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Abstract— Spatial dependencies tend to introduce correlations 

among parameter values obtained from test structures. These 
spatial correlations obscure the parameter correlations caused by 
common underlying variables and make process diagnosis more 
difficult. In this work, linear regression method has been used to 
generate the spatial models for both wafer and chip level to 
investigate their significance. It is found that the wafer level 
regression model does not have a strong wafer level dependence 
on the ring oscillator devices. On the other hand, at the chip level, 
goodness of fit calculated for certain device structures exhibit 
strong spatial dependence on the linear regression model. This 
proves that it is essential to consider different levels of spatial 
dependence before making conclusion on the variations caused by 
underlying variables and parameter. 
 

Index Terms—Spatial analysis, linear regression, least square 
method  
 

I. INTRODUCTION 
INCE the birth of the integrated circuit nearly four 
decades ago, the semiconductor industry has distinguished 
itself from the other industries by its rapid pace of 

improvement. Most of the improvements on its products have 
resulted essentially from the industry’s ability to exponentially 
decrease the minimum feature sizes used to fabricate 
integrated circuits. As device dimensions reduce and wafer 
sizes increase, process uniformity is becoming an increasingly 
important and difficult task. A sound understanding of 
variations, particularly spatial variation, is essential to both 
control the process and to design manufacturable circuits [1]-
[4]. Some process variations, such as line-width changes of 
poly or interconnect, can significantly affect circuit 
performance. This requires the development of new techniques 
to measure and extract variation in a given process and link it 
to circuit performance.  

Test circuits are normally designed to add intentional 
variations in device parameters. These variations are carefully 
controlled in terms of their magnitude as well as their behavior 
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towards expected process variations. However, different 
degree of spatial dependence on either the wafer level or chip 
level may distort the results drawn from these devices 
measurements. Therefore, in order to infer any reliable models 
or draw any conclusions, any possible trends of spatial 
correlation with the measured results have to be deconvoluted.  
Examples of common spatial dependencies for unrelated 
process parameters could be radical dependence of crystal 
point defects, ion implantation incidence angle, and 
photoresist thickness. 

Since variation is manifested in several forms, the main aim 
of this paper is to identify any wafer level or chip level spatial 
dependence that would affect the conclusions drawn from any 
device measurements.  

II. PROBLEM FORMULATION 
The present work focuses on establishing a relation between 

spatial variance with observed parameters such as frequency of 
ring oscillators in chip. Ring Oscillators (ROs) are standard 
test structures to determine the delay in different process. The 
chip architecture used in this paper is based on the design by 
Panganiban [5] and the testing methodology used to generate 
the raw data is clearly explained by Gonzalez [6]. The chips 
were manufactured by TSMC using 0.25 µm MOSIS [7]. Fig. 
1 shows the chip locations within the wafer that the data are 
analyzed. Note that all the chips are obtained from the top half 
of the wafer and a majority of them were from the top left hand 
side of the wafer. 

Fig. 1. Spatial location of wafer [6] 
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Typical test structures found in each chips are normally 
divided into two types: Front End Of the Line (FEOL) and 
Back End Of the Line (BEOL) structures. FEOL structures are 
designed to capture variations in the devices that are part of a 
circuit. FEOL structures are tested by carefully laying out sets 
of ring oscillators (ROs) whose inverters have been carefully 
laid out to enhance a specific source of variation. Any 
variations of these nature would be reflected in the overall 
output frequency of the RO. BEOL test structures on the other 
hand are structures that simulate common scenarios of 
interconnections within a chip. These structures must simulate 
parasitic capacitances such as fringing, coupling and plane 
capacitance. To do so, ring oscillators are carefully laid out to 
enhance all these variations, but exclusively one at a time in 
order to detect how this specific variation is affecting the 
output frequency of the circuit. Fig. 2 shows the representation 
of the entire chip. Note that each chip consists of 54 rows of 
ring oscillator and 6 rows of higher polysilicon density, for a 
total of 60 rows. The 54 rows of normal polysilicon density 
have 43 tiles each. There are 30 tiles among all 6 high 
polysilicon rows, for a total of 2,352 tiles per chip. A complete 
summary of the device positions can be found in Gonzalez [6]. 

 Fig. 2. Chip Layout [6] 
 
 In order to drawn any conclusions from the comparison 
between the parameter variations for the different devices, it is 
essential to investigate if there is any parameter correlations 
caused by common underlying variables due to some spatial 
dependence of a certain process. Wafer level and chip level 
spatial modeling are used to identify the trends.  The details of 
the implementation of the spatial modeling are discussed in the 
following section.  

III. REGRESSION FUNDAMENTALS 
This paper primarily focuses on standard analytical 

technique of linear regression. In the linear regression model, 
the dependent variable is assumed to be a linear function of 
one or more independent variables plus an error introduced to 
account for all other factors: 

iiKKii uxxy +++= ββ .....11   (1) 
In the above regression equation, yi is the dependent variable, 
xi1, ...., xiK are the independent or explanatory variables, and 
ui is the disturbance or error term. The goal of regression 
analysis is to obtain estimates of the unknown parameters β1, 
..., βK which indicate how a change in one of the independent 
variables affects the values taken by the dependent variable. 
The aim of regression is to make some predictive models, 
which can be used in future to estimate the dependent variable. 
The usual method of estimation for the regression model is 
ordinary least squares (OLS) [8]. Let b1, ..., bK denote the OLS 
estimates of β1, ..., βK. The predicted value of yi is:  

iKKii xbxby ++= ......ˆ 11   (2) 
The error in the OLS prediction of yi, called the residual, is:  

iii yye ˆ−=   (3) 
The basic idea of ordinary least squares estimation is to choose 
estimates β1, ..., βK to minimize the sum of squared residuals:     

∑
n

ie
1

2  (4) 

It can be shown that:  
    yXXXb ′′= −1)(  (5) 
where X is an n * k matrix with (i,k)th element xiK, y is an n * k 
vector with typical element yi, and b is a k * 1 vector with 
typical element bK. 

The least squares fitting procedure described below can be 
used for data analysis as a purely descriptive technique. 
However, the procedure has strong theoretical justification if a 
few assumptions are made about how the data are generated. 
One set of such assumptions, known as the Gauss-Markov 
assumptions that are sufficient to guarantee that ordinary 
regression estimates will have good properties are summarized 
[9]. The first assumption is that the errors ui have an expected 
value of zero: E(ui) = 0 This means that on average the errors 
balance out. Second assumption is that the independent 
variables are non-random. In an experiment, the values of the 
independent variable would be fixed by the experimenter and 
repeated samples could be drawn with the independent 
variables fixed at the same values in each sample. As a 
consequence of this assumption, the indenpendent variables 
will in fact be independent of the disturbance. For non-
experimental work, this will need to be assumed directly along 
with the assumption that the independent variables have finite 
variances. Third, it assumes that the independent variables are 
linearly independent. That is, no independent variable can be 
expressed as a (non-zero) linear combination of the remaining 
independent variables. The failure of this assumption, known 
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as multicollinearity, clearly makes it infeasible to disentangle 
the effects of the supposedly independent variables. The fourth 
assumption is that the disturbances ui are homoscedastic: 

 E(ui
2)=σ2 (6) 

This means that the variance of the disturbance is the same for 
each observation.  

Fifthly, it assumes that the disturbances are not 
autocorrelated:  
    E(ui,uj)=0 (7) 
This means disturbances associated with different observations 
are uncorrelated.  

Regression models are fitted to the RO frequencies for 
different devices to test for within wafer level and within chip 
level spatial dependence. The center point for the x-y 
coordinates in the case of within wafer level regression models 
is defined to be at the center of the wafer. However, in the case 
of chip level linear regression models, the center point for the 
x-y coordinates are taken to be at the center of each individual 
chip. Goodness of fit, R2, is calculated to investigate if the 
regression models are of a good fit. 

IV. RESULTS 
Regression models are fitted to the RO frequencies for 

different devices to test for within wafer level and within chip 
level spatial dependence. The center point for the x-y 
coordinates in the case of within wafer level regression models 
is defined to be at the center of the wafer. However, in the case 
of chip level linear regression models, the center point for the 
x-y coordinates are taken to be at the center of each individual 
chip. Goodness of fit, R2, is calculated to investigate if the 
regression models are of a good fit. 

A. Wafer level spatial dependence analysis 
The wafer level spatial dependence analysis is carried out in 

two parts. In the first part of the analysis, the average RO 
frequencies for all the device structures within each chip are 
averaged and data obtained for all the chips are analyzed using 
the regression model. In the second part, the average RO 
frequencies for all the devices of identical device structure 
within each chip are then calculated.   

The chip mean frequencies by spatial location and the mean 
frequency for a best regression result for a device structure are 
plotted in Fig. 3 and 4 respectively. It is observed that there 
are no clear spatial wafer level trends in both Figs. 1 and 2. 
Regression model that uses parameters of x, y, xy, x2 and y2 
yields R2 value of 0.154 for the chip mean frequencies by 
spatial location.  Regression models for all the 45 device 
structures also yield low R2 value ranging from 0.04 to 0.22. 
Table 1 and 2 summarizes the model coefficients and the 
coefficients’ significance at 95% confidence interval for the 
case of chip mean as well as the best regression fit for a certain 
device structure.  From the two tables, it can be seen that the 
all model coefficients are not very significant at 95% 
confidence.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Chip Mean Frequencies by Spatial Location 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Mean Frequencies for Plane Cap for ILD by Spatial Location 
 

Table 1: Chip Mean Wafer Level Spatial modeling 

  Coefficients Standard Error t Stat P-value
Intercept 4081904.19 41430.55 98.52 0.00 

X -1098.54 717.22 -1.53 0.14 
Y 2770.78 1824.28 1.52 0.14 

XY 19.19 15.93 1.20 0.24 
X2 4.70 6.60 0.71 0.48 
Y2 -22.16 17.98 -1.23 0.23 

R Square 0.15    
     

Table 2: Mean for Single Device Structure  
Wafer Level Spatial modeling 

  Coefficients Standard Error t Stat P-value
Intercept 3894742.24 25597.53 152.15 0.00 

X -765.26 443.13 -1.73 0.09 
Y 2298.81 1127.12 2.04 0.05 

XY 13.78 9.84 1.40 0.17 

X2 3.79 4.08 0.93 0.36 

Y2 -18.38 11.11 -1.65 0.11 
R Square 0.22    
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There can be several reasons for this observation; firstly there 
might not be any spatial correlation. Secondly, there can be a 
spatial correlation but not linear it might be non linear. Thirdly 
the data set might not be a good sample as it is missing values 
from other sides of wafer as shown in Fig.1. 

B. Chip level spatial dependence analysis 
After wafer level spatial analysis, chip level spatial 

dependence was carried out. As mentioned earlier, in the case 
of chip level linear regression models, the center point for the 
x-y coordinates are taken to be at the center of each individual 
chip. RO frequencies of individual device structure were 
regressed over x, y, xy, x2 and y2 to yield models. There are 45 
device and 35 chips so it will yield (45x35=) 1575 models.  

 
Table 3: R2 value for different types of FEOL structure 

 
This work focuses on some interesting trends and devices, as 

it is not possible report such a large number of models. One of 
these interesting trends is observed in vertical and horizontal 
FEOL test structures. Horizontal and vertical test structures are 
designed to investigate the orientation dependence of structure. 
They primarily have the same architecture. There can be 
difference in their frequency attributed to mask scan bias or 
ion implantation effect. 

Table 3 summarizes the R2 value for two types of FEOL 
structure, which have both vertical and horizontal structure for 
all chips. The two FEOL structures are Canonical FEOL and 
3x spacing FEOL. From this table it is evident that vertical 
structures have better fit as compared to horizontal. Note that 
there are also some chips (ie chip 1,2, … ) that do not have 
any good R2 value for all device structures measured. 

Fig. 5 shows the spatial distribution for vertical Canonical 
FEOL for particular chip 19 and it can be observed that there 
is certainly a pattern to it. In given dataset, Chip 19 has the 
replication, which makes it more reliable and suitable 
candidate for spatial plots. R2 value for this chip and device is 
0.86 and coefficients are listed in Table 4.  

Similarly, Fig. 6 shows the spatial distribution for horizontal 
Canonical FEOL for Chip 19. R2 value for this regression was 
around 0.49 and its coefficients are also listed in Table 5. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. RO1_vertical by Spatial Location 
 
Table 4: Chip 19 RO1_Vertical Chip Level Spatial Modeling 

  Coefficients Standard Error t Stat P-value

Intercept 4315093.84 3206.79 1345.61 0.00 

X -14383.70 2093.34 -6.87 0.00 

Y 25826.35 1682.54 15.35 0.00 

XY 2080.24 1828.09 1.14 0.26 

X2 5003.95 3241.54 1.54 0.13 

Y2 -14144.47 1594.74 -8.87 0.00 

R Square 0.86    
 

  tile_ro1 tile_ro1_vert tile_ro3 tile_ro3_vert
chip1 0.0616 0.1677 0.0721 0.1961 
chip2 0.0203 0.1609 0.1405 0.1535 
chip3 0.0554 0.1978 0.1912 0.2933 
chip4 0.2159 0.5199 0.4211 0.4765 
chip5 0.2123 0.6927 0.3881 0.8729 
chip6 0.2036 0.7031 0.1802 0.7075 
chip7 0.3741 0.7483 0.3982 0.7833 

chip8 0.2256 0.7129 0.2280 0.7688 
chip9 0.3077 0.7921 0.3160 0.8676 

chip10 0.7901 0.9690 0.7649 0.9740 
chip11 0.2404 0.6893 0.3672 0.8116 
chip12 0.1837 0.6738 0.3239 0.6691 
chip13 0.1471 0.5863 0.1709 0.7070 
chip14 0.2238 0.6759 0.3722 0.7020 
chip15 0.3020 0.7205 0.3707 0.7195 
chip16 0.3492 0.7024 0.3666 0.7195 
chip17 0.1039 0.4940 0.2663 0.7227 
chip18 0.3269 0.7987 0.3358 0.7094 
chip19 0.4950 0.8636 0.3328 0.9251 
chip20 0.2263 0.5672 0.3735 0.5590 
chip21 0.3377 0.8116 0.2747 0.8704 
chip22 0.1861 0.6655 0.2656 0.6872 
chip23 0.2210 0.7747 0.3213 0.7428 
chip24 0.0940 0.5513 0.2472 0.4845 
chip25 0.1932 0.7602 0.2481 0.7652 
chip26 0.5376 0.8942 0.5743 0.8818 
chip27 0.2634 0.7594 0.2376 0.7827 
chip28 0.2066 0.6480 0.2760 0.6801 
chip29 0.2232 0.7169 0.3443 0.7956 
chip30 0.2992 0.1092 0.3512 0.7733 
chip31 0.2408 0.6791 0.2933 0.7055 
chip32 0.1110 0.6068 0.1487 0.6986 
chip33 0.3080 0.5449 0.5677 0.7444 
chip34 0.3341 0.7576 0.2894 0.7869 
chip35 0.2513 0.5572 0.3607 0.6985 
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Fig. 6. RO1_Horizontal by Spatial Location 
 

Table 5: Chip 19 RO1_Horizontal Chip Level Spatial Modeling 

  Coefficients Standard Error t Stat P-value

Intercept 4381108.63 4305.95 1017.45 0.00 

X -20520.43 3118.70 -6.58 0.00 

Y 24800.59 2366.29 10.48 0.00 

XY 4568.68 2840.55 1.61 0.11 

X2 -24246.59 4635.09 -5.23 0.00 

Y2 7640.08 2286.22 3.34 0.00 

R Square 0.49    
 
 From Table 4, is noted that for the case of the RO1 vertical 
device structure, the coefficients of x, y and y2 in the 
regression model are very significant. The high R2 value for 
the spatial model correlates well with the Fig. 5 that shows a 
clear trend that the measured device frequency increases 
diagonally from the bottom right to the top left hand corner of 
the chip.  

From Table 5, is noted that for the case of the RO1 
horizontal device structure, the coefficients of x, y, x2 and y2 in 
the regression model are significant. The relative low R2 value 
for the spatial model correlates well with the Fig. 6 that shows 
that there exists only a slight trend that the measured device 
frequency increases diagonally from the bottom to the top of 
the chip.  

V. CONCLUSION AND FUTURE WORK 
Wafer level spatial analysis shows that RO frequencies 

obtained from this dataset don’t have linear spatial dependence 
on wafer level, as all R2 values were low. It needs further 
investigation in terms of non-linear regression modeling to 
verify if there is any spatial model that exists in the system.  

On the chip level, some interesting trends were observed 
such as some chips like Chip 1, 2, 3, which shows really low 
R2 value for all device structures. This observation needs to be 
further investigated if there exists some potential process 
issues with these chips. On the other hand some device 
structures does have good R2 value (>.0.6) for few chips such 

as FEOL horizontal.  
The understanding of the interplay between the different 

levels of spatial dependence with the observed parameters is 
critical in order to establish the actual link between the 
variations in observed parameters to their various device 
parameters. The final objective is to isolate the variation in 
observed parameters due to various device parameters taking 
into account the generated spatial models 
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