MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.301 Solid State Circuits

Final Exam

December 20, 2006 180 minutes

- 1. This examination consists of four problems. Work all problems.
- 2. This examination is closed book.
- 3. Please summarize your solutions in the spaces provide in this examination packet. Draw all sketches neatly and clearly where requested. Remember to label ALL important features of any sketches.
- 4. All problems have equal weight.
- 5. Make sure that your name is on this packet and on each examination booklet.

Good luck.

- (a) Which input terminal, A or B, is the inverting input?
- (b) Assuming all base currents are negligible, and that $V_{BE,on} = 0.6$ V, determine the collector currents for all 13 transistors.
- (c) A classmate approaches you trying to determine the bandwidth of this circuit. He is complaining that the OCTC analysis is taking forever, because there are so many devices.
 - In a single, short paragraph, argue that:
 - (1) There are only a couple of devices that need careful attention.
 - (2) In this case, the OCTC estimate will be very good.

Consider the following amplifier:

(a) Fill out the following table (reproduced on the answer sheet), indicating if the small-signal circuit parameter increases (+), decreases (-), or stays the same (0) in magnitude for an increase in R_S, I_{bias}, V_A, and T. Assume that all transistors are matched and have the same V_A, β, etc., that R_S and β₀ are independent of I_{bias} and T; and that c_µ is constant. Do not ignore the Early effect.

Points will be deducted for incorrect answers. (It is better to leave a block blank than to guess randomly.)

	$R_S\uparrow$	$I_{\mathrm{bias}}\uparrow$	$V_A \uparrow$	$T\uparrow$
midband gain a_{vd}				
output resistance R_o				
Upper 3db frequency ω_h				
CMRR				

(b) In practice, we cannot use an ideal current source to bias the transistor. Consider the following non-ideal current source:

Assuming R is independent of temperature, write I_o in terms of R, k, T, and q. Assume that the Early voltage for those devices is infinite, and that they have infinite β and equal values for I_S . While this circuit can have $I_o = 0$, assume this is not the case.

If we replace I_{BIAS} in the circuit in part (a) with this new current source, what is the new effect of an increase in temperature on the midband gain (+/-/0)?

The included figure shows 8 operational-amplifier connections. You may assume that the amplifiers have ideal characteristics. Determine which of the connections can provide each of the following relationships between v_O and v_I .

(a) $v_O = 4v_I$

(b)
$$v_O = -v_I, \quad v_I > 0$$

 $v_O = 0, \quad v_I < 0$

(c) $v_O = -K_1 \ln \frac{v_I}{K_2}$ K_1 and K_2 are (possibly temperature dependent) scale factors.

(d)
$$\frac{v_O}{v_I} = \frac{1}{s^2/\omega_n^2 + 2\xi s/\omega_n + 1}$$

(e)
$$v_O = v_I$$

- $\begin{array}{ll} ({\rm f}) \quad v_O=v_I, \quad v_I>0 \\ \\ v_O=0, \quad v_I<0 \end{array}$
- (g) $v_O = +10$ V, $v_I > 5$ V $v_O = -10$ V, $v_I < -5$ V v_O is indeterminable, $-5 < v_I < +5$

(h)
$$\frac{v_O}{v_I} = \frac{s^2/\omega_n^2}{s^2/\omega_n^2 + 2\xi s/\omega_n + 1}$$

When the transistor is in its forward active region,

$$\begin{split} i_C &= \frac{q_F}{\tau_F} \\ i_B &= \frac{q_F}{\tau_{BF}} + \frac{dq_F}{dt} \end{split}$$

When it is in saturation,

$$i_B - i_{B0} = \frac{q_s}{\tau_s} + \frac{dq_s}{dt}$$

The charge control parameters for this transistor are:

$$\tau_F = 1 \text{ns}$$
 $\beta_F = 100$ $\tau_{BF} = 100 \text{ns}$
 $\tau_R = 2 \text{ns}$ $\beta_R = 5$ $\tau_{BR} = 10 \text{ns}$
 $\tau_S = 15 \text{ns}$

For parts (a) and (d) that follow, assume that $e^{-t/\tau} \approx 1 - \frac{t}{\tau}$. Express the answer to part (c) in terms of a log.

The base current is a step of 1mA.

- (a) The voltage v_O starts at +10 Volts and approaches 0 Volts. Determine the time it takes for v_O to reach +5 volts.
- (b) Determine the steady state value of q_S , assuming $v_{CE(SAT)} \approx 0V$.
- (c) After steady state is reached, the base current is stepped to zero. The output voltage eventually reaches 10 Volts. How long does it take for v_O to reach +5 volts?
- (d) In order to speed up return to $v_O = +5$ volts, the base current is stepped to -I rather than 0. What value of I is required so that the return of v_O to +5 volts is the same as the time found in part (a)?

MIT OpenCourseWare http://ocw.mit.edu

6.301 Solid-State Circuits Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.