
LECTURE 6


Last time: 

Kraft inequality • 

optimal codes. • 

Lecture outline 

Huffman codes • 

Reading: Scts. 5.5-5.7. 



Kraft inequality


Any instantaneous code C with code lengths 

l1, l2, . . . , lm must satisfy 

m� 
D−li ≤ 1 

i=1 

Conversely, given lengths l1, l2, . . . , lm that 

satisfy the above inequality, there exists and 

instantaneous code with these codeword 

lengths 

How do we achieve such a code in a prac

tical fashion? 

Make frequent elements short and infre

quent one longer. 



Huffman codes


Definition: let X be a set of m source sym

bols, let D be a D-ary alphabet. A Huffman 

code 

CHuff is an optimum instanta: X �→ D∗ 

neous code in which the 2+((m−2)mod(D−


1)) least likely source symbols have the


same length and differ only in the last digit


Proposition: for any set of source symbols 

X with m symbols, it is possible define a 

Huffman code for those source symbols 

Consider a binary code: 

reorder the xi in terms of decreasing prob

ability 

the two least likely symbols are xm−1, xm 



�

Huffman codes for binary D


For the code C to be optimal, l(xi) ≥ l(xj) 

for i ≥ j 

for every maximal length codeword C(xi) 

there must a codeword C(xj) that differs 

only in the last bit -otherwise erase one bit 

while still satisfying prefix condition 

to satisfy that C(xm) and C(xm−1) differ 

only in the last bit: find xi such that C(xm) 

and C(xi) differ only in the last bit and if 

xi = xm, swap them 

repeat with code for symbols x1, . . . , xm−2 



How do we construct them?


Find the q = 2+((m − 2)mod(D − 1)) least


likely source symbols xm, . . . , xm−q+1


Delete these symbols from the set of source


symbols and replace them with a single sym


bol ym−q


Assign p(ym−q) = 
�m

i=m−q p(xi)


Now we have new set of symbols X�


Construct a code CHuff,m−q : X� �→ D∗


Note: could be using arbitrary weight func


tion instead of probability 



Why does this work? 

Illustrate for binary 



Why does this work?


Amalgamation is not always least likely event 

in X� 



Why does this work? 

Two questions arise: 

Why is it enough to now find a Huffman 

code CHuff,m−q? 

Where does the the q = 2+((m−2)mod(D−
1)) come from? 

Add one more letter for the q symbols xm, . . . , xm−q 

with respect to CHuff,m−q 

Average length of code is average length of 

CHuff,m−q, plus p(ym−q) = 
�m

i=m−q p(xi) 

Could we have done better by taking some 

unused node in CHuff,m−q to represent some 

of the xm, . . . , xm−q? We’ll see that this is 

not possible and it is related to the first 

question 



Complete trees


Definition: a complete code tree is a fi

nite code tree in which each intermediate 

node has D nodes of the next higher order 

stemming from it 

In a complete tree the Kraft inequality is 

satisfied with equality 



Complete trees


The number of terminal nodes in a com

plete code tree with alphabet size D must 

be of the form D + n(D − 1) 

Smallest complete tree has D terminal nodes


When we replace a terminal node by an in

termediate node, we lose one terminal node 

and gain D more, for a net gain of D − 1 



Optimal codes and complete trees


Optimal code can be seen as a complete 

tree with some number B of unused termi

nal nodes 

By contradiction, if there are incomplete 

intermediate nodes, nodes of higher order 

could complete intermediate nodes without 

adverse effect on length 

B ≤ D −2, otherwise we could swap unused 

terminal nodes to group D − 1 of them, 

in which case we can altogether eliminate 

those terminal nodes 



Optimal codes and complete trees


How large is B? B + m = n(D − 1) + D so 
D − 2 − B is the remainder of dividing m − 2 
by D − 1, or (m − 2)mod(D − 1) 

B = D − 2	− ((m − 2)mod(D − 1)) 

That is why we first group the q = 2+((m−

2)mod(D − 1)) least likely source symbols


After we have grouped those symbols, a 
complete tree is needed for the remaining 
m − q symbols plus the symbol created by 
the amalgamation of the least likely q sym

bols 

Use the fact that B + q = D 

m − q + 1	 = n(D − 1) + D − B − q + 1 

= n(D − 1) + 1 

= (n − 1)(D − 1) + D 



What happens if the unlikely events


change probability?


Major change may be necessary in the code


Cannot do a good job of coding until all 

events have been catalogued 



MIT OpenCourseWare
http://ocw.mit.edu 

6.441 Information Theory 
Spring 2010 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

