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Problem 1: Permanent Magnets 

This problem is related to permanent magnet motors. We are going to obtain field patterns 
as you might measure them with a flux meter. This problem should be worked in cylindrical 
coordinates. As it is a permanent magnet problem, we can find magnetic field as the gradient 
of a scalar potential:

 H = −∇ψ
 

In cylindrical coordinates, the solutions for the potential are polynomials:
 

ψ = Ar±p cos pθ orAr±p sin pθ 

You might recall working similar problems in rectangular coordinates, in which the solutions 
to similar problems are growing and decaying exponential functions. 

Note that most problems will involve an annular space, with boundary conditions at an inner 
and outer radius. If there is no inner radius boundary condition (the center is in the region 
of interest, the solution with a negative exponent must have an amplitude of zero, so the 
potential does not ’blow up’. If there is no outer radius (the region goes to ∞), the solution 
with a positive exponent must have zero amplitude. 
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Figure 1: Permanent Magnet Stator 

Figure 1 shows a two-pole (p = 1) permanent magnet stator. Two permanent magnets are 
mounted on the inside of a steel shell that serves as both structure and magnetic return path. 

1
 



This could be a part of a permanent magnet DC motor, with a commutator. Or it could be 
the rotor of an inside-out structure such as is used in small fan motors. Dimensions are: 
Magnet inside radius R 4 cm 
Magnet height hm 2.5 mm 

5πMagnet angular width θm 6 150◦ 

Assume the remanent flux density of the magnets is Br = 0.4 T. This problem is meant to 
be worked using a Fourier Series in the θ- direction. Be sure to use enough space harmonics 
to get a good representation of the actual fields. 

1. To start, assume that the problem is as you see it: there is no rotor so the region at 
radius less than R is empty. Plot radial and azimuthal field as a function of θ at the 
inside radius of the magnets (R) and at a radius R − 1mm. 

2. Next, assume that there is a rotor, which for our purposes can be considered to be a 
ferromagnetic cylinder with a radius of Ri = R−g, with a gap dimension of g = 1.0 mm. 
Plot radial and azimuthal field at the radius of the inner surface of the magnets (R) and 
radial field at the surface of the rotor Ri. (Of course, azimuthal field at that radius is 
not very interesting, right?) 

Proglem 2: Induction Motor Simulation 

The objective of this problem is to see how reduced order models of electric machines can be 
used to give approximate results and to give some sense of how those approximations miss 
certain features of machine operation. 

A large induction motor intended to drive a fan can be represented by the simple equivalent 
circuit with the following parameters: 

Stator Resistance R1 0.460 Ω
 
Rotor Resistance R2 0.433 Ω
 
Stator Leakage Reactance X1 3.51 Ω
 
Rotor Leakage Reactance X2 5.05 Ω
 
Magnetizing Reactance Xm 95.6 Ω
 

This motor is subjected to an across-the-line start, and in this problem set we will simulate 
that start. For each part, 

1. The machine and load inertia is equal to 80kg −m2, and 

2. The machine is driving a fan load. For the purpose of this problem, assume that power 
drawn by the fan is exactly a cubic function of speed, so that load torque is proportional 
to speed squared. Assume that the fan load would be equal to 800 kW at synchronous 
speed (which you will not, of course, quite achieve). 

The fan is operated by a voltage source that is 60 Hz, 6,000 volts, RMS, line-line. (Be careful 
to get phase voltage right here!). It is an 8-pole machine so its synchronous speed is 900 RPM. 

For each part of the problem, calculate and plot: 

1. Speed (RPM) vs. time (simulate for 5 seconds). 

2. Real power drawn from the source over the same time. 
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The three cases to simulate are really three different and progressively more detailed models 
of the machine. These are: 

1. A ’First Order’ model which assumes that the stator and rotor are both in electical 
steady state so that the only dynamic (state) variable is rotor speed. 

2. A ’Third Order’ model which uses the rotor variables (ψdr and ψqr and, of course, rotor 
speed but which assumes that stator variables can be either neglected or assumed to be 
in steady state conditions. You can also ignore stator resistance in calculating the stator 
quantities. 

3. A ’Fifth Order’ model in which both stator and rotor variables are important. 

Of course we are ignoring the possibility of deep bar (diffusion) effects here, so these simula­
tions may not be all that realistic, but they do have some interesting features. Try to plot 
all three sets of plots on equivalent sets of axes so that the important features of each can be 
seen. 

Problem 3: Doubly Fed Induction Generator 

This is about a three-phase wound-rotor induction generator that might be used as a wind 
turbine generator. The stator and rotor windings are identical, except for the numbers of 
turns. It has characteristics as shown here: 

Number of Poles 2p 6 
Armature Phase Self Inductance La 3.5 mHy 
Armature Phase-to-Phase Mutual Inductance Lab -1.75 mHy 
Rotor Phase Self Inductance LA 31.5 mHy 
Rotor Phase-to-Phase Mutual Inductance LAB -15.75 mHy 
Rotor to Stator (Peak) Mutual Inductance LaA 10.37 mHy 

Effective Transformer Turns Ratio Nr 
Ns 
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Nominal Rotational Speed 1200 RPM 
Terminal Voltage (RMS, Line-Line) Va 690 v 
Rated Power 2,400 kVA 
Frequency 60 Hz 

The rotor windings are connected to a set of slip rings and so can be driven by an inverter 
as shown in Figure 2. The inverter is part of a bidirectional AC/DC/AC converter with 
the other end connected directly to the power system. Assume that the ’line side’ converter 
interacts with the machine stator (and power bus) terminals at unity power factor (that is, 
the reactive power either drawn or supplied by the right-hand end of the converter is zero). 

Assume that the load is drawing P=2,000 kW, Q=500 kVAR. Ignoring losses in the sys­
tem, find and plot the following quantities over a speed range of between 70% and 130% of 
synchronous: 

1. Real and Reactive Power out of the stator winding 

2. Real and Reactive Power in to the slip rings (and rotor winding) 

3. Power delivered by the wind turbine 
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Figure 2: Wind Turbine Generator Setup
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