
Chapter 14


Introduction to lattice and trellis 
codes 

In this chapter we discuss coding techniques for bandwidth-limited (high-SNR) AWGN channels. 

On bandwidth-limited channels, nonbinary signal alphabets such as M -PAM must be used to 
approach capacity. Furthermore, the signals should be used with a nonuniform, Gaussian-like 
probability distribution. 

Using large-alphabet approximations, we show that the total coding gain of a coded modulation 
scheme for the bandwidth-limited AWGN channel is the sum of a coding gain due to a denser 
packing than the baseline M -PAM scheme, plus a shaping gain due to constellation shaping 
(or equivalently to use of a nonuniform distribution). At high SNRs, the coding and shaping 
problems are separable. 

The maximum possible shaping gain is a factor of πe/6 (1.53 dB). Simple shaping methods 
such as shell mapping and trellis shaping can easily obtain of the order of 1 dB of shaping gain. 

For moderate coding gains at moderate complexity, the two principal classes of packings are 
lattices and trellis codes, which are analogous to block and convolutional codes, respectively. 
By now the principles of construction of the best such codes are well understood, and it seems 
likely that the best codes have been found. We plot the effective coding gains of these known 
moderate-complexity lattices and trellis codes versus the branch complexity of their minimal 
trellises, assuming ML decoding. Trellis codes are somewhat superior, due mainly to their lower 
error coefficients. 

We briefly mention higher-performance schemes, including multilevel schemes with multistage 
decoding and bit-interleaved coded modulation, which allow the use of high-performance binary 
codes such as those described in the previous chapter to approach capacity. 
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14.1 Lattices 

It is clear from Shannon’s capacity theorem that an optimal block code for a bandwidth-limited 
AWGN channel consists of a dense packing of code points within a sphere in a high-dimensional 
Euclidean space. Most of the densest known packings are lattices. 

In this section we briefly describe lattice constellations, and analyze their performance using 
the union bound estimate and large-constellation approximations. 

An n-dimensional (n-D) lattice Λ is a discrete subset of n-space Rn that has the group property. 
Without essential loss of generality, Λ may be assumed to span Rn . The points of the lattice 
then form a uniform infinite packing of Rn . 

Example 1. The set of integers Z is a one-dimensional lattice, since Z is a discrete subgroup 
of R. Any 1-dimensional lattice is of the form Λ = αZ for some scalar α >  0. 

Example 2. The  integer lattice Zn (the set of integer n-tuples) is an n-dimensional lattice for 
any n ≥ 1. 

√ 
3Example 3. The  hexagonal lattice A2 = {a(1, 0) + b( 1 

2 , ) | (a, b) ∈ Z2} is illustrated in 2 
Figure 1. This lattice is the densest packing of R2 . 

Figure 1. The hexagonal lattice A2. 

Exercise 1. Let  C be an (n, k, d) binary linear block code. Show that 

ΛC = {x ∈ Z
n | x ≡ c mod 2 for some c ∈ C}  (14.1) 

is an n-dimensional sublattice of Zn (called a “Construction A” or “mod-2” lattice). 

A general n-dimensional lattice Λ that spans R
n may be characterized by a set of linearly 

independent generators G = {gj , 1  ≤ j ≤ n} such that Λ is the set of all integer linear 
combinations of the generators: 

Λ =  {aG = aj gj | a ∈ Z
n}. (14.2) 

j 

Thus Λ may be viewed as the image of the integer lattice Zn under a linear transformation of 
n-space Rn by the linear operator G, as illustrated by Figure 1. 

By the group property of Λ, any translate Λ + x by a lattice point x ∈ Λ is just Λ again. 
This implies that a lattice is “geometrically uniform;” every point of the lattice has the same 
number of neighbors at each distance, and all decision regions of a minimum-distance decoder 
(“Voronoi regions”) are congruent and form a tessellation of Rn . Indeed, any lattice translate 
Λ +  t is geometrically uniform. 
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The key geometrical parameters of a lattice are: 

•	 the minimum squared distance d2 
min(Λ) between lattice points; 

•	 the kissing number Kmin(Λ) (the number of nearest neighbors to any lattice point); 

•	 the volume V (Λ) of n-space per lattice point. As indicated in Figure 1, this volume is the 
volume of the fundamental parallelotope 

[0, 1)nG = {aG | a ∈ [0, 1)n}. 

Since the volume of the n-cube [0, 1)n is 1 and the Jacobian of the linear transformation G is 
its determinant |G|, it follows that V (Λ) = |G| for any generator matrix G of Λ. 

The Hermite parameter of Λ is the normalized density parameter 

d2 
min(Λ)

γc(Λ) = 
V (Λ)2/n 

,	 (14.3) 

which we will shortly identify as its nominal coding gain. The quantity V (Λ)2/n may be thought  
of as the normalized volume of Λ per two dimensions. 

Example 3 (cont.) For the hexagonal lattice A2, the minimum squared distance is d2 √ min(A2) =  
1, the kissing number is Kmin(A2) = 6, the volume is V (A2) =  3/2, and the Hermite parameter √ 
is γc(A2) = 2/ 3 = 1.155 (0.62 dB). Therefore A2 is denser than the integer lattice Z2, for which 
d2 

min(Z
2) =  V (Z2) =  γc(Z2) = 1.  

Exercise 1 (cont.) Show that if C is an (n, k, d) binary linear block code with Nd weight-d 
words, then the mod-2 lattice ΛC has the following geometrical parameters: 

d2 
min(ΛC ) = min{d, 4};	 (14.4) ⎧ ⎨ 2dNd, if d <  4; 

Kmin(ΛC ) =  2n, if d >  4; (14.5) ⎩ 2dNd + 2n, if d = 4;  

V (ΛC ) = 2n−k ;	 (14.6) 
d2 

min(ΛC )
γc(ΛC ) =  

2η(C) 
,	 (14.7) 

where η(C) = 2(n − k)/n is the redundancy of C in bits per two dimensions. 

Exercise 2. Show that γc(Λ) is invariant to scaling, orthogonal transformations, and Cartesian 
products; i.e., γc(αU Λm) =  γc(Λ), where α >  0 is any scale factor, U is any orthogonal matrix, 
and m ≥ 1 is any positive integer. Show that γc(αU Zn) = 1 for any version αU Zn of any integer 
lattice Zn . 
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14.2 Lattice constellations 

A lattice constellation 
C(Λ, R) = (Λ + t) ∩R  (14.8) 

is the finite set of points in a lattice translate Λ + t that lie within a compact bounding region 
R of n-space. 

Example 4. An  M -PAM constellation α{±1, ±3, . . . ,  ±(M − 1)} is a one-dimensional lattice 
constellation C(2αZ, R) with Λ  +  t = 2α(Z + 1)  and  R = [−αM, αM ]. 

The key geometric properties of the region R are 

• its volume V (R) =  R dx; 

• the average energy P (R) per dimension of a uniform probability density function over R: 

‖x‖2 dx 
P (R) =  .	 (14.9) 

R n V (R) 

The normalized second moment of R is defined as the dimensionless parameter 

P (R)
G(R) =  

V (R)2/n 
.	 (14.10) 

Example 4 (cont.). The key geometrical parameters of R = [−αM, αM ] are  V (R) = 2αM , 
P (R) =  α2M2/3, and G(R) = 1/12. 

Exercise 3. Show that G(R) is invariant to scaling, orthogonal transformations, and Cartesian 
products; i.e., G(αURm) =  G(R), where α >  0 is any scale factor, U is any orthogonal matrix, 
and m ≥ 1 is any positive integer. Show that G(αU [−1, 1)n) = 1/12 for any version αU [−1, 1)n 

of any n-cube [−1, 1)n centered at the origin. 

For performance analysis of large lattice constellations, one may use the following approxima-
tions, the first two of which are together known as the continuous approximation: 

•	 The size of the constellation is 
|C(Λ, R)| ≈  

V (R) 
(14.11) 

V (Λ)
; 

• The average energy per dimension of a uniform discrete distribution over C(Λ, R) is  

P (C(Λ, R)) ≈ P (R);	 (14.12) 

• The average number of nearest neighbors to any point in C(Λ, R) is  ≈ Kmin(Λ). 



195 14.2. LATTICE CONSTELLATIONS 

Again, the union bound estimate (UBE) on probability of block decoding error is 
( 

min(Λ) 
) √ d2 

Pr(E) ≈ Kmin(Λ)Q 
4σ2 . (14.13) 

Since 

2 
ρ = log2 |C(Λ, R)| ≈  

2 V (R) 
n n 

log2 V (Λ) 
; 

P (C(Λ, R)) P (R)
SNR = ≈ ;

σ2 σ2 

SNR V (Λ)2/n P (R)
SNRnorm ≈ 

2ρ = 
V (R)2/n σ2 , 

we may write the UBE as 
√ 

Pr(E) ≈ Kmin(Λ)Q (γc(Λ)γs(R)(3 SNRnorm)) , (14.14) 

where the nominal coding gain of Λ and the shaping gain of R are defined respectively as 

d2 

γc(Λ) = min(Λ) 
; (14.15) 

V (Λ)2/n 

V (R)2/n 1/12 
= (14.16)γs(R) =  

12P (R) G(R) 
. 

For a baseline  M -PAM constellation with Λ = 2αZ and R = [−αM, αM ], we have γc(Λ) = 
γs(R) = 1  and  Kmin(Λ) ≈ 2, so the UBE reduces to the baseline expression 

√ 
Pr(E) ≈ 2Q (3 SNRnorm). 

The nominal coding gain γc(Λ) measures the increase in density of Λ over the baseline integer 
lattice Z (or Zn). The shaping gain γs(R) measures the decrease in average energy of R relative 
to an interval [−α, α] (or an n-cube [−α, α]n). Both contribute a multiplicative factor of gain √ 
to the argument of the Q (·) function. 

As before, the effective coding gain is reduced by the error coefficient Kmin(Λ). The probability 
of block decoding error per two dimensions is 

√ 
Ps(E) ≈ Ks(Λ)Q (γc(Λ)γs(R)(3 SNRnorm)), (14.17) 

in which the normalized error coefficient per two dimensions is Ks(Λ) = 2Kmin(Λ)/n. 
√ 

Graphically, a curve of the form Ps(E) ≈ Ks(Λ)Q (γc(Λ)γs(R)(3 SNRnorm)) may be obtained √ 
simply by moving the baseline curve Ps(E) = 4Q (3 SNRnorm) to the left by γc(Λ) and γs(R) 
(in dB), and  upward  by a factor of  Ks(Λ)/4. Such simple manipulations of the baseline curve 
as a function of γc(Λ), γs(R) and  Ks(Λ) again are an easy and useful design tool for lattice 
constellations of moderate complexity. 
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14.3 Shaping gain and shaping techniques 

Although shaping is a newer and less important topic than coding, we discuss it first because 
its story is quite simple. 

The n-dimensional shaping region R that minimizes G(R) is obviously an n-sphere. The key 
geometrical parameters of an n-sphere of radius r (for n even) are: 

(πr2)n/2 

V⊗(n, r) =  
(n/2)! 

; 

2r
P⊗(n, r) =  

n + 2
; 

P⊗(n, r) 
=

((n/2)!)2/n 

G⊗(n, r) =  
V⊗(n, r)2/n π(n + 2)  

. 

By Stirling’s approximation, m! → (m/e)m as m → ∞, which implies 

1 
G⊗(n, r) → ;

2πe 
1/12 πe 

γs⊗(n, r) =  → (1.53 dB). 
G⊗(n, r) 6 

Thus shaping gain is limited to a finite value as n → ∞, namely πe/6 (1.53 dB), which is called 
the ultimate shaping gain. 

The shaping gain of an n-sphere is plotted for dimensions n ≤ 24 in Figure 2. Note that the 
shaping gain of a 16-sphere already exceeds 1 dB. 
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Figure 2. Shaping gains of n-spheres for n ≤ 24. 

The projection of a uniform probability distribution over an n-sphere onto one or two 
dimensions is a nonuniform probability distribution that approaches a Gaussian distribution
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as n → ∞. The ultimate shaping gain of πe/6 (1.53 dB) may alternatively be derived as the 
difference between the average power of a uniform distribution over an interval and that of a 
Gaussian distribution with the same differential entropy. 

Shaping thus induces a Gaussian-like probability distribution on a one-dimensional PAM or 
two-dimensional QAM constellation, rather than an equiprobable distribution. In principle, with 
spherical shaping, the lower-dimensional constellation will become arbitrarily large, even with 
fixed average power. In practice, the lower-dimensional constellation is constrained by design to 
a certain region R to limit “shaping constellation expansion.” The n-dimensional shape then only 
approximates spherical shaping subject to this constraint, and the lower-dimensional probability 
distribution approaches a truncated Gaussian distribution within the region R. 

With large constellations, shaping can be implemented almost independently of coding by 
operations on the “most significant bits” of M -PAM or (M × M )-QAM constellation labels, 
which affect the gross shape of the n-dimensional constellation. In contrast, coding affects the 
“least significant bits” and determines fine structure. 

Two practical schemes that can easily obtain shaping gains of 1 dB or more while limiting 2D 
shaping constellation expansion to a factor of 1.5 or less are “trellis shaping,” a kind of dual to 
trellis coding, and “shell mapping,” which uses generating-function techniques to enumerate the 
points in a Cartesian product constellation in approximate increasing order of energy. 

14.4 Coding gains of dense lattices 

Finding the densest lattice packings in a given number of dimensions is a mathematical problem 
of long standing. A summary of the densest known packings is given in [Conway and Sloane, 
Sphere Packings, Lattices and Groups ]. The nominal coding gains of these lattices in up to 24 
dimensions is plotted in Figure 3. 
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Figure 3. Nominal coding gains of densest lattices in dimensions n ≤ 24. 
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In contrast to shaping gain, the nominal coding gains of dense n-dimensional lattices become 
infinite as n → ∞. 

Example 5 (Barnes-Wall lattices). For all integer m ≥ 0, there exists a 2m+1-dimensional 
Barnes-Wall lattice BW2m+1 whose nominal coding gain is 2m/2 (see next subsection). The two-
dimensional BW lattice is Z2 . In 4, 8, and 16 dimensions the BW lattices (denoted by D4, E8 

and Λ16, respectively) are the densest lattices known. For large m, considerably denser lattices 
are known. 

Exercise 1 (cont.) Show that the mod-2 lattices corresponding to the (4, 3, 2) and (4, 1, 4) 
binary linear block codes have coding gain 21/2 (1.51 dB); these lattices are in fact versions 
of D4. Show that the mod-2 lattice corresponding to the (8, 4, 4) binary linear block code has 
coding gain 2 (3.01 dB); this lattice is in fact a version of E8. Show that no mod-2 lattice has 
a nominal coding gain more than 4 (6.02 dB). 

However, effective coding gains cannot become infinite. Indeed, the Shannon limit shows that 
no lattice can have a combined effective coding gain and shaping gain greater than 9 dB at 
Ps(E) ≈ 10−6 . This limits the maximum possible effective coding gain to 7.5 dB, since shaping 
gain can contribute up to 1.53 dB. 

What limits effective coding gain is the number of near neighbors, which becomes very large 
for high-dimensional dense lattices. 

Example 5 (cont.) The kissing number of the 2m+1-dimensional Barnes-Wall lattice is 

Kmin(BW2m+1 ) =  (2i + 2). 
1≤i≤m+1 

For m = 0, 1, 2, 3, 4, . . .  these numbers are 4, 24, 240, 4320, 146880, . . .  . Thus while BW32 has a 
nominal coding gain of 4 (6.02 dB), its kissing number is 146880, so its effective coding gain by 
our rule of thumb is only about 3.8 dB. BW128 has a nominal coding gain of 8 (9.03 dB), but a 
kissing number of 1 260 230 400, so its effective coding gain by our rule of thumb is only about 
4.6 dB. These calculations indicate how the effective coding gain of higher-dimensional lattices 
eventually saturates. 

Example 6 (Leech Lattice). The Leech lattice L24, a remarkably dense lattice in 24 dimen-
sions, has a nominal coding gain of 4 (6.02 dB), but it has a kissing number of 196560, so its 
effective coding gain by our rule of thumb is only about 3.6 dB. 

14.4.1 Barnes-Wall lattices 

The Barnes-Wall lattices (1959) are an infinite family of n-dimensional lattices that are analogous 
to the Reed-Muller binary block codes. For n ≤ 16, they are the best lattices known. For greater 
n, they are not in general the best lattices known, but in terms of performance vs. decoding 
complexity they are still quite good, since they admit relatively simple decoding algorithms. 

For any integer m ≥ 0, there exists an (n = 2m+1)-dimensional BW lattice, denoted 
BW2m+1 , that has minimum squared Euclidean distance d2 

min(BW2m+1 ) = 2m, normalized vol-
ume V (BW2m+1 )2/n = 2m/2, and therefore nominal coding gain γc(BW2m+1 ) = 2m/2 . 

In 2 dimensions, the Barnes-Wall lattice BW2 is the integer lattice Z2, which  is  the  mod-2  
lattice corresponding to the (2, 2, 1) code. 
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The mod-2 lattice RZ
2 corresponding to the (2, 1, 2) code is a sublattice of Z2; it is the set of 

all integer 2-tuples in which both integers are even or both integers are odd. It can be obtained √ 
by rotating Z2 by 45◦ and scaling by 2; i.e., by transforming Z2 by the 2 × 2 Hadamard matrix 

1 1 
R = 

1 −1 
. 

Consequently d2 
min(RZ

2) = 2  and  V (RZ
2) = 2.  

The lattice 2Z
2 (the mod-2 lattice corresponding to the (2, 0, ∞) code) is a sublattice of RZ

2 

with d2 
min(2Z

2) = 4  and  V (2Z
2) = 4.  Note  that  2Z

2 = R(RZ
2), since R2 = 2I. 

In fact, we see that there is a lattice chain Z2/RZ
2/2Z

2/2RZ
2/4Z

2/ . . .  with minimum squared 
distances 1/2/4/8/16/ . . .. 

The remaining BW lattices may be constructed recursively from this chain by the |u|u + v|
construction. BW2m+1 is constructed from BW2m and RBW2m as 

BW2m+1 = {(u, u + v) | u ∈ BW2m , v ∈ RBW2m }. 

More generally, for any j ≥ 0, Rj BW2m+1 = {(u, u + v) | u ∈ Rj BW2m , v ∈ Rj+1BW2m }. 
It is then easy to prove the following facts by recursion: 

(a) The dimension of BW2m+1 is n = 2m+1 . 

(b) The volume of BW2m+1 is 

V (BW2m+1 ) =  V (BW2m )V (R(BW2m )) = 22m−1 
V (BW2m )2 . 

This recursion yields V (BW2m+1 ) = 2m2m−1 
, or  V (BW2m+1 )2/n = 2m/2 . 

(c) The minimum squared distance of BW2m+1 is d2 
min(BW2m+1 ) = 2m . 

(d)	 {Rj BW2m+1 , j  ≥ 1} is a chain of sublattices with minimum squared distances and normal-
ized volumes increasing by a factor of 2 for each increment of j. 

We verify that these assertions hold for BW2 = Z2. For  m ≥ 1, the dimension and volume follow 
from the construction. We verify the distance as follows: 

(a) if u = 0, then  ||(0, v)||2 = ||v||2 ≥ 2m if v �= 0, since  v ∈ RBW2m . 

(b) if u + v = 0, then  u = −v ∈ RBW2m and ||(−v, 0)||2 ≥ 2m if v �= 0. 

= 0 and u + v �(c) if u � = 0, then both u and u + v are in BW2m (since RBW2m is a sublattice 
of BW2m ), so


||(u, u + v)||2 = ||u||2 + ||u + v||2 ≥ 2 · 2m−1 = 2m .


Equality clearly holds for (0, v), (v, 0) or (u, u) if we choose v or u as a minimum-weight vector 
from their respective lattices. 

Finally, the sublattice chain for m follows from the sublattice chain for m − 1 by construction. 
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The |u|u + v| construction suggests the following tableau of BW lattices. Here D4 = BW4, 
E8 = BW8, and  Λn = BWn for n = 2m+1 ≥ 16. Also, we use R2 = 2I2m . 

Z
2 

D4


RZ
2
 E8 

RD4 Λ16


2Z
2
 RE8 Λ32


2D4 RΛ16 Λ64


2RZ
2 2E8
 RΛ32 Λ128 

2RD4 2Λ16 RΛ64 Λ256 

4Z
2 2RE8 2Λ32 RΛ128 Λ512 

Figure 4. Tableau of Barnes-Wall lattices. 

In this tableau each BW lattice lies halfway between the two lattices of half the dimension that 
are used to construct it in the |u|u + v| construction, from which we can immediately deduce its 
normalized volume. 

For example, E8 has the same normalized volume as RZ
2, namely V (E8)2/8 = 2. However, 

d2 
min(RZ

2) = 2. Therefore the nominal coding gain of E8 is twice that of min(E8) = 4,  whereas  d2 

RZ
2, namely γc(E8) = 2  (3.01  dB).  

14.5 Trellis codes 

Trellis codes are dense packings of Euclidean-space sequences in a sequence space which is in prin-
ciple infinite-dimensional. Trellis codes are to lattices as convolutional codes are to block codes. 
We will see that, just as binary convolutional codes provide a better performance/complexity 
tradeoff than binary block codes in the power-limited regime, trellis codes provide a better 
performance/complexity tradeoff than lattices in the bandwidth-limited regime, although the 
difference is not as dramatic. 

The key ideas in the invention of trellis codes were: 

•	 use of minimum squared Euclidean distance as the design criterion; 

•	 coding on subsets of signal sets using convolutional coding principles (e.g., trellises and the 
Viterbi algorithm). 

A typical large-constellation trellis code is designed as follows. One starts with a large low-
dimensional constellation, which in practice is almost always a lattice constellation C(Zn , R) 
based on a version of an n-dimensional integer lattice Zn, such as  M -PAM or (M × M )-QAM. 
(M -PSK constellations are sometimes used in the intermediate (ρ ≈ 2 b/2D) regime because of 
their constant-energy property, but we will not discuss M -PSK trellis codes here.) 

One can then form an m-fold Cartesian product constellation 

= C(ZmnC(Zn , R)m , Rm), 

which is still based on an mn-dimensional integer lattice Zmn . 
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The constellation C(Zmn , Rm) is partitioned into subsets of equal size, where the number 
of subsets is typically a power of two, say 2b . Initially this was done by a sequence of two-
way partitions in which the minimum squared distance within subsets was maximized at each 
level. Subsequently it was recognized that the resulting constellations were almost always lattice 
constellations C(Λ′ , Rm) based  on a sublattice  Λ′ of index |Zmn/Λ′| = 2b in Zmn. In other words, 
Z

mn is the union of 2b cosets of Λ′, and  the 2b subsets are the points of C(Zmn , Rm) that lie in 
each such coset. The sublattice Λ′ is usually chosen to be as dense as possible. 

Example 7 (1D partitions). In one dimension, there is a chain of sublattices of Z as follows: 

Z ⊇ 2Z ⊇ 4Z ⊇ 8Z ⊇ · · · , 

which may alternatively be written as Z/2Z/4Z/8Z/ · · ·. Each partition is two-way; that is, 
each lattice is the union of two cosets of the next sublattice. The corresponding minimum 
squared distances are 1/4/16/64/ · · ·. Thus  an  M -PAM constellation C(Z, [−M/2, M/2]) with 
minimum squared distance 1 may be partitioned into 2 subsets of the form C(2Z, [−M/2, M/2]) 
with minimum squared distance 4 within subsets, or 4 subsets of the form C(4Z, [−M/2, M/2]) 
with minimum squared distance 16 within subsets, and so forth. 

Example 8 (2D partitions). In two dimensions, there is a chain of sublattices of Z2 as follows: 

Z
2 ⊇ RZ

2 ⊇ 2Z
2 ⊇ 2RZ

2 ⊇ · · · , 

where R is the 2 × 2 Hadamard matrix as above. This chain may alternatively be written 
as Z2/RZ

2/2Z
2/2RZ

2/ · · ·. Each partition is two-way. The corresponding minimum squared 
distances are 1/2/4/8/· · ·. Thus a QAM constellation C(Z2 , R) with minimum squared distance 
1 may be partitioned into 2 subsets of the form C(RZ

2 , R) with minimum squared distance 2 
within subsets, or 4 subsets of the form C(2Z

2 , R) with minimum squared distance 4 within 
subsets, and so forth. The bounding region R should contain an equal number of points in each 
subset. 

Example 9 (4D partitions). In four dimensions, there is a chain of sublattices of Z4 as follows: 

Z
4 ⊇ D4 ⊇ RZ

4 ⊇ RD4 ⊇ · · · , 

where D4 is the 4-dimensional Barnes-Wall lattice and R is the 4 × 4 matrix 
⎡ ⎤ 

1 1 0 0 ⎢ 1 ⎥−1 0  0  ⎢ ⎥R = ⎦⎣ 0 0 1 1 
. 

0 0 1 −1 

(Alternatively, this is the chain of mod-2 lattices corresponding to the (4, 4, 1), (4, 3, 2), 
(4, 2, 2) and (4, 1, 4) binary linear block codes.) This chain may alternatively be written as 
Z

4/D4/RZ
4/RD4/ · · ·. Each partition is two-way. The corresponding minimum squared dis-

tances are 1/2/2/4/· · ·. Thus a 4D constellation C(Z4 , R) with minimum squared distance 1 
may be partitioned  into  2 subsets of the  form  C(D4, R) with minimum squared distance 2 within 
subsets, 8 subsets of the form C(2D4, R) with minimum squared distance 4 within subsets, etc. 
Again, the bounding region R should contain an equal number of points in each subset. 
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A trellis code encoder then operates as shown in Figure 5. Some of the input data bits are 
encoded in a rate-k/b 2ν -state binary convolutional encoder. Almost always k is chosen to equal 
b−1, so the code redundancy is 1 bit per mn dimensions. The encoder output sequence of b-tuples 
selects a corresponding sequence of subsets of C(Zmn , Rm) (cosets of Λ′). The convolutional 
code and the labeling of the subsets are chosen primarily to maximize the minimum squared 
distance d2 

min(C) between signal point sequences in any possible encoded subset sequence, and 
secondarily to minimize the maximum possible number Kmin(C) of nearest-neighbor sequences. 
Finally, other input data bits select the actual signal points to be transmitted from the selected 
subsets. If there is any shaping, it is done at this level. 

input Encoder for 
convolutional 
code C � 

' )  

Map from
labels to subsets
(cosets of 

coded data


data
 (label sequence) 

subset sequence 

Select signal 
points from 
subsets 

other input data (uncoded) signal point 

sequence in C 

Figure 5. Trellis code encoder. 

The nominal coding gain of such a trellis code is 

γc(C) =  d2 , (14.18)min(C)2−η(C)

where η(C) = 2/mn is the redundancy of the convolutional code in bits per two dimensions. The 
factor 2η(C) may be thought of as the normalized volume of the trellis code per two dimensions, 
if the signal constellation is a lattice constellation based on an integer lattice Zmn . The effective 
coding gain is reduced by the amount that the error coefficient 2Kmin(C)/mn per two dimensions 
exceeds the baseline M -PAM error coefficient of 4 per two dimensions, again according to the 
rule of thumb that a factor of 2 increase costs 0.2 dB. 

Exercise 1 (cont.) Let C be a rate-k/n binary linear convolutional code with free distance 
d and Nd minimum-weight code sequences per n dimensions. Define the corresponding mod-
2 trellis code ΛC to be the set of all integer sequences x with D-transform x(D) such that  
x(D) ≡ c(D) mod 2 for some code sequence c(D) in  C. 

(a) Show that an encoder as in Figure 5 based on the convolutional code C and the lattice 
partition Zn/2Z

n is an encoder for this mod-2 trellis code. 

(b) Show that ΛC has the group property. 

(c) Show that ΛC has the following parameters: 

d2 
min(ΛC ) = min{d, 4}; (14.19) ⎧ ⎨ 2dNd, if d <  4; 

Kmin(ΛC ) =  2n, if d >  4; (14.20) ⎩ 2dNd + 2n, if d = 4;  

γc(ΛC ) =  d2 , (14.21)min(ΛC )2−η(C)



203 14.5. TRELLIS CODES 

where η(C) = 2(n − k)/n is the redundancy of C in bits per two dimensions. 

The encoder redundancy η(C) also leads to a “coding constellation expansion ratio” which √ 
is a factor of 2η(C) per two dimensions—i.e., a factor of 4, 2, 2, . . .  for 1D, 2D, 4D,. . .  codes, 
respectively. Minimization of coding constellation expansion has motivated the increasing use 
of higher-dimensional trellis codes. 

A trellis code may be decoded by a Viterbi algorithm (VA) decoder, as follows. Given a received 
point r in Rmn, the received first finds the closest signal point to r in each subset. A VA decoder 
then finds the closest code sequence to the entire received sequence. The decoding complexity 
is usually dominated by the complexity of the VA decoder, which to first order is dominated by 
the branch complexity 2ν+k of the convolutional code, normalized by the dimension mn. 
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Figure 6. Effective coding gain vs. complexity for Ungerboeck and Wei codes. 

Figure 6 shows the effective coding gains of certain important families of trellis codes versus 
their decoding complexity, measured by a detailed operation count. The codes considered are: 

(a) The original 1D (PAM) trellis codes of Ungerboeck (1982), which are based on rate-1/2 
convolutional codes (η(C) = 2)  with  2  ≤ ν ≤ 9 and the 4-way partition Z/4Z. 

(b) The 2D (QAM) trellis codes of Ungerboeck, which (apart from the simplest 4-state code) 
are based on rate-2/3 convolutional codes (η(C) = 1)  with  3  ≤ ν ≤ 9 and the 8-way partition 
Z

2/2RZ
2 . 

(c) The 4D trellis codes of Wei (1987), all with η(C) = 1/2, based on 

(a) rate-2/3 8- and 16-state convolutional codes and the 8-way partition Z4/RD4; 
(b) a rate-3/4 32-state convolutional code and the 16-way partition Z4/2Z

4; 
(c) a rate-4/5 64-state convolutional code and the 32-way partition Z4/2D4. 

(d) Two families of 8D trellis codes of Wei (η(C) = 1/4). 
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The V.32 modem (1984) uses an 8-state 2D trellis code, also due to Wei (1984), whose per-
formance/complexity tradeoff is the same as that as that of the original 8-state 2D Ungerboeck 
code, but which uses a nonlinear convolutional encoder to achieve 90◦ rotational invariance. 
This  code  has an effective coding gain of about  3.6 dB,  a branch complexity of 25 (per two 
dimensions), and a coding constellation expansion ratio of 2. 

The V.34 modem (1994) specifies three 4D trellis codes, with performance and complexity 
equivalent to the 4D Wei codes circled on Figure 6. All have a coding constellation expansion √ 
ratio of 2. The 16-state code is the original 16-state 4D Wei code, which has an effective coding 
gain of about 4.2 dB and a branch complexity of 26 (per four dimensions). The 32-state code is 
due to Williams and is based on the 16-way partition Z4/HZ

4, where  H is a 4 × 4 Hadamard 
matrix, to ensure that there are no minimum-distance error events whose length is only two 
dimensions; it has an effective coding gain of about 4.5 dB and a branch complexity of 28 (per 
four dimensions) The 64-state code is a modification of the original 4D Wei code, modified to 
prevent quasicatastrophic error propagation; it has an effective coding gain of about 4.7 dB and 
a branch complexity of 210 (per four dimensions). 

It is noteworthy that no one has improved on the performance vs. complexity tradeoff of the 
original 1D and 2D trellis codes of Ungerboeck or the subsequent multidimensional codes of Wei, 
and by this time it seems safe to predict that no one will ever do so. There have however been 
new trellis codes that enjoy other properties with about the same performance and complexity, 
such as those described in the previous two paragraphs, and there may still be room for further 
improvements of this kind. 

Finally, we see that trellis codes have a performance/complexity advantage over lattice codes, 
when used with maximum-likelihood decoding. Effective coding gains of 4.2–4.7 dB, better than 
that of the Leech lattice L24 or of BW32, are attainable with less complexity (and much less 
constellation expansion). 512-state 1D or 2D trellis codes can achieve effective coding gains of 
the order of 5.5 dB, which is superior to that of lattice codes of far greater complexity. 

On the other hand, it seems very difficult to obtain effective coding gains of greater than 6 dB. 
This is not surprising, because at Ps(E) ≈ 10−6 the effective coding gain at the Shannon limit 
would be about 7.5 dB, and at the cutoff rate limit it would be about 5.8 dB. To approach the 
Shannon limit, much more complicated codes and decoding methods are necessary. 

14.6 Sequential decoding in the high-SNR regime 

In the bandwidth-limited regime, the cutoff rate limit is a factor of 4/e (1.68 dB) less than 
capacity. Therefore sequential decoders should be able to operate within about 1.7 dB of the 
Shannon limit; i.e., sequential decoders should be able to achieve an effective coding gain of 
about 6 dB at Ps(E) ≈ 10−6 . Several theses (Wang, Ljungberg, Maurer) have confirmed that 
sequential decoders are indeed capable of such performance. 

14.7 Multilevel codes and multistage decoding 

To approach the Shannon limit even more closely, it is clear that much more powerful codes 
must be used, with non-ML but near-ML decoding. Multilevel codes and multistage decoding 
may be used for this purpose. Multilevel coding may be based on a chain of sublattices of Zn , 
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Λ0 = Zn ⊇ Λ1 ⊇ · · · ⊇ Λr−1 ⊇ Λr , 

which induce a chain of lattice partitions Λj−1/Λj , 1  ≤ j ≤ r. A different encoder as in Figure 5 
may be used independently on each such lattice partition. Moreover, with multistage decoding, 
each level is decoded independently. 

Remarkably, such a multilevel scheme incurs no loss in channel capacity, compared to a single-
level code based on the partition Zn/Λr ; the capacity C(Zn/Λr ) of the partition Zn/Λr is equal 
to the sum of the capacities C(Λj−1/Λj ) at each level.  If the  partition  Zn/Λr is “large enough” 
and appropriately scaled, then C(Zn/Λr ) approaches the capacity of the Gaussian channel. 

All of the partitions Λj−1/Λj may even be binary;  e.g., one may use the standard one-
dimensional or two-dimensional chains 

Z ⊇ 2Z ⊇ 4Z ⊇ 8Z ⊇ · · · ;

Z

2 ⊇ RZ
2 ⊇ 2Z

2 ⊇ 2RZ
2 ⊇ 4Z

2 ⊇ · · · .


Then one can use a binary code of rate close to C(Λj−1/Λj ) at each level to approach the 
Shannon limit. 

In particular, by using binary turbo codes of appropriate rate at each level, it has been shown 
that one can get within 1 dB of the Shannon limit (Wachsmann and Huber). 

Powerful probabilistic coding methods such as turbo codes are really needed only at the higher 
levels. At the lower levels, the channels become quite clean and the capacity C(Λj−1/Λj ) 
approaches log2 |Λj−1/Λj |, so that the desired redundancy approaches zero. For these levels, 
algebraic codes and decoding methods may be more appropriate. 

In summary, multilevel codes and multistage decoding allow the Shannon limit to be ap-
proached as closely in the bandwidth-limited regime as it can be approached in the power-limited 
regime with binary codes. 

14.8 Multilevel turbo codes 

A number of varieties of multilevel turbo codes based on multiple component trellis codes 
have been developed for the bandwidth-limited regime by several authors (e.g., Berrou et al., 
Benedetto et al., Robertson and Wörz, Divsalar et al.). The performance of these codes seems 
to be comparable to that of binary turbo codes in the power-limited regime: i.e., within about 
1 dB of the Shannon limit. However, such capacity-approaching codes do not seem to have been 
implemented yet in practice, to the best of our knowledge. 

14.9 Bit-interleaved coded modulation 

In bit-interleaved coded modulation (BICM), the signals in a nonbinary constellation of size 2b 

are selected by b randomly interleaved encoded bits from a binary encoder. The effective binary 
channel is then an equiprobable mixture of b parallel channels. The receiver knows which channel 
is used for each bit, and therefore can compute the correct APP vector for each symbol. Capacity-
approaching codes may be designed for this mixture channel. While capacity is typically slightly 
reduced on an AWGN channel, the “pragmatic” BICM approach has become quite popular. 
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