
Massachusetts Institute of Technology 
Department of Electrical Engineering and Computer Science 

6.685 Electric Machines 

Problem Set 4 Solution October 5, 2013 

Problem 1: No secrets here. The script to do the vee curve is appended. The script, first, finds the 
field winding capability, armature winding capability and then finds the stability limit (using 
a slightly different method from Problem Set 3). The torque angle is used as a parameter. 
Note the limits for field winding and armature currents are checked in a straightforward 
fashion and noted on the plot. The plot is shown in Figure 1. Note the problem statement is 
flawed: there is no vee curve for the 1,000 MW curve, which is right on the armature capacity 
and therefore is a single point. 
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Figure 1: Vee Curve for Example Generator 

Problem 2: Salient Pole Machine 

1. To start, note that this machine will have a stability limit for operation at low field 
excitation (corresponding to high absorbed reactive power). For a round rotor machine 
this limit is reached at a torque angle of 90◦, but this machine has saliency so you 
must determine the value of angle for which stability is reached. Compute and plot the 
angle and corresponding value of field current at the stability threshold for this machine, 
against real power. Hint: The stability limit is reached when the derivative of torque 
with respect to angle is zero. Since torque is proportional to real power, you can use the 
derivative of power with angle. For this part of the problem, ignore resistances and core 
loss. 
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Real power output for a generator is: 
  

V Eaf 3 
2

1 1 
P = 3 sin δ + V − sin 2δ 

Xd 2 Xq Xd

The derivative of power with angle is then simply: 
  

dP V Eaf 1 1 
= 3 cos δ + 3V 2

− cos 2δ 
dδ Xd Xq Xd

At the stability limit, dP = 0, and this may be solved for internal voltage: 
dδ 

  

Xd cos 2δ 
Eaf = −V − 1

Xq cos δ 

Using this shorthand: 
  

2
1 1 

P0 = 3V − 
Xq Xd

we have this nonlinear expression to solve:
 

P 1
 
cos δ − sin 2δ + cos 2δ sin δ = 0 

P0 2 

Now, this looks awful but in fact is quite easily solved by most mathematical assistants. 
MATLAB, for example, has a routine called ’fzero’ which makes quick work of it. Once 
δ is found, Eaf may be determined and the operating point is easily determined. 

2. Reactive power at the underexcited stability limit is plotted in Figure 2 Note also the 
values of field current and torque angle in Figure 3. 

3. Calculation of required field current and calculation of the torque-angle curve is carried 
out in the third script appended. 

For this, see Figure 4 

4. Calculation of efficiency is fairly straightforward. Take the notion that efficiency is: 

P 
η = 

P + Pa + Pf + Pc 

The calculation is carried out in the normal fashion, assuming that, for unity power 
factor: 

P 
Ia = 

3V 
E1 = V + jXqIa 

δ = angle(E1) 

Id = Ia sin δ 

Eaf = abs(E1) + (Xd − Xq)Id 

Eaf 
If = Ifnl 

V 

I2Pa = 3Ra a 

= Rf I2Pf f 
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Figure 2: Reactive and Thermal Reactive Power Limit
 

The results are shown in Figure 5
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Stability Limit for Underexcited Operation 
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Figure 3: Underexcited Stability Limit 

6 Torque vs. Angle for Example Machinex 10
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Figure 4: Torque-Angle Curve for Example Machine (Generator Coordinates)
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Efficiency for Example Machine 
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Figure 5: Example Machine Efficiency
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Problem 3: This is more scutwork than one might like. Note that calculation of the phase induc­
tance matrix is: 

−1L = T L T 
ph dq 

So the second part of that is: 

    
2π 2π0 0 cos φ cos(φ − ) cos(φ + )Ld 2 3 3 

   2π 2π 

L T = 
 0 Lq 0 

  − sinφ sin(φ − ) − sin(φ + ) 


dq 3 33 1 1 10 0 L0 2 2 2 
  

2π 2πLd cos φ Ld cos(φ − ) Ld cos(φ + )
3 32 π π2 2sin sin( sin( )L φ L φ L φ

 

+= − − − −q q q3 3
  

3 L L L000 
2 2 2 

Then 

L 
ph 

= 

 

 
 

La 

Lab 

Lac 

Lab 

Lb 

Lbc 

Lac 

Lbc 

Lc 

 

 
 

= 

 

 
 

cos φ 

cos(φ − 2π 
3 

− sin φ 

sin(φ − 2π 
3 

1 
1 

 

 
 

 

 
 

Ld cos φ 

−Lq sin φ 

Ld cos(φ − 2π 
3 ) 

−Lq sin(φ − 2π 
3 

Ld cos(φ + 2π 
3 ) 

−Lq sin(φ + 2π 
3 ) 

 

 
 

cos(φ +
 2π 2π 
− sin(φ +
 1
 000L L L

2 2 23 3 

Carrying out this last operation, one finds a few elements of the answer: 

2 L02La = Ld cos φ + Lq sin
2 φ + 

3 2 
2 2π 2π L0

Lab = Ld cos φ cos(φ − ) + Lq sin φ sin(φ − ) + 
3 3 3 2 

Doing the trig, one finds: 

1 
La = ((Ld + Lq) + (Ld − Lq) cos(2φ) + L0)

3 
1 2π 

Lb = (Ld + Lq) + (Ld − Lq) cos 2(φ − ) + L0
3 3 
1 2π 

Lc = (Ld + Lq) + (Ld − Lq) cos 2(φ + ) + L0
3 3 

1 1 2π 1 
Lab = − (Ld + Lq) + (Ld − Lq) cos(2φ − ) + L0

6 6 3 3 
1 1 2π 1 

Lac = − (Ld + Lq) + (Ld − Lq) cos(2φ + ) + L0
6 6 3 3 
1 1 1 

Lbc = − (Ld + Lq) + (Ld − Lq) cos 2φ + L0
6 6 3 

6
 



),

% Round-Rotor Machine Vee Curve Generator
 
% Assumes generator operation
 
% Machine Data First
 
om=2*pi*60; % this is a 60 Hz machine
 
VA = 1e9; % armature rating
 
Xd = 1.353; % synchronous reactance (ohms)
 
V = sqrt(2/3)*26000; % voltage: peak phase voltage
 
pfr = .8; % rating point
 
M = 22.5e-3; % field-phase mutual reactance
 
Pv = [200e6 400e6 600e6 800e6];
 
% find armature current capability
 
Iar = VA/(1.5 * V); % remember we are working in peak
 

% find maximum field capability:
 

psir = acos(pfr); % power factor angle
 
% Ia is the complex current at rating point
 
Ia = Iar*cos(psir) + j*Iar*sin(psir);
 
Eafr = V - j*Xd*Ia;
 
Eafm = abs(Eafr); % this is max magnitude of field voltage
 
Ifm = Eafm/(om*M);
 

fprintf(’Rated Ia = %g Max If = %g\n’,Iar, Ifm)
 
figure(1)
 
clf
 
hold on
 

for i = 1:length(Pv)
 
P = Pv(i);
 
Q = sqrt(VA^2-P^2);
 
Ia_min = (P+j*Q)/(1.5*V); % under-excited: check for stability
 
Eaf_min = V + j*Xd*Ia_min;
 
if angle(Eaf_min) > pi/2,
 

dmin = pi/2;
 
else
 

dmin = angle(Eaf_min);
 
end
 
Ia_max = (P-j*Q)/(1.5*V); % over-excited: check for Ifmax
 
Eaf_max = V+j*Xd*Ia_max;
 
if abs(Eaf_max) < Eafm,
 

dmax = angle(Eaf_max);
 
else
 

dmax = asin(P*Xd/(1.5*V*Eafm));
 
end
 
fprintf(’P= %g Ia_min = %g Ia_max = %g dmin = %g dmax = %g\n’, P, abs(Ia_min), abs(Ia_max
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% now that we have limits we go parameterize by delta
 

delt = dmin:(dmax-dmin)/100:dmax;
 
Eaf = P*Xd ./ (1.5*V .* sin(delt));
 
Q = 1.5*(V^2/Xd - (V/Xd) .* Eaf .* cos(delt));
 
Ia = sqrt(P^2 + Q .^2)/(1.5*V);
 
If = Eaf ./ (om*M);
 

plot(If, Ia ./ sqrt(2))
 
end
 

% now for the zero power curve
 
Iaz = [V/Xd 0 (Eafm-V)/Xd];
 
Ifz = [0 V/(om*M) Eafm/(om*M)];
 

plot(Ifz, Iaz ./ sqrt(2))
 

% and now we plot the limit lines
 
Ial = [Iar Iar 0];
 
Ifl = [0 Ifm Ifm]
 

plot(Ifl, Ial ./ sqrt(2), ’--’)
 

title(’Round Rotor, 1000 MW Vee Curve’)
 
ylabel(’Armature Current (RMS)’)
 
xlabel(’Field Current’)
 
grid on
 
hold off
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% 6.685 2013 Problem Set 4, Problem 2
 

% First, line up parameters
 
VA = 150e6; % Machine Rating
 
V = 13800/sqrt(3); % Phase voltage, RMS
 
om = 2*pi*60; % frequency
 
Xd = 2.5; % direct axis reactance
 
Xq = 1.5; % quadrature axis reactance
 
AFNL = 600; % rated voltage open circuit field current
 
p = 7;
 

% Find Stability Limit for underexcited operation
 
% This will be angle delta as a function of real power P
 
% warning off MATLAB:fzero:UndeterminedSyntax % to suppress a whole lot of wierd warnings
 
P_0 = 3*V^2*(1/Xq-1/Xd); % convenient shorthand
 
P = (.01:.01:1) .* VA; % establish a range of real power
 
Qs = zeros(size(P)); % space for Q
 
Qc = zeros(size(P));
 
E_af = zeros(size(P));
 
ds = zeros(size(P));
 

for	 i = 1:length(P)
 
Pr = P(i)/P_0; % here is how we use the notation
 
d = fzero(’ef’, [0 pi/2], [], Pr); % this gives angle at stability limit
 
Eaf = -V*(Xd/Xq-1)*cos(2*d)/cos(d); % and corresponding internal voltage
 
E_af(i) = Eaf;
 
ds(i) = d;
 
Qs(i) = (3*V*Eaf/Xd) * cos(d) + 1.5*V^2*(1/Xq-1/Xd) * cos(2*d) - 1.5*V^2*(1/Xq+1/Xd);
 
Qc(i) = -sqrt(VA^2-P(i)^2);
 

end
 
dpdd = (3*V/Xd) .* E_af .* cos(ds) +3*V^2*(1/Xq-1/Xd) .* cos(2 .* ds);
 

figure(1)
 
plot(P, Qs, P, Qc)
 
legend(’Stability’, ’thermal’)
 
title(’Generator Underexcited Reactive Capability (Problem 4.2)’)
 
ylabel(’Generator Reactive Power’)
 
xlabel(’Generator Real Power’)
 
%axis([0 2e8 -1e8 0])
 
%axis square
 
grid on
 

I_f	 = (AFNL/V) .* E_af;
 

9
 



figure(2)
 
subplot 211
 
plot(P, I_f)
 
title(’Stability Limit for Underexcited Operation’)
 
ylabel(’I_f, A’)
 
grid on
 
subplot 212
 
plot(P, (180/pi) .* ds)
 
ylabel(’Angle, degrees’)
 
xlabel(’Underexcited Power, W’)
 
grid on
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% 6.685 2013 Problem Set 4, Problem 2, parts 3 and 4
 

% First, line up parameters
 
VA = 150e6; % Machine Rating
 
V = 13800/sqrt(3); % Phase voltage, RMS
 
om = 2*pi*60; % frequency
 
Xd = 2.5; % direct axis reactance
 
Xq = 1.5; % quadrature axis reactance
 
AFNL = 600; % rated voltage open circuit field current
 
p = 7; % number of pole pairs
 
Ra = .009; % armature resistance
 
Rf = 1.0; % field resistance
 
Pc = 1e6; % core loss
 

% First, find field current for rated operation, unity power factor
 

Ia = VA/(3*V); % this would be current at rated operation
 
E_1 = V + j*Xq*Ia; % spot on the q axis
 
delta = angle(E_1); % this is torque angle
 
Id = Ia * sin(delta); % d- axis current
 
Eaf = abs(E_1) + (Xd-Xq)*Id; % internal voltage
 

I_f = Eaf*AFNL/V;
 

fprintf(’Problem 4, part 3: Field Current = %g\n’, I_f);
 
fprintf(’Details of that: E_1 = %g, delta = %g\n’, abs(E_1), delta);
 
fprintf(’More details: I_d = %g, E_af = %g\n’, Id, Eaf);
 

delt = 0:pi/100:pi;
 
P = (3*V*Eaf/Xd) .* sin(delt) + 1.5*V^2*(1/Xq - 1/Xd) .* sin(2 .* delt);
 

T = (p/om) .* P;
 

figure(1)
 
plot(delt, T)
 
title(’Torque vs. Angle for Example Machine’)
 
ylabel(’N-m’)
 
xlabel(’Radians’)
 
grid on
 

% now for machine efficiency
 

P = 50e6:5e5:150e6; % run over this range
 
Ia = P ./ (3*V); % armature current
 
E_1 = V + Xq .* Ia; % voltage on q axis
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delta = angle(E_1); % torque angle
 
Id = Ia .* sin(delta); % d- axis current
 
Eaf = E_1 + (Xd-Xq) .* Id;
 
I_f = (AFNL/V) .* Eaf; % required field current
 

P_a = 3*Ra .* Ia .^2; % armature winding loss
 
P_f = Rf .* I_f .^2; % field winding loss
 

eff = P ./ (P + P_a + P_f + Pc);
 

figure(2)
 
plot(P, eff)
 
title(’Efficiency for Example Machine’)
 
ylabel(’Efficiency’)
 
xlabel(’Output Power’)
 
grid on
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