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IIR, FIR Filter Structures 

Reading: Sections 6.1 - 6.5 in Oppenheim, Schafer & Buck (OSB).


Signal Flow Graphs 

A linear time-invariant discrete-time system is in general represented by a linear constant-
coefficient difference equation characterizing the input-output relation of the system. As a 
network structure, such a difference equation can be represented by a block diagram or a signal 
flow graph. A signal flow graph is a network of directed branches that connect at nodes. It is 
equivalent to block diagrams which we are already familiar with, except for a few notational 
differences. As examples, OSB Figures 6.8 and 6.9 depict the general form of signal flow graphs. 

In a signal flow graph, the value carried by a specific branch is equal to the value of its 
originating node. Nodes in signal flow graphs represent variables. The value carried by a 
specific node is the sum of all branches coming into it. If there is only one entering branch, the 
node is a “branching note” rather than a “summing node.” Two special types of nodes exist: 
source nodes have no entering branches, they present external signal sources; sink nodes have 
only entering branches, they extract output from a graph. These are both labelled accordingly 
in OSB Figure 6.11, which is the signal glow graph corresponding to the first order system in 
OSB Figure 6.10. By convention, the delay element has been represented by a branch gain of 
z−1 . 

The signal flow graph representation of a LTI system is not unique. In fact, for any given 
rational system function, equivalent sets of difference equations and network structures exist. 
In practical implementations, factors such as number of multipliers and adders, regularity of the 
structure, and finite-word-length effects are taken into account when deciding which network 
structure to use. 

IIR Filter Structures 

Direct Forms (I & II) 

Consider the following general form of a difference equation and the corresponding system 
transfer function: 

M N �M bk z
−1 

k=0y[n] = 
� 

bk x[n − k] + 
� 

ak y[n − k] H(z) = 
1 − 

�N . 
k=0 k=1 

⇒ 
k=1 ak z−1 

1 



If we draw the signal flow graph of this N th-order system by cascading a feedforward section 
and a feedback section, we obtain its Direct Form I structure shown in OSB Figure 6.14. Note 
that the feedforward section determines the zeros of the transfer function, while the feedback 
section gives the poles. Interchanging the order of the feedforward and feedback sections and 
combining the delay elements give the Direct Form II structure shown in OSB Figure 6.15. 

Since delay elements correspond to physical memories in actual implementation, direct form 
II structures require less state memory than the direct form I implementation. However, the 
total memory requirement for both forms are similar, because direct form II structures need 
more cache memory during computations. 

Transposed Forms 

Using signal flow graphs, we can transform a given system into a different network structure 
while maintaining the same system function. One such transformation is transposition. 

Transposition Theorem 

1. Reverse direction of all branches 

2. Interchange input and output 

For single-input single-out systems, interchanging the input and output nodes after reversing 
the flow graph gives the same transfer function as the original system. OSB Examples 6.7 and 
6.8, and OSB Figures 6.24-6.30 illustrate transposition of basic systems. Although the transfer 
functions remain the same, different network structures represent different algorithms, which 
are equivalent under ideal infinite precision arithmetic. With finite precision arithmetic, the 
implementation structure determines internally generated noise which affects the overall system 
behavior. 

Cascade Form 

Rather than deriving the signal flow graph directly from the system function as in the direct 
form cases, we could also factor the denominator and numerator of the system transfer function 
into first-order and second-order subsystems: 
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OSB Figure 6.18 is an example of the resulting cascade structure. This is a sixth-order system 
with direct form II realization for each of its second-order subsystems. 
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Parallel Form 

Equivalently, expressing the transfer function as a sum using partial fraction expansion gives a 
parallel structure: 
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OSB Figure 6.20 shows a parallel form structure for a sixth-order system. See Section 6.3 for 
a more detailed explanation. 

FIR Filter Structures 

FIR systems are special cases of IIR systems, which can be structured into direct, cascade, or 
parallel forms. There also exist additional forms specific to FIR systems. 

Direct Form 

A causal FIR system described by the following difference equation has all of its poles at the 
the origin: 
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As such, its direct form I & II implementations reduce to the flow graph shown in OSB Figure 
6.31. Such a structure is usually called a tap-delay line filter structure or a transversal filter 
structure. Furthermore, applying the transposition theorem gives the equivalent system in OSB 
Figure 6.32. Note that these are non-recursive, ie. there is no feedback. The implementation 
of FIR systems, nonetheless, is not necessarily always nonrecursive, since pole-zero cancellation 
may exist. 

Direct Form Structure for Linear-Phase FIR Systems 

In previous lectures we have shown that a causal generalized linear phase FIR system satisfies 
the following symmetry (anti-symmetry) condition, depending on the type of the system: 

h[M − n] = h[n] or h[M − n] = [n] n = 0, 1, . . . ,M . −h

Using this special property, can we further simplify the tap-delay line filter structure to reduce 
the number of multipliers required? The answer is yes. Consider a type I system where the 
transfer function H(z) is of even degree and symmetric. Rewrite H(z) as: 

M

H(z) = 
� 

h[n]z−n = h[0](1 + z−M)) + h[1](z−1 + z−(M−1)) + . . . 
n=0 

M/2−1 

= 
� 

h[n](z−n + z−(M−n)) + h[M/2]z−M/2 . 
n=0 

3




This equation suggests the realization shown in OSB Figure 6.34. Similarly, structures can be 
derived for type II, III and IV systems. See OSB Figure 6.35 for an example of a type III 
system where the order M is odd. 

Lattice Filters 

We have previously shown that a single-input single-output (SISO) system can be implemented 
by cascading SISO direct-form structured subsystems. In this section, we show another pos
sible implementation, called lattice filters, where the subsystems are two-port LTI systems of 
particular forms. The overall cascade is converted to the required SISO form by terminating 
both ends according to filter type specific rules. 

All-zero (FIR) Lattice Filters the basic two-port section in an FIR lattice filter has the 
following non-recursive butterfly signal flow graph structure: 

One section of lattice structure for FIR lattice filters 

For the overall system, the input is fed into the two input ports of the first stage, while the 
output is taken as that of the top branch of the last stage: 

General form of a lattice filter 

The coefficients k1, k2, . . . , kp+1 are called the k-parameters of the lattice structure. If the 
input s[n] is a unit impulse, it can be shown that the intermediate transfer functions in this 
FIR lattice filter satisfy the following recursive equations: 
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A0(z) = 1 Ap+1(z) = Ap(z) − kp+1Bp(Z) 

B0(z) = z−1 Bp+1(z) = z−1[Bp(z) − kp+1Ap(z)] . 

Algorithms exist for analyzing an FIR lattice filter to obtain its transfer function, or con
structing an FIR lattice structure (ie. calculating the k-parameters) from a given rational 
system function. These will be studied later in this course. 

All-pole Lattice Filters Given the structure of an all-zero lattice filter as discussed in the 
previous section, by successively reversing each lattice section, we can obtain an all-pole lattice 
filter. The signal flow graph for a reversed lattice section is 

One section of lattice structure for all-pole filters 

We have scaled all signals by AM (z) because assuming the input is at the p + 1 = M -th 
stage and the output is at p = 0, setting Ap+1(z) = AM (z), and A0(z) = 1 gives the desired 

A0(z)all-pole filter: AM (z) . The following figure shows the overall structure of an all-pole lattice filter. 
Note since B0(z) = z−1, the bottom branch of the final lattice section should be connected to 
the top branch. 

All-pole lattice filter 

An important property of all-pole lattice filters is that the systems are stable if and only if all 
of the k-parameters have magnitudes less than 1, ie. ki < 1 for all i.| | 
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Effects of Coefficient Quantization 

So far, we have looked at different ways of implementing the same difference equation. Although 
theoretically equivalent, each implementation may behave differently in the presence of finite 
precision arithmetic. Numerical problems can be introduced by filter coefficient quantization 
and signal quantization. 

As an illustration of the coefficient quantization effect, OSB Figure 6.40 displays the fre
quency responses of three different implementations for a 12th-order bandpass IIR elliptic filter 
with unquantized and quantized coefficients. Here 32-bit floating-point accuracy has been de
fined as “unquantized,” and the 16-bit quantized coefficients have been listed in OSB Tables 
6.1 and 6.2. See OSB Section 6.7.2 for detailed analysis of this example. 

Filter coefficient quantization causes the poles and zeros of the system to shift, consequently 
distorting its frequency response. The next set of figures compares the log magnitudes and pole-
zero plots of an 8th-order bandpass filter under different implementation forms and various 
quantization accuracies. Note when the coefficients are quantized to 12 or 10-bits in the direct 
form implementation, some poles move to the outside of the unit circle, making the overall 
system unstable. 
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example is an 8th-order lowpass filter:The next 
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