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Game Theory: Lecture 3 Introduction 

Outline 

Review 

Examples of Pure Strategy Nash Equilibria 

Mixed Strategies and Mixed Strategy Nash Equilibria 

Characterizing Mixed Strategy Nash Equilibria 

Rationalizability 

Reading: 
Fudenberg and Tirole, Chapters 1 and 2. 
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Game Theory: Lecture 3 Nash Equilibrium 

Pure Strategy Nash Equilibrium 

Definition 

(Nash equilibrium) A (pure strategy) Nash Equilibrium of a strategic 
game �I , (Si )i∈I , (ui )i∈I � is a strategy profile s∗ ∈ S such that for all 
i ∈ I 

ui (si 
∗, s−

∗ 
i ) ≥ ui (si , s−

∗ 
i ) for all si ∈ Si . 

Why is this a “reasonable” notion? 

No player can profitably deviate given the strategies of the other 
players. Thus in Nash equilibrium, “best response correspondences 
intersect”. 

Put differently, the conjectures of the players are consistent: each 
player i chooses si 

∗ expecting all other players to choose s−
∗ 

i , and each 
player’s conjecture is verified in a Nash equilibrium. 
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Game Theory: Lecture 3 Examples 

Example: Second Price Auction 

Second Price Auction (with Complete Information) The second price

auction game is specified as follows:

An object to be assigned to a player in {1, .., n}.

Each player has her own valuation of the object. Player i ’s valuation

of the object is denoted vi . We further assume that v1 > v2 > ... > 0.

Note that for now, we assume that everybody knows all the valuations

v1, . . . , vn, i.e., this is a complete information game. We will analyze

the incomplete information version of this game in later lectures.


The assignment process is described as follows:

The players simultaneously submit bids, b1, .., bn.

The object is given to the player with the highest bid (or to a random

player among the ones bidding the highest value).

The winner pays the second highest bid.

The utility function for each of the players is as follows: the winner

receives her valuation of the object minus the price she pays, i.e.,

vi − bj ; everyone else receives 0.
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Game Theory: Lecture 3 Examples 

Second Price Auction (continued) 

Proposition 

In the second price auction, truthful bidding, i.e., bi = vi for all i , is a 
Nash equilibrium. 

Proof: We want to show that the strategy profile (b1, .., bn) = (v1, .., vn) 
is a Nash Equilibrium—a truthful equilibrium. 

First note that if indeed everyone plays according to that strategy, 
then player 1 receives the object and pays a price v2. 
This means that her payoff will be v1 − v2 > 0, and all other payoffs 
will be 0. Now, player 1 has no incentive to deviate, since her utility 
can only decrease. 
Likewise, for all other players vi = v1, it is the case that in order for 
vi to change her payoff from 0 she needs to bid more than v1, in

which case her payoff will be vi − v1 < 0.

Thus no incentive to deviate from for any player.
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Game Theory: Lecture 3 Examples 

Second Price Auction (continued) 

Are There Other Nash Equilibria? In fact, there are also unreasonable 
Nash equilibria in second price auctions. 

We show that the strategy (v1, 0, 0, ..., 0) is also a Nash Equilibrium. 

As before, player 1 will receive the object, and will have a payoff of 
v1 − 0 = v1. Using the same argument as before we conclude that 
none of the players have an incentive to deviate, and the strategy is 
thus a Nash Equilibrium. 

It can be verified the strategy (v2, v1, 0, 0, ..., 0) is also a Nash 
Equilibrium. 

Why? 
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Game Theory: Lecture 3 Examples 

Second Price Auction (continued) 

Nevertheless, the truthful equilibrium, where , bi = vi , is the Weakly 
Dominant Nash Equilibrium 
In particular, truthful bidding, bi = vi , weakly dominates all other 
strategies. 
Consider the following picture proof where B∗ represents the 
maximum of all bids excluding player i ’s bid, i.e. 

B∗ = max bj , 
j=i 

and v ∗ is player i’s valuation and the vertical axis is utility. 

B*v*

ui(bi)

bi = v*

B*v* B*
v*

bi < v* bi > v*

ui(bi) ui(bi)

bi bi
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Game Theory: Lecture 3 Examples 

Second Price Auction (continued) 

The first graph shows the payoff for bidding one’s valuation. In the 
second graph, which represents the case when a player bids lower 
than their valuation, notice that whenever bi ≤ B∗ ≤ v ∗, player i 
receives utility 0 because she loses the auction to whoever bid B∗. 

If she would have bid her valuation, she would have positive utility in 
this region (as depicted in the first graph). 

Similar analysis is made for the case when a player bids more than 
their valuation. 

An immediate implication of this analysis is that other equilibria 
involve the play of weakly dominated strategies. 
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Game Theory: Lecture 3 Mixed Strategies 

Nonexistence of Pure Strategy Nash Equilibria 

Example: Matching Pennies. 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

No pure Nash equilibrium.


How would you play this game?
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Game Theory: Lecture 3 Mixed Strategies 

Nonexistence of Pure Strategy Nash Equilibria 

Example: The Penalty Kick Game. 

penalty taker \ goalie left right 
left (−1, 1) (1, −1) 
right (1, −1) (−1, 1) 

No pure Nash equilibrium. 

How would you play this game if you were the penalty taker? 

Suppose you always show up left. 
Would this be a “good strategy”? 

Empirical and experimental evidence suggests that most penalty 
takers “randomize” mixed strategies. →
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Mixed Strategies 

Let Σi denote the set of probability measures over the pure strategy 
(action) set Si . 

For example, if there are two actions, Si can be thought of simply as a 
number between 0 and 1, designating the probability that the first 
action will be played. 

We use σi ∈ Σi to denote the mixed strategy of player i , and 
σ ∈ Σ = ∏i∈I Σi to denote a mixed strategy profile. 

Note that this implicitly assumes that players randomize

independently.


We similarly define σ−i ∈ Σ−i = ∏j � Σj .=i 

Following von Neumann-Morgenstern expected utility theory, we 
extend the payoff functions ui from S to Σ by 

ui (σ) = ui (s)dσ(s). 
S 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Mixed Strategy Nash Equilibrium 

Definition (Mixed Nash Equilibrium) 

A mixed strategy profile σ∗ is a (mixed strategy) Nash Equilibrium if for 
each player i , 

ui (σi 
∗, σ∗ ) ≥ ui (σi , σ

∗ ) for all σi−i −i ∈ Σi . 

It is sufficient to check only pure strategy “deviations” when 
determining whether a given profile is a (mixed) Nash equilibrium. 

Proposition 

A mixed strategy profile σ∗ is a (mixed strategy) Nash Equilibrium if and 
only if for each player i , 

ui (σi 
∗, σ∗ ) ≥ ui (si , σ∗ ) for all si−i −i ∈ Si . 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Mixed Strategy Nash Equilibria (continued) 

We next present a useful result for characterizing mixed Nash 
equilibrium. 

Proposition 

Let G = �I , (Si )i∈I , (ui )i ∈I � be a finite strategic form game. Then, 
σ∗ ∈ Σ is a Nash equilibrium if and only if for each player i ∈ I , every 
pure strategy in the support of σi 

∗ is a best response to σ∗ 
−i . 

Proof idea: If a mixed strategy profile is putting positive probability on a 
strategy that is not a best response, then shifting that probability to other 
strategies would improve expected utility. 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Mixed Strategy Nash Equilibria (continued) 

It follows that every action in the support of any player’s equilibrium 
mixed strategy yields the same payoff. 
Note: this characterization result extends to infinite games: σ∗ ∈ Σ 
is a Nash equilibrium if and only if for each player i ∈ I , 
(i) no action in Si yields, given σ∗ , a payoff that exceeds his equilibrium −i 

payoff, 
(ii) the set of actions that yields, given σ∗ , a payoff less than his −i 

equilibrium payoff has σ∗ 
i -measure zero. 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Examples 

Example: Matching Pennies. 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

Unique mixed strategy equilibrium where both players randomize with 
probability 1/2 on heads. 

Example: Battle of the Sexes Game. 

Player 1 \ Player 2 ballet football 
ballet (2, 1) (0, 0) 

football (0, 0) (1, 2) 

This game has two pure Nash equilibria and a mixed Nash equilibrium

( 23 , 3
1 ), ( 13 , 3

2 ) . 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Strict Dominance by a Mixed Strategy 

Player 1	 \ Player 2 Left Right 
U (2, 0) (−1, 0) 
M (0, 0) (0, 0) 
D (−1, 0) (2, 0) 

Player 1 has no pure strategies that strictly dominate M. 

However, M is strictly dominated by the mixed strategy ( 12 , 0, 12 ). 
Definition (Strict Domination by Mixed Strategies) 

An action si is strictly dominated if there exists a mixed strategy σi
� ∈ Σi such 

that ui (σ�i , s−i ) > ui (si , s−i ), for all s−i ∈ S−i . 

Remarks: 

Strictly dominated strategies are never used with positive probability in a 
mixed strategy Nash Equilibrium. 

However, as we have seen in the Second Price Auction, weakly dominated 
strategies can be used in a Nash Equilibrium. 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Iterative Elimination of Strictly Dominated Strategies– 
Revisited 

Let Si 
0 = Si and Σ0 

i = Σi .


For each player i ∈ I and for each n ≥ 1, we define Sn as
i 

Si
n = {si ∈ Si

n−1 | �	 σi ∈ Σn
i 
−1 such that 

ui (σi , s−i ) > ui (si , s−i ) for all s−i ∈ S−
n−

i 
1}. 

Independently mix over Si
n to get Σn

i .


Let Di 
∞ = ∩n

∞ 
=1Si

n .


We refer to the set Di 
∞ as the set of strategies of player i that survive


iterated strict dominance. 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Rationalizability 

In the Nash equilibrium concept, each player’s action is optimal 
conditional on the belief that the other players also play their Nash 
equilibrium strategies. 

The Nash Equilibrium strategy is optimal for a player given his belief 
about the other players strategies, and this belief is correct. 

We next consider a different solution concept in which a player’s 
belief about the other players’ actions is not assumed to be correct, 
but rather, simply constrained by rationality. 

Definition 

A belief of player i about the other players’ actions is a probability 
measure σ−i ∈ ∏j �=i Σj (recall that Σj denotes the set of probability 
measures over Sj , the set of actions of player j). 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Rationality 

Rationality imposes two requirements on strategic behavior: 

(1)	 Players maximize with respect to some beliefs about opponent’s 
behavior (i.e., they are rational). 

(2)	 Beliefs have to be consistent with other players being rational, and 
being aware of each other’s rationality, and so on (but they need not 
be correct). 

Rational player i plays a best response to some belief σ−i . 

Since i thinks j is rational, he must be able to rationalize σ−i by thinking 
every action of j with σ−i (sj ) > 0 must be a best response to some belief j 
has. 
. . . 

Leads to an infinite regress: “I am playing strategy σ1 because I think player 
2 is using σ2, which is a reasonable belief because I would play it if I were 
player 2 and I thought player 1 was using σ�1, which is a reasonable thing to 
expect for player 2 because σ1

� is a best response to σ2
� , . . .. 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Example 

Consider the game (from [Bernheim 84]), 

b1 b2 b3 b4 

0, −2 10, −1 

There is a unique Nash equilibrium (a2, b2) in this game, i.e., the strategies a2 
and b2 rationalize each other. Moreover, the strategies a1, a3, b1, b3 can also be 
rationalized: 

Row will play a1 if Column plays b3. 

Column will play b3 if Row plays a3. 

Row will play a3 if Column plays b1. 

Column will play b1 if Row plays a1. 

However b4 cannot be rationalized, and since no rational player will play b4, a4 

can not be rationalized. 

a1 
a2 
a3 
a4 

0, 7 2, 5 7, 0 0, 1 
5, 2 3, 3 5, 2 0, 1 
7, 0 2, 5 0, 7 0, 1 
0, 0 0, 0 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Never-Best Response Strategies 

Example 

Consider the following game: 

Q F 
Q 
X 
F 

4, 2 0, 3 
1, 1 1, 0 
3, 0 2, 2 

It can be seen that F can be rationalized. 

If player 1 believes that player 2 will play F, then playing F is rational 
for player 1, etc. 

However, playing X is never a best response, regardless of what strategy is 
chosen by the other player, since playing F always results in better payoffs. 

A strictly dominated strategy will never be a best response, regardless of a 
player’s beliefs about the other players’ actions. 

21 



Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Never-Best Response and Strictly Dominated Strategies


Definition 

A pure strategy si is a never-best response if for all beliefs σ−i there exists 
σi ∈ Σi such that 

ui (σi , σ−i ) > ui (si , σ−i ). 

As shown in the preceding example, a strictly dominated strategy is a 
never-best response. 

Does the converse hold? Is a never-best response strategy strictly 
dominated? 

The following example illustrates a never-best response strategy

which is not strictly dominated.
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Example 

Consider the following three-player game in which all of the player’s payoffs are 
the same. Player 1 chooses A or B, player 2 chooses C or D and player 3 
chooses Mi for i = 1, 2, 3, 4. 

A A A A 
B B B B 

C D C D C D C D 
8 0 
0 0 

4 0 
0 4 

0 0 
0 8 

3 3 
3 3 

M1 M2 M3 M4 

We first show that playing M2 is never a best response to any mixed

strategy of players 1 and 2.


Let p represent the probability with which player 1 chooses A and let q 
represent the probability that player 2 chooses C. 

The payoff for player 3 when she plays M2 is 

u3(M2, p, q) = 4pq + 4(1 − p)(1 − q) = 8pq + 4 − 4p − 4q 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Example 

Suppose, by contradiction, that this is a best response for some choice of 
p, q. This implies the following inequalities: 

8pq + 4 − 4p − 4q	 ≥ u3(M1, p, q) = 8pq 

≥ u3(M3, p, q) = 8(1 − p)(1 − q) = 8 + 8pq − 8(p + q 

≥ u3(M4, p, q) = 3 

By simplifying the top two relations, we have the following inequalities: 

p + q 1≤ 

p + q 1≥ 

Thus p + q = 1, and substituting into the third inequality, we have 
pq ≥ 3/8. Substituting again, we have p2 − p + 8

3 ≤ 0 which has no 
positive roots since the left side factors into (p − 2

1 )2 + ( 38 − 4
1 ). 

On the other hand, by inspection, we can see that M2 is not strictly 
dominated. 
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Rationalizable Strategies 

Iteratively eliminating never-best response strategies yields rationalizable 
strategies. 

Start with S̃i 
0 = Si .


For each player i ∈ I and for each n ≥ 1,


S̃i
n = {si ∈ S̃i

n−1 | ∃ σ−i ∈ ∏ Σ̃j
n−1 such that


j=i


ui (si , σ−i ) ≥ ui (si
�, σ−i ) for all si

� ∈ S̃i
n−1}. 

Independently mix over S̃i
n to get Σ̃i

n .


Let Ri 
∞ = ∩n

∞ 
=1S̃i

n . We refer to the set Ri 
∞ as the set of


rationalizable strategies of player i .
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Game Theory: Lecture 3 Mixed Strategy Equilibrium 

Rationalizable Strategies 

Since the set of strictly dominated strategies is a strict subset of the 
set of never-best response strategies, set of rationalizable strategies 
represents a further refinement of the set of strategies that survive 
iterated strict dominance. 

Let NEi denote the set of pure strategies of player i used with 
positive probability in any mixed Nash equilibrium. 

Then, we have 
⊆ R∞ 

iNEi ,


iwhere R∞ is the set of rationalizable strategies of player i , and D∞ 

the set of strategies of player i that survive iterated strict dominance. 
i is


∞D⊆ i
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