
6.824 2006 Lecture 14: Paxos

From Paxos Made Simple, by Leslie Lamport, 2001

introduction
 2-phase commit is good if different nodes are doing different things
 but in general you have to wait for all sites and TC to be up
 you have to know if each site voted yes or no
 and the TC must be up to decide
 not very fault-tolerant: has to wait for repair
 can we get work done even if some nodes can't be contacted?
 yes: in the special case of replication

state machine replication
 works for any kind of replicated service: storage or lock server or
whatever
 every replica must see same operations in same order
 if deterministic, replicas will end up with same state

how to ensure all replicas see operations in the same order?
 primary + backup(s)
 clients send all operations to current primary
 primary chooses order, sends to backups, replies to client

what if the primary fails?
 need to worry about that last operation, possibly not complete
 need to pick a new primary
 can't afford to have two primaries!
 suppose lowest-numbered live server is the primary
 so after failure, everyone pings everyone
 then everyone knows who new primary is?
 well, maybe not:
 pings may be lost => two primaries
 pings may be delayed => two primaries
 partition => two primaries

idea: a majority of nodes must agree on the primary
 at most one network partition can have a majority
 if two potential primaries, their majorities must overlap

technique: "view change" algorithm
 system goes through a sequence of views
 view: view# and set of participants
 ensure agreement on unique successor of each view
 the participant set allows everyone to agree on new primary

view change requires "fault-tolerant agreement"
 at most a single value is chosen
 agree despite lost messages and crashed nodes
 can't really guarantee to agree
 but we can guarantee to *not* "agree" on different values!

Paxos fault-tolerant agreement protocol
 eventually succeeds if a majority of participants are reachable
 best known algorithm

general Paxos approach

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
pring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
echnology. Downloaded on [DD Month YYYY].

S
T

 one (or more) nodes decide to be the leader
 leader chooses a proposed value to agree on
 (view# and participant set)
 leader contacts participants, tries to assemble a majority
 participants are all the nodes in the old view (including
unreachable)
 or a fixed set of configuration master nodes
 if a majority respond, we're done

why agreement is hard
 what if two nodes decide to be the leader?
 what if network partition leads to two leaders?
 what if the leader crashes after persuading only some of the nodes?
 what if leader got a majority, then failed, without announcing
result?
 or announced result to only a few nodes?
 new leader might choose a different value, even though we agreed

Paxos
 has three phases
 may have to start over if failure/timeouts

state (per view)
 n_a, v_a: highest value and n which node has accepted
 n_h: highest n seen in a Q1
 done: leader says agreement was reached, we can start new view

Paxos Phase 1
 a node (maybe more than one...) decides to be leader
 picks a proposal number n
 must be unique, good if it's higher than any known #
 how about last known proposal number, plus one, append node ID
 sends Q1(n) to every node (including itself)
 if node gets Q1(n) and n > n_h:
 n_h = n
 return R1(n_a, v_a)

Paxos Phase 2
 if leader gets R1 from majority of nodes (including self):
 if any R1(n,v) had a value, v = value of highest n
 else leader gets to choose a value
 old view# + 1, set of pingable nodes
 send Q2(n, v) to all responders
 if node gets Q2(n, v) and n >= n_h
 n_a = n
 v_a = v
 return R2()

Paxos Phase 3
 if leader gets a majority of R2():
 send Q3() to all
 if node gets Q3():
 done = true
 primary is lowest-numbered node in v_a

if at any time any node gets bored (times out)
 it declares itself a leader and starts a new Phase 1

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

if nothing goes wrong, Paxos clearly reaches agreement

how do we ensure good probability that there is only one leader?
 every node has to be prepared to be leader, to cope w/ failure
 so delay a random amount of time after you realize a new view is
required
 or delay your ID times some constant

key danger:
 nodes w/ different v_a receive Q3
 goal: if Q3 *could* have been sent, future Q3s guaranteed to have
same v_a

what if more than one leader?
 due to timeout or partition or lost packets
 the two leaders used different n, say 10 and 11
 if 10 didn't get a majority to R2
 it never will, since no-one will R2 10 after seeing 11's Q1
 or perhaps 10 is in a network partition
 if 10 did get a majority to R2
 i.e. might have sent Q3
 10's majority saw 10's Q2 before 11's Q1
 otherwise they would have ignored 10's Q2, so no majority
 so 11 will get a R1 from at least one node that saw 10's Q2
 so 11 will be aware of 10's value
 so 11 will use 10's value, rather than making a new one
 so we agreed on a v after all

what if leader fails before sending Q2s?
 some node will time out and become a leader
 old leader didn't send any Q3, so we don't care what he did
 it's good, but not neccessary, that new leader chooses higher n
 if it doesn't, timeout and some other leader will try
 eventually we'll get a leader that knew old n and will use a higher
n

what if leader fails after sending a minority of Q2s?
 same as two leaders...

what if leader fails after sending a majority of Q2s?
 i.e. potentially after reaching agreement!
 same as two leaders...

what if a node fails after receiving Q2?
 if it doesn't restart, possible timeout in Phase 3, new leader
 it it does restart, it must remember v_a/n_a! (on disk)
 leader might have failed after sending a few Q3s
 new leader must choose same value
 our node might be the intersecting node of the two majorities

what if a node reboots after sending R1?
 does it have to remember n_h on disk?
 it uses n_h to reject Q1/Q2 with smaller n
 scenario:
 leader1 sends Q1(n=10), a bare majority sends R1
 so node X's n_h = 10

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 leader2 sends Q1(n=11), a majority intersecting only at node X
sends R1
 node X's n_h = 11
 leader2 got no R1 with a value, so it chooses v=200
 node X crashes and reboots, loses n_h
 leader1 sends Q2(n=10, v=100), its bare majority gets it
 including node X (which should have rejected it...)
 so we have agreement w/ v=100
 leader2 sends Q2(n=11, v=200)
 its bare majority all accept the message
 including node X, since 11 > n_h
 so we have agreement w/ v=200. oops.
 so: each node must remember n_h on disk

conclusion
 what have we achieved?
 remember the original goal was replicated state machines
 and we want to continue even if some nodes are not available
 after each failure we can perform view change using Paxos agreement
 that is, we can agree on exactly which nodes are in the new view
 so, for example, everyone can agree on a single new primary
 but we haven't talked at all about how to manage the data

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

