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Problem 1: Induction Motor 

1. The winding plan is shown in Figure 1. Each phase half has two columns (one for each 
side of the coil). The right hand column is the sum of all turns in that particular slot. 
See that each phase has two sets of coils. To make it fit on the page, I have wrapped 
the whole thing into two columns. 

2. For the next three parts I wrote a little Matlab script which is attached. Note that the 
winding factor is obtained by weight averaging the pitch factors of all of the coils by 
their number of turns. The breadth factor of this winding is one, since all coils have the 
same axis.
 

C' 

12 
6 

6 
12 
18 
18 

Tot 

18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 

Slot 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

Figure 1: Winding Pattern
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Problem Set 6, Problem 1
 
Total Number of Turns = 144
 
Winding Factors
 
kw1 = 0.935908
 
kw5 = 0.103875 kw7 = 0.0253335
 
kwm = 0.935908 kwp = -0.935908
 
Magnetizing Reactance = 96.4565 Ohms
 
Fundamental Flux Density = 0.699206 T (Peak)
 

Problem 2: This is the permanent magnet retarder problem. We might assume that the shuttle 
current is: 

{ }

−jkxKR = Re K er

In the shuttle frame of reference this is: 
{ }

−jk(x −ut)KR = Re K e 
′ 

r

Ampere’s Law applied to this case is: 

∂Hy
g = KR∂x 

This means that transverse magnetic field is: 

j
Hy = KR + Hm

kg 

where H is field from the permanent magnets. m 

Electric field affecting the shuttle is: 

( )

j
E ′ = v × By = uµ0 KR + Hz mkg 

So that current in the shuttle is: 
( ) 

j
KR = σsµ0u KR + Hmkg 

Or, current in the shuttle is: 
σsuBm

KR = - ­

uµ01 − j σs

kg 

If KR is in the z direction and B is in the y direction, K × B is in the -x direction, so force 
per unit area is: 

1 σsuB2 
mTx = − 

2 1 + 
-

σsuµ0 
-2 

kg 

2
 

)



- -

- -

- -

- -

Problem 3: In these solutions, I am using a value for gap g that is actually the distance from the 
magnets to the upper boundary. This is different (by a constant) from what is shown in the 
problem set: g(solution) = g(problem set−h. To do a translation from what is here, feel free 
to just add h to g wherever it appears. 

If the problem can be assumed to be one-dimensional, fields are all in the +y direction and: 

Hgg + Hmh = 0 

Since flux density is uniform: 

B = µ0Hg = µmHm + Br 

It is straightforward to find that: 

( )

µ0Hg 1 + µr 
g 

= Br
h

µmwhere µr = 
µ0 

, then flux density in the system is: 

Br h 
By = = g Br

1 + µr h + µrgh 

Now relax the geometry to have arbitrary gap and magnet dimensions. This is a two-region 
problem. Call ’Region 1’ to be above the magnet: 0 < y < g, and ’Region 2 is the layer that 
has the magnets: −h < y < 0. We pick the top of the magnets to be y = 0 for convenience. 
Magnetic fields in the two regions can be expressed as: In region 1: 

Hy = Ae−ky + Beky cos kx 

Ae−ky − Beky Hx = sin kx 

In region 2: 

Ce−ky + Deky Hy = cos kx 

Ce−ky − Deky Hx = sin kx 

This coordinate system was chosen to make the algebra easier. At the top and bottom 
ferromagnetic boundaries the x-directed field must vanish: 

Ae−kg − Bekg = 0 

Cekh − De−kh = 0 

which means: 

B = Ae−2kg 

D = Ce2kh 
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The other two boundary conditions are that magnetic field parallel to the boundary must be 
continuous and so must be flux density across the boundary between regions 1 and 2: 

−2kg 2kh A 1 − e = C 1 − e 

−2kg 2kh µ0A 1 + e = µmC 1 + e + Br 

The rest is algebra, resulting in expressions for the two constants in the gap region: 

1 2kh 
µ0 

Br 1 − e
A = 

e−2kg) − µr 
2kh)(1 − e2kh) (1 + (1 − e−2kg) (1 + e

1 2kh −2kg Br 1 − e e
µ0

B = 
e−2kg) − µr 

2kh)(1 − e2kh) (1 + (1 − e−2kg) (1 + e

Then at y = g, 

2kh −kg 1 − e e2 
Hy = Br cos kx 

e−2kg) − µr 
2kh)µ0 (1 − e2kh) (1 + (1 − e−2kg) (1 + e

xJust as a check, note that as its argument goes to a small number, e → 1 + x, and the 
magnetic field does indeed approach the small wavenumber limit. 

2 −2kh Br h 
Hy = Br = 

µ0 −2kh × 2 − µr × 2kg × 2 µ0 h + µrg 

Finally, if the gap becomes very large e−kg → 0, B → 0 and 

Br 1 − e2kh 

A = 
2kh) − µr 

2kh)µ0 (1 − e (1 + e

the magnetic fields are: 

2kh −ky 1 − e eBr
Hy = cos kx 

2kh) − µr 
2kh)µ0 (1 − e (1 + e

2kh −ky 1 − e eBr
Hx = sin kx 

2kh) − µr 
2kh)µ0 (1 − e (1 + e

Problem 4 This problem is one that can be worked using surface impedance techniques. Note that 
in the region above the moving sheet, complex amplitudes of the magnetic field components 
will be: 

H(u) −ky −jkx = H−e ex 

H(u) −ky −jkx 
y = −jH−e e 
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which means that the ratio of fields is: 

H
Γu = 

y 
= −j

Hx 

There will be a current induced in the moving conductor: assuming that the slip frequency 
is ωs = sω, that current will be: 

ωs
Kz = −µ0σs Hy = −RHyk 

where we use the symbol R to denote the normalized velocity. 

Then, since magnetic field at the bottom of the sheet must be: 

H(ℓ) H(u)= + Kx x z 

then the ratio of fields at the underside of the moving sheet is: 

−j
Γℓ = 

1 + jR 

Now, as we showed in class, it is possible to translate this ratio of fields from just below 
the moving sheet to just above the driving current sheet. The translation is just like the 
derivation in class, but note that the displacement is toward negative y, so the sign of the 
sinh terms is reversed: 

−j sinh kg + Γℓ cosh kg 
Γs = j 

j cosh kg − jΓℓsinhkg 

Now the two components of the Maxwell Stress Tensor can be found immediately by: 

{ }1 µ0
< Txy > = µ0Re H H ∗ = |H |2Re {Γs}x y x2 2 

1 1 µ0
< Tyy > = µ0|Hy|

2 − µ0|Hx|
2 = − |Hx|

2 1 − |Γs|
2 

2 2 2 

since the normal vector to the moving sheet is in the −y direction, the sign of Txy must be 
1reversed. An example of lift and propulsive force, normalized to µ0|Hx|

2 is shown in Figure 2 2 

Appendix: Script for Problem 1 

% 6.685 Problem Set 6, Problem 1, 2013
 

% dimensions
 
Vll = 480; % line-line voltage
 
R = .0254*5.7/2; % rotor radius
 
L = .0254*6; % rotor length
 
g = .0254*.0185; % air-gap
 
p=2; % number of pole pairs
 
om = 2*pi*60; % frequency
 
N_s = [6 12 18 18 12 6]; % turns/coil
 
N_c = [17 15 13 11 9 7]; % coil throw
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Figure 2: Propulsion and Lift 

Na = 2*sum(N_s); % total number of turns
 
Vph = Vll/sqrt(3); % phase voltage
 

muzero= pi*4e-7;
 
gamma = 2*pi/24; % slot angle
 

kw = sum(N_s .* sin(N_c .*gamma/2)) / sum(N_s);
 
kw5 = sum(N_s .* sin(N_c .* 5*gamma/2)) / sum(N_s);
 
kw7 = sum(N_s .* sin(N_c .* 7*gamma/2)) / sum(N_s);
 
kwm = sum(N_s .* sin(N_c .* 23*gamma/2)) / sum(N_s);
 
kwp = sum(N_s .* sin(N_c .* 25*gamma/2)) / sum(N_s);
 

La = (3/2)*(4/pi)*(muzero*R*L/(p^2 *g)) * Na^2 * kw ^2;
 
Xa = om*La;
 
B1 = (p/om)*sqrt(2)*Vph/(2*R*L*Na*kw);
 

fprintf(’Problem Set 6, Problem 1\n’)
 
fprintf(’Total Number of Turns = %4.0f\n’, Na)
 
fprintf(’Winding Factors\n’)
 
fprintf(’kw1 = %g \n’, kw);
 
fprintf(’kw5 = %g kw7 = %g\n’, kw5, kw7)
 
fprintf(’kwm = %g kwp = %g\n’, kwm, kwp)
 
fprintf(’Magnetizing Reactance = %g Ohms\n’, Xa)
 
fprintf(’Fundamental Flux Density = %g T (Peak)\n’, B1)
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% open linear motor
 

kg = [.01 1]; % normalized gap
 
R0 = 5; % Mag Reynold’s number at stall
 
S = 0:.01:2; % speed in Magnetic arbitrary Number units
 
R = R0 .* (1-S); % magnetic ’reynolds number’
 

figure(1)
 
clf;
 
hold on
 
kg = .01;
 
gamat = -j ./ (1 + j .* R);
 
gamaz = j .* (-j * sinh(kg) + gamat .* cosh(kg)) ./( j*cosh(kg) - gamat .* sinh(kg));
 
Txy1 = real(gamaz);
 
Tyy1 = 1 - abs(gamaz) .^2;
 
kg = 1;
 
gamat = -j ./ (1 + j .* R);
 
gamaz = j .* (-j * sinh(kg) + gamat .* cosh(kg)) ./( j*cosh(kg) - gamat .* sinh(kg));
 
Txy2 = real(gamaz);
 
Tyy2 = 1 - abs(gamaz) .^2;
 
plot(S, -Txy1, S, Tyy1, S, -Txy2, S, Tyy2)
 
title(’LIM Force Densities: kg = .01 and kg = 1.0’)
 
ylabel(’Normalized’)
 
xlabel(’Dimensionless Speed’)
 
legend(’Traction, kg=.01’, ’Lift, kg=.01’, ’Traction, kg=1’, ’Lift, kg=1’)
 
grid on
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