
Last updated:
2/10/2006 4:26 PM

Problem M1.1: Self Modifying Code on the EDSACjr

This problem gives us a flavor of EDSAC-style programming and its limitations. Please, read
Handout #1 (EDSACjr) and Lecture 2, before answering the following questions (You may find
local labels in Handout #1 useful for writing self-modifying code.)

Problem M1.1.A Writing Macros For Indirection

With only absolute addressing instructions provided by the EDSACjr, writing self-modifying
code becomes unavoidable for almost all non-trivial applications. It would be a disaster, for both
you and us, if you put everything in a single program. As a starting point, therefore, you are
expected to write macros using the EDSACjr instructions given in Table H1-1 (in Handout #1)
to emulate indirect addressing instructions described in Table M1.1-1. Using macros may
increase the total number of instructions that need to be executed because certain instruction
level optimizations cannot be fully exploited. However, the code size on paper can be reduced
dramatically when macros are appropriately used. This makes programming and debugging
much easier.

Please use following global variables in your macros.

_orig_accum: CLEAR
_store_op: STORE 0
_bge_op: BGE 0
_blt_op: BLT 0
_add_op ADD 0

; temp. storage for accum
; STORE template
; BGE template
; BLT template
; ADD template

These global variables are located somewhere in main memory and can be accessed using their
labels. The _orig_accum location will be used to temporarily store the accumulator’s value.
The other locations will be used as “templates” for generating instructions.

Opcode Description
ADDind n Accum ← Accum + M[M[n]]
STOREind n M[M[n]] ← Accum
BGEind n If Accum ≥ 0 then PC ← M[n]
BLTind n If Accum < 0 then PC ← M[n]

Table M1.1-1: Indirection Instructions

Last updated:
2/10/2006 4:26 PM

Problem M1.1.B Subroutine Calling Conventions

A possible subroutine calling convention for the EDSACjr is to place the arguments right after
the subroutine call and pass the return address in the accumulator. The subroutine can then get
its arguments by offset to the return address.

Describe how you would implement this calling convention for the special case of one argument
and one return value using the EDSACjr instruction set. What do you need to do to the
subroutine for your convention to work? What do you have to do around the calling point? How
is your result returned? You may assume that your subroutines are in set places in memory and
that subroutines cannot call other subroutines. You are allowed to use the original EDSACjr
instruction set shown in Handout #1 (Table H1-1), as well as the indirection instructions listed in
Table M1.1-1.

To illustrate your implementation of this convention, write a program for the EDSACjr to
iteratively compute fib(n), where n is a non-negative integer. fib(n) returns the nth
Fibonacci number (fib(0)=0, fib(1)=1, fib(2)=1, fib(3)=2…). Make fib a
subroutine. (The C code is given below.) In few sentences, explain how could your convention
be generalized for subroutines with an arbitrary number of arguments and return values?

The following program defines the iterative subroutine fib in C.

int fib(int n) {

int i, x, y, z;

x=0, y=1;

if(n<2)

return n;

else{

for(i=0; i<n-1; i++){

z=x+y;

x=y;

}
y=z;

return z;

}

}

Last updated:
2/10/2006 4:26 PM

Problem M1.1.C Recursive Subroutines

Design a calling convention for recursive 1 argument/1 return value subroutines using a stack.
Your convention should support subroutines that can call themselves. How are the arguments
passed in and how is the result returned? Again, you may use the indirection instructions defined
in Table M1.1-1.

Include the code for any macros you rely upon. You may find it helpful to write the following
macros (where SP is the stack pointer and is stored in the memory location _SP):

ADDstack n accum <- accum + M[M[n]+SP]
STOREstack n M[M[n]+SP] <- accum
ADJUSTstack n SP <- SP+M[n]

To illustrate the use of your convention, write a paragraph explaining how you would implement
a recursive fib(n) subroutine on the EDSACjr. (The C code for a recursive version of
fib(n) is given below). Include diagrams of the stack as it would appear on each call to
fib(n)when n=4.

In few sentences, explain how your convention would be generalized for procedures with a
different number of arguments and a different number of returned values?

The following program defines the recursive subroutine fib in C.

int fib (int n){

if(n<2)

return n;

else{

}
return(fib(n-1) + fib(n-2));

}

3

Last updated:
2/10/2006 4:26 PM

Problem M1.2: CISC, RISC, and Stack: Comparing ISAs

This problem requires the knowledge of Handout #2 (6.823 Stack ISA), Handout #3 (CISC ISA—
x86jr), Handout #4 (RISC ISA—MIPS64), and Lectures 2 and 3. Please, read these materials
before answering the following questions.

Problem M1.2.A 	 CISC

Let us begin by considering the following C code:

int b; //a global variable

void multiplyByB(int a){
int i, result;
for(i = 0; i<b; i++){
result=result+a;

}
}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following
x86 instruction sequence. (On entry to this code, register %ecx contains i, and register %edx
contains result, and register %eax contains a. b is stored in memory at location
0x08049580.) A brief explanation of each instruction in the code is given in Handout #3.

xor %edx,%edx

xor %ecx,%ecx

loop: 	 cmp 0x08049580,%ecx

jl L1

jmp done

L1: 	 add %eax,%edx

inc %ecx

jmp loop

done: ...

How many bytes is the program? For the above x86 assembly code, how many bytes of
instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data
memory need to be fetched? Stored?

Problem M1.2.B 	 RISC

Translate each of the x86 instructions in the following table into one or more MIPS64
instructions in Handout #4. Place the L1 and loop labels where appropriate. You should use the
minimum number of instructions needed. Assume that upon entry, R1 contains b, R2 contains a,
R3 contains i. R4 should receive result. If needed, use R5 to hold the condition value and R6,

4

Last updated:
2/10/2006 4:26 PM

R7, etc., for temporaries. You should not need to use any floating point registers or instructions
in your code.

x86 instruction label MIPS64 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x08049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS64 program using your direct translation? How many bytes of
MIPS64 instructions need to be fetched for b = 10 using your direct translation? How many
bytes of data memory need to be fetched? Stored?

Problem M1.2.C Stack

In a stack architecture, all operations occur on top of the stack. Only push and pop access
memory, and all other instructions remove their operands from the stack and replace them with
the result. The 6.823 stack-based instruction set for this question is available in Handout #2.
(Assume that the MUL instruction does not exist.) The hardware implementation we will assume
for this problem set uses stack registers for the top two entries; accesses that involve other stack
positions (e.g., pushing or popping something when the stack has more than two entries) use an
extra memory reference. Assume each opcode is a single byte. Offsets, constants and addresses
require two bytes.

Translate the multiplyByB loop to the stack ISA. For uniformity, please use the same control
flow as in parts A and B. Assume that when we reach the loop, a is the only thing on the stack.
Assume b is now at address B (it fits within a 2 byte address specifier). If needed, please use A

5

Last updated:
2/10/2006 4:26 PM

as the temporary memory address to hold a, I as the temporary memory address to hold i, and
RESULT as the temporary memory address to hold result.

How many bytes is your program? Using your stack translations from part C, how many bytes
of stack instructions need to be fetched for b = 10? How many bytes of data memory need to be
fetched? Stored? If you could push and pop to/from a four-entry register file rather than memory
(the Java virtual machine does this), what would be the resulting number of bytes fetched and
stored?

Problem M1.2.D Conclusions

In just a few sentences, compare the three ISAs you have studied with respect to code size,
number of instructions fetched, and data memory traffic.

Problem M1.2.E Optimization

To get more practice with MIPS64, optimize the code from part B so that it can be expressed in
fewer instructions. Your solution should contain commented assembly code, a paragraph which
explains your optimizations, and a short analysis of the savings you obtained.

6

Last updated:
2/10/2006 4:26 PM

7

Problem M1.3: Stack Architecture

This problem requires the knowledge of Handout #2 (6.823 Stack ISA) and Lecture 3. Please,
read these materials before answering the following questions.

Problem M1.3.A Program Execution on Stack Architecture

By analyzing the program in Table M1.3-1, please write the equation that was implemented
on the stack architecture. Assume A is the memory address to hold a, B is the memory address
that holds b, C is the memory address that holds c, D is the memory address that holds d, E is the
memory address that holds e, F is the memory address that holds f, G is the memory address
that holds g, and H is the memory address that holds h.

a =

PUSH B
PUSH C
PUSH D
MUL
PUSH E
MUL
PUSH F
PUSH G
MUL
PUSH H
ADD
SUB
ADD
POP A

Table M1.3-1

Last updated:
2/10/2006 4:26 PM

Problem M1.3.B Optimization (1)

The hardware implementation we assume for this question is a stack machine with two stack
registers. The top 2 stack entries are always held in registers and the rest of the stack is held in
memory. When the depth of the stack is 2 or more, a push causes a Stack Store (SS) to store an
element of the stack to memory. When the depth of the stack is 3 or more, a pop causes a Stack
Fetch (SF) to fetch an element of the stack from memory. All the ALU instructions have been
optimized to minimize the number of memory references. For example, when the depth of stack
is 3 or more, an INC operation would cause 0 (not 2) memory references.

ALU

Stack Registers
PUSH

POP
SF
SS

R0

R1

Main Memory

Please complete Table M1.3-2. Do not include instruction fetches in the Number of Memory
References.

Program Stack Depth Number of Stack Entries
Stored In The Registers

Number of Memory
References

PUSH B 1 1 1
PUSH C 2 2 1
PUSH D 3 2 2
MUL 2 2
PUSH E 3 2
MUL 2 2
PUSH F 3 2
PUSH G 4 2
MUL 3 2
PUSH H 4 2
ADD 3 2
SUB 2 2
ADD 1 1
POP A 0 0

Table M1.3-2

8

Last updated:
2/10/2006 4:26 PM

Problem M1.3.C Optimization (2)

In this question, we want to improve performance of the stack machine from Question M1.3.B
by initiating additional memory references only when the stack registers overflow or underflow.
The 2 stack registers are used to hold the top 0, 1, or 2 stack entries. When the registers hold 2
stack entries, a push causes a SS to store an element of the stack to memory. When the registers
hold 0 stack entries, a pop causes a SF to fetch an element of the stack from memory. In contrast
to the stack machine from Part B, a pop does not cause a SF when the registers hold 1 or 2 stack
entries, even when the depth of the stack is 3 or more.

Based on this optimized stack machine, please complete Table M1.3-3. Do not include
instruction fetches in the Number of Memory References.

Program Stack Depth Number of Stack Entries
Stored In The Registers

Number of Memory
References

PUSH B 1 1 1
PUSH C 2 2 1
PUSH D 3 2 2
MUL 2
PUSH E 3
MUL 2
PUSH F 3
PUSH G 4
MUL 3
PUSH H 4
ADD 3
SUB 2
ADD 1 1
POP A 0 0

Table M1.3-3

Problem M1.3.D Optimization (3)

Comparing the results in Problem M1.3.B and Problem M1.3.C, do we save any memory
references by using the optimized stack machine for this particular program (Table M1.3-1)? If
so, how many?

9

Last updated:
2/10/2006 4:26 PM

 Problem M1.4: Microprogramming and Bus-Based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout #5 (Bus-Based MIPS
Implementation). Read the instruction fetch microcode in Table H5-3 which was reproduced at
the end of this problem (Worksheet M1-1) for readers’ convenience. Make sure that you
understand how different types of data and control transfers are achieved by setting the
appropriate control signals before attempting this problem.

In order to further simplify this problem, ignore the busy signal, and assume that the memory is
as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of
new hardware added).

Problem M1.4.A Implementing Memory-to-Memory Add

For this problem, you are to implement a new memory-memory add operation. The new
instruction has the following format:

ADDm rd, rs, rt

ADDm performs the following operation:

M[rd] ← M[rs] + M[rt]

Fill in Worksheet M1-1 with the microcode for ADDm. Use don’t cares (*) for fields where it is
safe to use don’t cares. Study the hardware description well, and make sure all your
microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as you do it
neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in
the course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch
to FETCH0 as discussed above).

10

Last updated:
2/10/2006 4:26 PM

Problem M1.4.B Implementing DBNEZ Instruction

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as
conditional branch instructions on MIPS:

6 5 5 16
opcode rs Offset

DBNEZ decrements register rs by 1, writes the result back to rs, and branches to (PC+4)+offset,
if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This
instruction can be used for efficiently implementing loops.

Your task is to fill out Worksheet M1-2 for DBNEZ instruction. You should try to optimize your
implementation for the minimal number of cycles necessary and for which signals can be set to
don’t-cares. You do not have to worry about the busy signal.

(Note that the microcode for the fetch stage has changed slightly from the one in the Problem
M1.4.A, to allow for more efficient implementation of some instructions.)

Problem M1.4.C Instruction Execution Times
How many cycles does it take to execute the following instructions in the microcoded MIPS
machine? Use the states and control points from MIPS-Controller-2 in Lecture 4 and assume
Memory will not assert its busy signal.

Instruction Cycles
SUB R3,R2,R1
SUBI R2,R1,#4
SW R1,0(R2)
BEQZ R1,label # (R1 == 0)
BNEZ R1,label # (R1 != 0)
J label
JR R1
JAL label
JALR R1

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to
execute?

11

Last updated:
2/10/2006 4:26 PM

Problem M1.4.D Exponentiation
Ben Bitdiddle needs to compute the power function for small numbers. Realizing there is no
multiply instruction in the microcoded MIPS machine, he uses the following code to calculate
the result when an unsigned number m is raised to the nth power, where n is another unsigned
number.

if (m == 0) {

result = 0;

}
else {

result = 1;

i = 0;

while (i < n) {
temp = result;
j = 1;
while (j < m) {

result += temp;

}
i++;

j++;

}

}

The variables i, j, m, n, temp, and result are unsigned 32-bit values.

Write the MIPS assembly that implements Ben’s code. Use only the MIPS instructions that can
be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR,
BEQZ, and BNEZ). The microcoded MIPS machine does not have branch delay slots. Use R1
for m, R2 for n, and R3 for result. At the end of your code, only R3 must have the correct
value. The values of all other registers do not have to be preserved.

How many MIPS instructions are executed to calculate the power function? How many cycles
does it take to calculate the power function? Again, use the states and control points from MIPS-
Controller-2 and assume Memory will not assert its busy signal.

m, n Instructions Cycles
0, 1
1, 0
2, 2
3, 4
M, N

12

Last updated:
2/10/2006 4:26 PM

Problem M1.4.E Microcontroller Jump Logic
Now we will fill in a gap in the microcontroller implementation. In the lecture on
microprogramming, we did not explain the implementation of the jump logic of the
microcontroller. Your task in this problem is to implement that logic. Use AND gates, OR gates
and inverters to implement the combinational logic that realizes the control equations for the
jump logic of the MIPS microcontroller below. The control equations for the jump logic:

µPCSrc = Case µJumpTypes
 next => µPC+1
 spin => µPC.busy + (µPC+1).~busy

 fetch => absolute
dispatch => op-group
feqz => absolute.zero + (µPC+1).~zero
fnez => absolute.~zero + (µPC+1).zero

The selection bits for each input of the µPCSrc mux, as well as the µJumpTypes encoding are
given in the tables below. Your task is to create combinational logic that translates between
them, according to the control equations. Assume that the busy and zero signals follow positive
logic (so they are true if the wire is carrying a 1 and false if the wire is carrying a 0). Your design
will be judged on its correctness, clarity and organization. These factors are more important than
the efficiency of your design.

µJumpTypes Encoding
next 000
spin 001
feqz 110
fnez 111
fetch 010
dispatch 100

µPCSrc Selection bits
µPC+1 00
µPC 01
absolute 10
op-group 11

Table M1.4-2: µPCSrc Selection bits

Table M1.4-1: µJumpTypes Encoding

13

Last updated:
2/10/2006 4:26 PM

State PseudoCode ld
IR

Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDM0:

Worksheet M1-1

14

Last updated:
2/10/2006 4:26 PM

State PseudoCode ld
IR

Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

Ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

DBNEZ:

Worksheet M1-2

15

Last Updated:
2/10/2006 4:26 PM

Problem M1.5: Fully-Bypassed Simple 5-Stage Pipeline

We have reproduced the fully bypassed 5-stage MIPS processor pipeline from Lecture 6 in
Figure M1.5-A. In this problem, we ask you to write equations to generate correct bypass and
stall signals. Feel free to use any symbol introduced in the lecture.

Problem M1.5.A Stall

Do we still need to stall this pipeline? If so, explain why. (1) Write down the correct equation
for the stall condition, and (2) give an example instruction sequence which causes a stall.

Problem M1.5.B Bypass Signal

In Lecture L6, we gave you an example of bypass signal (ASrc) from EX stage to ID stage. In
the fully bypassed pipeline, however, the mux control signals become more complex, because
we have more inputs to the muxes in ID stage.

Write down the bypass condition for each bypass path in Mux 1. Please, indicate the priority of
the signals; that is, if all bypass conditions are met, indicate which one has the highest and the
lowest priorities.

Bypass EX->ID ASrc = (rsD=wsE).we-bypassE.re1D (given in Lecture L6)

Bypass MEM->ID =

Bypass WB->ID =

Priority:

Problem M1.5.C Partial Bypassing

While bypassing gives us a performance benefit, it may introduce extra logic in critical paths and
may force us to lower the clock frequency. Suppose we can afford to have only one bypass in the
datapath. How would you justify your choice? Argue in favor of one bypass path over another.

15

Last Updated:
2/10/2006 4:26 PM

 16

Figure M1.5-A. Fully-Bypassed MIPS Pipeline

ASrc
IR IR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR ALU

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdat

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Problem M1.6: Basic Pipelining

After having studied a single-cycle, Harvard-style (separate instruction and data memories)
MIPS processor, Ben Bitdiddle decides to build a two-stage pipelined (i.e., instruction fetch and
execute) Princeton-style architecture (shared instruction and data memory). He proposes the
microarchitecture shown in the figure below. Assume our ISA contains a branch delay slot:
instructions that follow branches and jumps are executed regardless of whether control flow has
changed. (Note: the behavior of a branch/jump in the delay slot is undefined.)

Figure M1.6-A. Two-stage pipeline, Princeton-style

Last Updated:
2/10/2006 4:26 PM

Problem M1.6.A Instruction Fetch (1)

Help Ben determine the logic for stalling the instruction fetch stage assuming self-modifying
code is not allowed. In one sentence explain why the pipeline might need to stall.

Problem M1.6.B Instruction Fetch (2)

Write the logic equation to determine the value of PCenable. (PCenable indicates whether the PC
should be loaded with a new value (True) or should hold its old value (False)).

Example syntax: PCenable = (OpCode == ALUOp) or ((ALU.zero?) and (not (PC == 17)))

You may use any internal signals (e.g. OpCode, zero?, PC, IR, rd1, rdata, etc.) but may not
express PCenable as a function of other control signals (e.g. ExtSel, IRSrc, PCSrc, etc.).

PCenable =

Problem M1.6.C MUX Control Signals

Fill in the blanks to complete the MUX control signals AddrSrc and IRSrc.

AddrSrc = Case ____________ IRSrc = Case ____________

____________ => ALU ____________ => nop

____________ => PC ____________ => Mem

18

Last Updated:
2/10/2006 4:26 PM

Problem M1.6.D

Now we are ready to put Ben’s machine to the test. We would like to see a cycle-by-cycle
animation of Ben’s two-stage pipelined, Princeton-style MIPS machine when executing the
instruction sequence below. In the following table, each row represents a snapshot of some
control signals and the content of some special registers for a particular cycle. Ben has already
finished the first two rows. Complete the remaining entries in the table. Use * for “don’t care.”

Label Address Instruction
I1 100 ADD
I2 104 LW
I3 108 J I7
I4 112 LW
I5 116 ADD
I6 120 SUB
I7 312 ADD
I8 316 ADD

Time PC “IR” PCenable PCSrc1 AddrSrc IRSrc
t0 I1:100 - 1 pc+4 PC Mem
t1 I2:104 I1 1 Pc+4 PC Mem
t2
t3
t4
t5
t6

19

Last Updated:
2/10/2006 4:26 PM

 20

Problem M1.6.E Self-Modifying Code

Suppose we allow self-modifying code to execute, i.e. store instructions can write to the portion
of memory that contains executable code. Does the two-stage Princeton pipeline need to be
modified to support such self-modifying code? If so, please indicate how. You may use the
diagram below to draw modifications to the datapath. If you think no modifications are required,
explain why.

Last Updated:
2/10/2006 4:26 PM

 21

Problem M1.6.F

To solve a chip layout problem Ben decides to reroute the input of the WB mux to come from
after the AddrSrc MUX rather than ahead of the AddrSrc MUX. (The new path is shown in
bold, the old as a dotted line.) The rest of the design is unaltered.

How does this break the design? Provide a code sequence to illustrate the problem and explain
in one sentence what goes wrong:

Problem M1.6.G Architecture Comparison

List one advantage of the Princeton architecture over the Harvard architecture:

List one advantage of the Harvard architecture over the Princeton architecture:

Last Updated:
2/10/2006 4:26 PM

Problem M1.7: A 5-Stage Pipeline with an Additional Adder

In this problem we consider a new datapath to improve the performance of the fully-bypassed 5
stage 32-bit MIPS processor datapath given in Lecture 6 (reproduced in Figure M1.5-A). In the
new datapath the ALU the Execute stage is replaced by a simple adder and the original ALU is
moved from the Execute stage to the Memory stage (See Figure M1.7-A). The adder in the 3rd

stage (formerly Execute) is used only for address calculations involving load/store instructions.
For all other instructions, the data is simply forwarded to the 4th stage.

The ALU will now run in parallel with the data memory in the 4th stage of the pipeline (formerly
Mem). During a load/store instruction, the ALU is inactive, while the data memory is inactive
during the ALU instructions. In this problem we will ignore jump and branch instructions.

Problem M1.7.A Elimination of a hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a
pipeline bubble in the original datapath, but not in the new datapath.

Problem M1.7.B New hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a
pipeline bubble in the new datapath, but not in the original datapath.

Problem M1.7.C Comparison

Compare the advantages and disadvantages of the new datapath. Which one would you
recommend? Justify your choice.

22

wdat

Last Updated:
2/10/2006 4:26 PM

IF ID AC EX/MEM WB
Instruction
fetch

Instruction decode and
register read

Address
calculation

ALU execution and
memory access

Writeback to
register file

P

A

Y

R M
D

1

addr
ins

Inst
Memory

Im
m

add

rd1

GPR

rs1
rs2

ws
w rd2

we

addr

wdata

rdata
Data
Memory

we

A
2

ALU

B
2

B

M
D

2

IR

Figure M1.7-A. 5-Stage Pipeline with an Additional Adder

23

Last Updated:
2/10/2006 4:26 PM

Problem M1.7.D Stall Logic
Write the stall condition (in the style of Lecture L6) for the new hazard arising from the
modification to the data path. Please make use of the following signal names when writing your
stall equations:

Cdest Cre
ws = Case opcode

ALU ⇒ rd
re1 = Case opcode

ALU, ALUi, LW,
ALUi, LW ⇒ rt SW, BZ,
JAL, JALR ⇒ R31 JR, JALR ⇒ on

J, JAL ⇒ off
we = Case opcode

ALU, ALUi, LW ⇒ (ws ≠ 0)
JAL, JALR ⇒ on

re2 = Case opcode
ALU, SW ⇒ on

... ⇒ off ... ⇒ off

Problem M1.7.E Datapath Improvement
Consider a MIPS ISA that only supports register indirect addressing, i.e. has no displacement
(base+offset) addressing mode. Assuming the new machine only had to support this ISA, how
could the datapath be improved? Draw the new datapath showing your design. (You do not
have to show everything -- just the important features like pipeline registers, major components,
major connections, etc.) Compare the hazards in this new datapath with the hazards in datapaths
shown in Figure M1.7-A. And the original datapath in Lecture 6 (Figure M1.5-A). Justify the
new datapath.

Problem M1.7.F Displacement Addressing Synthesizing
If the MIPS ISA did not have displacement addressing, what would programmers do? Could
you still write the same programs as before? Explain.

Problem M1.7.G Jumps and Branches
Now we will consider jumps and branches for the pipeline shown in part A of this problem.
Assume that the branch target calculation is performed in the Instruction Decode stage. In what
pipeline stages can you put the logic to determine whether a conditional branch is taken? (don’t
worry about duplicating logic) What are the advantages and disadvantages between the different
choices? For each choice, consider the number of cycles for the branch delay, any additional
stall conditions, and any potential changes in the clock period.

24

wdata

Problem M1.8: Dual ALU Pipeline

In this problem we consider further improvements to the fully bypassed 5-stage MIPS processor
pipelines presented in Lecture 6 and Problem M1.7. In this new pipeline we essentially replace
the Adder in stage 3 (Figure M1.7-A) by a proper ALU with the goal of eliminating all hazards
(Please see Figure M1.8-A).

The Dual ALU Pipeline has two ALUs: ALU1 is in the 3rd pipeline stage (EX1) and ALU2 is in
the 4th pipeline stage (EX2/MEM). A memory instruction always uses ALU1 to compute its
address. An ALU instruction uses either ALU1 or ALU2, but never both. If an ALU
instruction’s operands are available (either from the register file or the bypass network) by the
end of the ID stage, the instruction uses ALU1; otherwise, the instruction uses ALU2.

In this problem, assume that the control logic is optimized to stall only when necessary. You
may ignore branch and jump instructions in this problem.

A

Y

R

addr
inst

Inst
Memory

Imm

rd1rs1
rs2
ws
wd rd2

we

addr

rdata

Memory

we

A
2

B
2

B

Writeback to
register file

ALU2
and memory accessand address

calculation

Instruction decode and
register read

Instruction
fetch

WBEX2/MEMEX1IDIF

IR

P
C

M
D

1 Ext

GPRs

wdata

Data

ALU

M
D

2

execution ALU1 execution

ALU

Figure M1.8-A. Dual ALU Pipeline

25

Problem M1.8.A ALU Usage

For the following instruction sequence, indicate which ALU each add instruction uses.
Assume that the pipeline is initially idle (for example, it has been executing nothing but nop
instructions). Registers involved in inter-instruction dependencies are highlighted in bold for
your convenience.

ALU1 or ALU2?
add r1, r2, r3

lw r4, 0(r1)

add r5, r4, r6

add r7, r5, r8

add r1, r2, r3

lw r4, 0(r1)

add r5, r1, r6

Problem M1.8.B Control Signal

Fill in the equation for the control logic signal alu2ID. This signal is computed during the ID
stage. It should be true if the instruction will use ALU2, or false otherwise. Like other control
logic signals, alu2 travels down the pipeline with an instruction as alu2EX1 and alu2EX2/MEM,
you may use these signals in your equation if needed. In the equation, “+” means logical or, and
“·” means logical and.

alu2ID = (((OPID = ALU) + (OPID = ALUi))
·((rsID = wsEX1) + (rtID = wsEX1)·re2ID)
·(wsEX1 ≠ 0)
·()
)

26

Problem M1.8.C Instruction Sequences Causing Stalls

Indicate whether each of the following instruction sequences causes a stall in the pipeline.
Consider each sequence separately and assume that the pipeline is initially idle (for example, it
has been executing nothing but nop instructions). Registers involved in inter-instruction
dependencies are highlighted in bold for your convenience.

stall? (yes/no)
add r1, r2, r3
lw r4, 0(r1)
lw r1, 0(r2)
add r3, r1, r4
lw r5, 0(r1)
lw r1, 0(r2)
lw r3, 0(r1)
lw r1, 0(r2)
sw r1, 0(r3)
lw r1, 0(r2)
add r3, r1, r4
sw r5, 0(r3)
lw r1, 0(r2)
add r3, r1, r4

Problem M1.8.D Stall Equation

Give the stall equation for the new pipeline. It should be optimized so that the pipeline only
stalls when necessary to resolve data hazards. You may use the alu2 logic signals from
Question M1.8.B if needed.

stallID =

27

Problem M1.9: Processor Design (Short Yes/No Questions)

The following questions describe two variants of a processor which are otherwise identical. In
each case, circle "Yes" if the variants might generate different results from the same compiled
program, and circle "No" otherwise. You must also briefly explain your reasoning. Ignore
differences in the time each machine takes to execute the program.

Problem M1.9.A Interlock vs. Bypassing

Pipelined processor A uses interlocks to resolve data hazards while pipelined processor B has
full bypassing.

Yes / No

Problem M1.9.B Delay Slot

Pipelined processor A uses branch delay slots to resolve control hazards while pipelined
processor B kills instructions following a taken branch.

Yes / No

Problem M1.9.C Structural Hazard

Pipelined processor A has a single memory port used to fetch instructions and data, while
pipelined processor B has no structural hazards.

Yes / No

Problem M1.9.D Microcode

Microcoded machine A uses 32-bit microcode instructions, while microcoded machine B uses
64-bit microcode instructions.

Yes / No

Problem M1.9.E Stall Equation

Microcoded machine A has 32-bit data registers, while microcoded machine B has 64-bit data
registers.

Yes / No

28

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

