
A simple game of “partnership” represented as a matrix game: 

Player 1 \ Player 2 work hard shirk 
work hard (2, 2) (−1, 1) 

shirk (1, −1) (0, 0) 

Here the first number is the payoff to player (partner) 1 and the 
second number is the payoff to player 2. More formally, the cell 
indexed by row x and column y contains a pair, (a, b) where 
a = u1(x , y ) and b = u2(x , y ). 
These numbers could be just monetary payoffs, or it could be 
inclusive of “social preferences” (the fact that you may be altruistic 
towards your partner or angry at him or her). 
Should you play “work hard” or “shirk”? 
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Game Theory: Lecture 2 Strategic Form Games 

Strategic Form Games 

Let us start with games in which all of the participants act 
simultaneously and without knowledge of other players’ actions. Such 
games are referred to as strategic form games—or as normal form 
games or matrix games. 

For each game, we have to define


The set of players.

The strategies.

The payoffs.


More generally, we also have to define the game form, which captures 
the order of play (e.g., in chess) and information sets (e.g., in 
asymmetric information or incomplete information situations). But in 
strategic form games, play is simultaneous, so no need for this 
additional information. 
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Game Theory: Lecture 2 Strategic Form Games 

Strategic Form Games (continued) 

More formally: 

Definition 

(Strategic Form Game) A strategic forms game is a triplet

�I , (Si )i∈I , (ui )i∈I � such that

I is a finite set of players, i.e., I = {1, . . . , I };

Si is the set of available actions for player i ;

si ∈ Si is an action for player i ;

ui : S R is the payoff (utility) function of player i where S = ∏i Si is
→
the set of all action profiles. 

In addition, we use the notation


s = [sj ]j=i : vector of actions for all players except i .
−i �
S = ∏j=i Sj is the set of all action profiles for all players except i 
(s
−
i , 
i 

s−i ) ∈
�
S is a strategy profile, or outcome. 
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Game Theory: Lecture 2 Strategic Form Games 

Strategies 

In game theory, a strategy is a complete description of how to play 
the game. 

It requires full contingent planning. If instead of playing the game 
yourself, you had to delegate the play to a “computer” with no 
initiative, then you would have to spell out a full description of how 
the game would be played in every contingency. 

For example, in chess, this would be an impossible task (though in 
some simpler games, it can be done). 

Thinking in terms of strategies is important. 

But in strategic form games, there is no difference between an action 
and a pure strategy, and we will use them interchangeably. 
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Game Theory: Lecture 2 Strategic Form Games 

Finite Strategy Spaces 

When the Si is finite for all i , we call the game a finite game. 
For 2 players and small number of actions, a game can be represented 
in matrix form. 
Recall that the cell indexed by row x and column y contains a pair, 
(a, b) where a = u1(x , y ) and b = u2(x , y ). 

Example: Matching Pennies. 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

This game represents pure conflict in the sense that one player’s 
utility is the negative of the utility of the other player. Thus zero 
sum game. 

More generally true for strictly competitive games, that is, games in 
which whenever one player wins the other one loses, though the sum of 
the payoffs need not be equal to 0. 
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Game Theory: Lecture 2 Strategic Form Games 

Infinite Strategy Spaces 

Example: Cournot competition. 
Two firms producing a homogeneous good for the same market. 
The action of a player i is a quantity, si ∈ [0, ∞] (amount of good he 
produces). 
The utility for each player is its total revenue minus its total cost, 

ui (s1, s2) = si p(s1 + s2) − csi 

where p(q) is the price of the good (as a function of the total amount 
q), and c is unit cost (same for both firms). 
Assume for simplicity that c = 1 and p(q) = max{0, 2 − q} 

Consider the best response correspondence for each of the firms, i.e., 
for each i , the mapping Bi (s−i ) : S−i � Si such that 

Bi (s−i ) ∈ arg max ui (si , s−i ). 
si ∈Si 

Why is this a “correspondence” not a function? When will it be a 
function? 
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Game Theory: Lecture 2 Strategic Form Games 

Cournot Competition (continued) 

By using the first order optimality

conditions, we have


Bi (s−i ) = arg max (si (2 − si − s−i ) − si ) 
si ≥0

1−s−i if s−i ≤ 1,= 2 
0 otherwise. 

1/2
1

1/2

1

B1(s2)

B2(s1)

s1

s2

The figure illustrates the best response correspondences (which in this case 
are functions). 

Assuming that players are rational and fully knowledgeable about the 
structure of the game and each other’s rationality, what should the 
outcome of the game be? 
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Game Theory: Lecture 2 Dominant Strategies 

Dominant Strategies 

Example: Prisoner’s Dilemma. 

Two people arrested for a crime, placed in separate rooms, and the 
authorities are trying to extract a confession. 

prisoner 1 / prisoner 2 Confess Don’t confess 
Confess (−4, −4) (−1, −5) 

Don’t confess (−5, −1) (−2, −2) 

What will the outcome of this game be? 

Regardless of what the other player does, playing “Confess” is better 
for each player. 

The action “Confess” strictly dominates the action “Don’t confess” 

Prisoner’s dilemma paradigmatic example of a self-interested, rational 
behavior not leading to jointly (socially) optimal result. 
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Game Theory: Lecture 2 Dominant Strategies 

Prisoner’s Dilemma and ISP Routing Game 

Consider two Internet service providers that need to send traffic to 
each other 
Assume that the unit cost along a link (edge) is 1 

DC C Peering points

s1

t1

s2

t2

ISP1: s1 t1
ISP2: s2 t2

This situation can be modeled by the “Prisoner’s Dilemma” payoff 
matrix. 

ISP 1 / ISP 2 Hot potato Cooperate 
Hot potato (−4, −4) (−1, −5) 
Cooperate (−5, −1) (−2, −2) 
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Game Theory: Lecture 2 Dominant Strategies 

Dominant Strategy Equilibrium 

Compelling notion of equilibrium in games would be dominant 
strategy equilibrium, where each player plays a dominant strategy. 

Definition 

(Dominant Strategy) A strategy si ∈ Si is dominant for player i if 

ui (si , s−i ) ≥ ui (si
�, s−i ) for all si

� ∈ Si and for all s−i ∈ S−i . 

Definition 

(Dominant Strategy Equilibrium) A strategy profile s∗ is the dominant 
strategy equilibrium if for each player i , si 

∗ is a dominant strategy. 

These notions could be defined for strictly dominant strategies as well.
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Game Theory: Lecture 2 Dominant Strategies 

Dominant and Dominated Strategies 

Though compelling, dominant strategy equilibria do not always exist, 
for example, as illustrated by the partnership or the matching pennies 
games we have seen above. 

Nevertheless, in the prisoner’s dilemma game, “confess, confess” is a 
dominant strategy equilibrium. 

We can also introduce the converse of the notion of dominant 
strategy, which will be useful next. 

Definition 

(Strictly Dominated Strategy) A strategy si ∈ Si is strictly dominated 
for player i if there exists some si

� ∈ Si such that 

ui (si
�, s−i ) > ui (si , s−i ) for all s−i ∈ S−i . 
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Game Theory: Lecture 2 Dominant Strategies 

Dominated Strategies 

Definition 

(Weakly Dominated Strategy) A strategy si ∈ Si is weakly dominated 
for player i if there exists some si

� ∈ Si such that 

ui (si
�, s−i ) ≥ ui (si , s−i ) for all s−i ∈ S−i , 

ui (si
�, s−i ) > ui (si , s−i ) for some s−i ∈ S−i . 

No player should play a strictly dominated strategy 

Common knowledge of payoffs and rationality results in iterated 
elimination of strictly dominated strategies 
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Game Theory: Lecture 2 Dominant Strategies 

Iterated Elimination of Strictly Dominated Strategies 

Example: Iterated Elimination of Strictly Dominated Strategies. 

prisoner 1 / prisoner 2 Confess Don’t confess Suicide 
Confess (−2, −2) (0, −3) (−2, −10) 

Don’t confess (−3, 0) (−1, −1) (0, −10) 
Suicide (−10, −2) (−10, 0) (−10, −10) 

No dominant strategy equilibrium; because of the additional “suicide” 
strategy, which is a strictly dominated strategy for both players. 
No “rational” player would choose “suicide”. Thus if prisoner 1 is 
certain that prisoner 2 is rational, then he can eliminate the latter’s 
“suicide” strategy, and likewise for prisoner 2. Thus after one round 
of elimination of strictly dominated strategies, we are back to the 
prisoner’s dilemma game, which has a dominant strategy equilibrium. 
Thus iterated elimination of strictly dominated strategies leads to a 
unique outcome, “confess, confess”—thus the game is dominance 
solvable. 
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Game Theory: Lecture 2 Dominant Strategies 

Iterated Elimination of Strictly Dominated Strategies 
(continued) 

More formally, we can follow the following iterative procedure: 

Step 0: Define, for each i , Si 
0 = Si . 

Step 1: Define, for each i , 

Si 
1 = si ∈ Si 

0 | �si
� ∈ Si 

0 s.t. ui si
�, s−i > ui (si , s−i ) ∀ s−i ∈ S−

0 
i . 

... 

Step k: Define, for each i , 

Sk = si ∈ Si
k−1 | �s � ∈ Si

k−1 s.t. ui si
�, s−i > ui (si , s−i ) ∀ s−i ∈ S−

k−
i 

1 .i i 

Step ∞: Define, for each i , 

Si 
∞ = ∩k

∞ 
=0Si

k . 
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Game Theory: Lecture 2 Dominant Strategies 

Iterated Elimination of Strictly Dominated Strategies 
(continued) 

Theorem 

Suppose that either (1) each Si is finite, or (2) each ui (si , s−i ) is 
continuous and each Si is compact (i.e., closed and bounded). Then Si 

∞ 

(for each i ) is nonempty. 

Proof for part (1) is trivial. 

Proof for part (2) in homework. 
Remarks: 

Note that Si 
∞ need not be a singleton.


Order in which strategies eliminated does not affect the set of

strategies that survive iterated elimination of strictly dominated

strategies (or iterated strict dominance): also in the homework.
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Game Theory: Lecture 2 Dominant Strategies 

How Reasonable is Dominance Solvability 

At some level, it seems very compelling. But consider the k- beauty 
game. 

Each of you will pick an integer between 0 and 100. 

The person who was closest to k times the average of the group will 
win a prize. 

How will you play this game? And why? 
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Game Theory: Lecture 2 Dominant Strategies 

Revisiting Cournot Competition 

Apply iterated strict dominance to Cournot model to predict the 
outcome 

1/2 1

1/2

1

B1(s2)

B2(s1)

s1

s2

1
4/

1
4/

1/2 1

1/2

1

s1

s2

1
4/

1
4/

B2(s1)

B1(s2)

One round of elimination yields S1
1 = [0, 1/2], S2

1 = [0, 1/2] 
Second round of elimination yields S1

2 = [1/4, 1/2], S2
2 = [1/4, 1/2] 

It can be shown that the endpoints of the intervals converge to the 
intersection 
Most games not solvable by iterated strict dominance, need a

stronger equilibrium notion
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Game Theory: Lecture 2 Nash Equilibrium 

Pure Strategy Nash Equilibrium 

Definition 

(Nash equilibrium) A (pure strategy) Nash Equilibrium of a strategic 
game �I , (Si )i∈I , (ui )i∈I � is a strategy profile s∗ ∈ S such that for all 
i ∈ I 

ui (si 
∗, s−

∗ 
i ) ≥ ui (si , s−

∗ 
i ) for all si ∈ Si . 

Why is this a “reasonable” notion? 

No player can profitably deviate given the strategies of the other 
players. Thus in Nash equilibrium, “best response correspondences 
intersect”. 

Put differently, the conjectures of the players are consistent: each 
player i chooses si 

∗ expecting all other players to choose s−
∗ 

i , and each 
player’s conjecture is verified in a Nash equilibrium. 
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Game Theory: Lecture 2 Nash Equilibrium 

Reasoning about Nash Equilibrium 

This has a “steady state” type flavor. In fact, two ways of justifying 
Nash equilibrium rely on this flavor: 

Introspection: what I do must be consistent with what you will do

given your beliefs about me, which should be consistent with my beliefs

about you,...

Steady state of a learning or evolutionary process.


An alternative justification: Nash equilibrium is self-reinforcing 

If player 1 is told about player 2’s strategy, in a Nash equilibrium she 
would have no incentive to change her strategy. 
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Game Theory: Lecture 2 Nash Equilibrium 

Role of Conjectures 

To illustrate the role of conjectures, let us revisit matching pennies 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

Here, player 1 can play heads expecting player 2 to play tails. Player 2 
can play tails expecting player 1 to play tails. 

But these conjectures are not consistent with each other. 
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Game Theory: Lecture 2 Nash Equilibrium 

Intersection of Best Responses 

Recall the best-response correspondence Bi (s−i ) of player i ,


Bi (s−i ) ∈ arg max ui (si , s−i ).

si ∈Si 

Equivalent characterization: an action profile s∗ is a Nash equilibrium iff 

si 
∗ ∈ Bi (s−

∗ 
i ) for all i ∈ I . 

Therefore, in Cournot as formulated above, unique Nash equilibrium. 

1/2
1

1/2

1

B1(s2)

B2(s1)

s1

s2

Remark: When iterated strict dominance yields a unique strategy profile, is this 
necessarily a Nash equilibrium? unique Nash equilibrium? 
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Game Theory: Lecture 2 Examples 

Example: The Partnership Game 

Let us return to the partnership game we started with. 

Player 1 \ Player 2 work hard shirk 
work hard (2, 2) (−1, 1) 

shirk (1, −1) (0, 0) 

There are no dominant or dominated strategies. 

Work hard is a best response to work hard and shirk is a best 
response shirk for each player. 

Therefore, there are two pure strategy Nash equilibria (work hard, 
work hard) and (shirk, shirk). 

Depending on your conjectures (“expectations”) about your partner, 
you can end up in a good or bad outcome. 
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Game Theory: Lecture 2 Examples 

Focal Points 

What do we do when there are multiple Nash equilibria? 

Our models would not be making a unique prediction. 

Two different lines of attack: 

Think of set valued predictions—i.e., certain outcomes are possible, 
and Nash equilibrium rules out a lot of other outcomes. 
Think of equilibrium selection. 

Equilibrium selection is hard. 

Most important idea, Schelling’s focal point. 

Some equilibria are more natural and will be expected. 

Schelling’s example: ask the people to meet in New York, without 
specifying the place. Most people will go to Grand Central. Meeting 
at Grand Central, as opposed to meeting at any one of thousands of 
similar places, is a “focal point”. 
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Game Theory: Lecture 2 Examples 

Examples: Battle of the Sexes and Matching Pennies 

Example: Battle of the Sexes (players wish to coordinate but have 
conflicting interests) 

Player 1 \ Player 2 ballet football 
ballet (1, 4) (0, 0) 

football (0, 0) (4, 1) 

Two Nash equilibria, (Ballet, Ballet) and (Soccer, Soccer). 
Example: Matching Pennies. 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

No pure Nash equilibrium (but we will see in the next lecture that 
there exists a unique mixed strategy equilibrium). 
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Game Theory: Lecture 2 Examples 

Examples: Cournot Competition 

We now provide an explicit characterization of the Nash equilibrium 
of Cournot for a specific demand function. 
Suppose that both firms have marginal cost c and the inverse demand 
function is given by P (Q) = α − βQ, where Q = q1 + q2, where 
α > c . Then player i will maximize: 

max πi (q1, q2) = [P (Q) − c ] qi 
qi ≥0 

= [α − β (q1 + q2) − c ] qi . 

To find the best response of firm i we just maximize this with respect 
to qi , which gives first-order condition 

[α − c − β (q1 + q2)] − βqi = 0. 

Therefore, the best response correspondence (function) of firm i can 
be written as 

α − c − βq−i 
qi = . 

2β 
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Game Theory: Lecture 2 Examples 

Cournot Competition (continued) 

Now combining the two best response functions, we find the unique 
Cournot equilibrium as 

q1 
∗ = q2 

∗ = 
α − c 

. 
3β 

Total quantity is 2 (α − c) /3β, and thus the equilibrium price is 

α + 2c 
P∗ = . 

3 

It can be verified that if the two firms colluded, then they could 
increase joint profits by reducing total quantity to (α − c) /2β and 
increasing price to (α + c) /2. 
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Game Theory: Lecture 2 Examples 

Examples: Bertrand Competition 

An alternative to the Cournot model is the Bertrand model of 
oligopoly competition. 

In the Cournot model, firms choose quantities. In practice, choosing 
prices may be more reasonable. 

What happens if two producers of a homogeneous good charge 
different prices? Reasonable answer: everybody will purchase from 
the lower price firm. 

In this light, suppose that the demand function of the industry is 
given by Q (p) (so that at price p, consumers will purchase a total of 
Q (p) units). 

Suppose that two firms compete in this industry and they both have 
marginal cost equal to c > 0 (and can produce as many units as they 
wish at that marginal costs). 
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Game Theory: Lecture 2 Examples 

Bertrand Competition (continued) 

Then the profit function of firm i can be written as ⎧ ⎨ Q (pi ) (pi − c) if p−i > pi 

πi (pi , p−i ) = ⎩ 
1
2 Q (pi ) (pi − c) if p−i = pi 

0 if p−i < pi 

Actually, the middle row is arbitrary, given by some ad hoc 
“tiebreaking” rule. Imposing such tie-breaking rules is often not 
“kosher” as the homework will show. 

Proposition 

In the two-player Bertrand game there exists a unique Nash equilibrium 
given by p1 = p2 = c. 
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Game Theory: Lecture 2 Examples 

Bertrand Competition (continued) 

Proof: Method of “finding a profitable deviation”. 

Can p1 ≥ c > p2 be a Nash equilibrium? No because firm 2 is losing 
money and can increase profits by raising its price. 

Can p1 = p2 > c be a Nash equilibrium? No because either firm 
would have a profitable deviation, which would be to reduce their 
price by some small amount (from p1 to p1 − ε). 

Can p1 > p2 > c be a Nash equilibrium? No because firm 1 would 
have a profitable deviation, to reduce its price to p2 − ε. 

Can p1 > p2 = c be a Nash equilibrium? No because firm 2 would 
have a profitable deviation, to increase its price to p1 − ε. 

Can p1 = p2 = c be a Nash equilibrium? Yes, because no profitable 
deviations. Both firms are making zero profits, and any deviation 
would lead to negative or zero profits. 
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