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Problem 6.1

Here we begin the analysis of quantum linear transformations by treating the single-
frequency quantum theory of the beam splitter. Consider the arrangement shown in

ˆFig. 1. Here, âIN and bIN are the annihilation operators of the frequency-ω components
of the quantum fields entering the two input ports of the beam splitter, and âOUT

ˆand bOUT are the corresponding frequency-ω annihilation operators at the two output
ports. The input-output relation for this beam splitter is the following:

b̂OUT

âIN âOUT

b̂IN

Figure 1: Single-frequency beam splitter configuration

âOUT =
√
ε âIN +

√
ˆ1− ε bIN

b̂OUT =
√− 1− ε âIN +

√
ˆε bIN,

where 0 < ε < 1 is the power-transmission of the beam splitter, i.e., the fraction of
the incident photon flux that passes straight through the device (from âIN to âOUT or

ˆ ˆfrom bIN to bOUT).

(a) Show that the beam splitter’s input-output relation is lossless, i.e., prove that

â† ˆ ˆ ˆ ˆ
OUTâOUT + b†OUTbOUT = â†INâIN + b†INbIN,

ˆso that regardless of the joint state of the âIN and bIN modes, the total photon
number in the output modes is the same as the total photon number in the
input modes.
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(b) The inputs to the beam splitter have the usual commutators for annihilation
operators of independent modes:

ˆ ˆ[âIN, b
†

IN] = [âIN, bIN] = 0

[âIN, â
† ˆ ˆ
IN] = [b †

IN, bIN] = 1.

Show that the beam splitter’s input-output relation is commutator preserving,
i.e., prove that

ˆ ˆ[âOUT, bOUT] = [â †
OUT, bOUT] = 0

ˆ[â , â† ˆ
OUT OUT] = [bOUT, b

†
OUT] = 1.

ˆ(c) The joint state of the input modes, âIN and bIN, is their density operator, ρ̂IN.
This density operator is fully characterized by its normally-ordered form,

( )
ρ

n

IN (α∗, β∗;α, β) ≡ IN〈β|IN〈α|ρ̂IN|α〉IN|β〉IN,

where |α〉IN and |β〉 ˆ
IN are the coherent states of the âIN and bIN modes. The 4-

(
D Fourier transform of ρ

n)
(α∗ ∗

IN , β ;α, β) is then the anti-normally ordered joint
characteristic function,

χρIN ˆ
(ζ∗

ˆ † †

, ζ∗
∗ ∗

; ζ , ζ ) ≡ tr
(
ρ̂ e−ζa âIN−ζ IN a bb

b
b eζ â

IN
+ζ b

IN
A a b a IN

)
,

where ζa and ζb are complex numbers. Relate the anti-normally ordered char-
acteristic function of the output modes,

χρOUT(ζ∗, ζ∗
∗

; ζ −ζaa
ˆ † ˆ†ˆ ∗

OUT−ζ
b
bOUT ζaâOUT

+ζbbOUT
A a b a, ζb) ≡ tr

(
ρ̂OUTe e

)
,

to that for the input modes by: (1) using the beam splitter’s input-output
relation to write the exponential terms in the χρOUT

A (ζ∗a , ζ
∗
b ; ζa, ζb) definition in

terms of the input-mode annihilation and creation operators, and (2) evaluating
the expectation of the product of the resulting exponential terms by multiplying
by the joint density operator of the input modes and taking the trace.

ˆ(d) Suppose that the joint state of âIN and bIN is the two-mode coherent state
|αIN〉IN|βIN〉IN. Use the result of (c) to show that the joint state of âOUT and
b̂OUT is the two-mode coherent state |αOUT〉OUT|βOUT〉OUT where

αOUT =
√
ε αIN +

√
1− ε βIN,

βOUT =
√− 1− ε αIN +

√
ε βIN.
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Problem 6.2

Here we shall develop a moment-generating function approach to the quantum statis-
tics of single-mode direct detection. Suppose that an ideal photodetector is used
to make the number-operator measurement, N̂ ≡ â†â, on a single-mode field whose
state is given by the density operator ρ̂ and let N denote the classical random variable
outcome of this quantum measurement. The moment-generating function of N is

∞ ∞

MN (s) ≡
∑

esn Pr(N = n) =
n=0

∑
esn

n=0

〈n|ρ̂|n〉, for s real, (1)

where the second equality follows from Problem 3.2(b). (The moment-generating
function of a random variable, from classical probability theory, is the Laplace trans-
form of the probability density function of that random variable—cf. the character-
istic function, which is the Fourier transform of the probability density—and hence
provides a complete characterization of the random variable. In other words, the
probability density function can be recovered from the moment-generating function
by an inverse Laplace transform operation.)

(a) Define a function QN (λ) as follows,

∞

QN(λ) =
∑

(1− λ)n〈n|ρ̂|n real
=0

〉, for λ . (2)
n

Show how MN(s) can be found from QN (λ).

(b) Show that

dkQN(λ)
∣ ∞∣∣ =

∑
(−1)kn(n− 1)(n− 2) · · · (n k

dλk ∣
λ=0 n=k

− + 1)〈n|ρ̂|n〉

= (−1)k〈â†kâk〉, for k = 1, 2, 3 . . .

(The last equalilty explains why 〈â†kâk〉 is called the kth factorial moment of
the photon count.)

(c) Suppose that ρ̂ = |m〉〈m|, i.e., that the field mode is in the mth number state.
Find the factorial moments { 〈â†kâk〉 : k = 1, 2, 3, . . . }. Use the Taylor series,

∞
1

QN(λ) =
∑
k=0

k!

(
dkQN(λ) k

dλ

∣
λ

k

∣
λ=0

)

to find QN(λ) and then use the result of part (a)

∣∣
to find MN (s). Verify that

this moment-generating function agrees with what you would find directly from
Eq. (1).
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(d) Suppose that ρ̂ = |α〉〈α|, i.e., that the field mode is in a coherent state with
eigenvalue α. Find the factorial moments { 〈â†kâk〉 : k = 1, 2, 3, . . .}. Use the
Taylor series,

∞
1

QN(λ) =
∑
k=0

k!

(
dkQN(λ)

λ
dλk

∣∣
λ=0

)
k

to find QN(λ) and then use the result of part (a)

∣∣
to find MN (s). Verify that

this moment-generating function agrees with what you would find directly from
Eq. (1).

Problem 6.3

Here we shall examine a quantum photodetection model for single-mode direct de-
tection with sub-unity quantum efficiency. Suppose that the sensitive region, A,
of a quantum-efficiency-η photodetector is illuminated by a photon-units, positive-

ˆfrequency quantum field√ operator E(x, y, t) whose only excited, i.e., non-vacuum-
state, mode is aeˆ −jωt/ AT for 0 ≤ t ≤ T where A is the area of A, as shown in
Fig. 2. The output of this detector is a classical random variable N ′ whose statistics
coincide with those of the number operator

N̂ ′ ≡ â
′†â′ where â′

√≡ ηâ+
√

1− ηâη. (3)

In Eq. (3), âη is a photon annihilation operator that commutes with â and â†; âη is
in its vacuum state |0〉η.

η

1
Ê(x, y, t)

q

∫
T

′
dt N

0

Figure 2: Sub-unity-quantum efficiency photon counter

(a) Find the factorial moments { 〈â′†kâ
′k〉 : k = 1, 2, 3, . . .} in terms of η and

{ 〈â†kâk〉 : k = 1, 2, 3, . . .}.
(b) Use the result of part (a) to relate QN ′(λ) to QN (λ) from Eq. (2).

(c) Use the result of part (b) to relate MN ′(s) to MN(s) from Eq. (1).

(d) Verify that your answer to part (c) satisfies,

∞

MN ′(s) =
∑ k

esn

[
∞∑( )

ηn(1 k

n
n=0 =n

− η) −n

k

〈k|ρ̂|k〉
]
,
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where (
k
n

)
k!≡ ,

n!(k − n)!

is the binomial coefficient. [Hint: Interchange the orders of summation over n
and k and use the binomial theorem on the resulting inner sum.]

(e) Use the result of part (d) to find Pr(N ′ = n) for the quantum-efficiency-η pho-
todetector in terms of Pr(N = n), the photon counting probability distribution
of a unity-quantum-efficiency detector, when the state of the single-mode illu-
mination field is ρ̂.

Problem 6.4

Here we shall continue our investigation of quantum linear transformations by treating
the single-frequency quantum theory of the degenerate parametric amplifier (DPA),
i.e., the Bogoliubov transformation that produces squeezed states. Let âIN be the
annihilation operator of the frequency-ω quantum field at the input to the DPA. This
operator has the usual commutator bracket with its adjoint, viz., [âIN, â

†
IN] = 1. The

annihilation operator of the frequency-ω output from the DPA is,

âOUT ≡ μâIN + νâ†IN,

where μ and ν are complex numbers that satisfy |μ|2 − |ν|2 = 1.

(a) Show that the DPA transformation is commutator preserving, i.e., prove that
[âOUT, â

†
OUT] = 1.

(b) Suppose that the input mode’s density operator is ρ̂IN = |αIN〉ININ〈αIN|, where
|αIN〉IN is a coherent state. Find the Wigner characteristic function,

χρ †
IN

W (ζ∗, ζ) ≡ tr

of ρ̂IN.

(
ρ̂ −ζ∗âIN+ζâ
INe IN

)
,

(c) Find χρOUT

W (ζ∗, ζ), the Wigner characteristic function of the output mode âOUT

by: (1) using the DPA’s input-output relation to write the exponential term in
the output-mode’s characteristic function in terms of the input-mode’s annihila-
tion and creation operators, and (2) evaluating the expectation of the resulting
exponential term by multiplying by the input-mode density operator and taking
the trace.

(d) Suppose that μ and ν are real-valued and positive. Use the result of (c) to
find the marginal probability densities for the outcome of the output-mode
quadrature measurements,

â
âOUT1

≡ OUT + â†OUT

2
and âOUT2

≡ âOUT − â†OUT .
2j
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