
1

Lecture 17 • 1

6.825 Techniques in Artificial Intelligence

Where do Bayesian Networks Come
From?

So now we know what to do with a network if we have one; that is, how to answer
queries about the probability of some variables given observations of others.
But where do we get the networks in the first place?

2

Lecture 17 • 2

6.825 Techniques in Artificial Intelligence

Where do Bayesian Networks Come
From?

• Human experts

When Bayesian networks were first developed for applications, it was in the context
of expert systems. The idea was that “knowledge engineers”, who were familiar
with the technology, would go and interview experts and elicit from them their
expert knowledge about the domain they worked in. So the knowledge engineer
would go talk to a physician about diagnosing diseases, or an engineer about
building bridges, and together they would build a Bayes net.

3

Lecture 17 • 3

6.825 Techniques in Artificial Intelligence

Where do Bayesian Networks Come
From?

• Human experts

It turned out that this was pretty hard. We’ve already seen that humans aren’t very
good at probabilistic reasoning. It turns out that it’s also hard for them to come
up with good probabilistic descriptions of what they know and do. One way to
make the problem easier for humans is to give them some fixed structures for
the kinds of relationships they can express among the variables. We’ll talk a
little bit about that in this lecture.

4

Lecture 17 • 4

6.825 Techniques in Artificial Intelligence

Where do Bayesian Networks Come
From?

• Human experts
• Learning from data

But the big thing that has happened recently in the Bayes net world is a move
toward learning from data. Given example cases in a domain: patients or loan
applications or bridge designs, we can use learning techniques to build Bayesian
networks that are good models of the domain.

5

Lecture 17 • 5

6.825 Techniques in Artificial Intelligence

Where do Bayesian Networks Come
From?

• Human experts
• Learning from data
• A combination of both

Of course, there are other learning algorithms available. But one of the great
strengths of Bayesian networks is that they give us a principled way to integrate
human knowledge about the domain, when it’s present and easy to articulate,
with knowledge extracted from data.

6

Lecture 17 • 6

Human Experts

• Encoding rules obtained from experts, e.g.
physicians for PathFinder

Interviewing humans and trying to extract their expert knowledge is very difficult.
Even though we may be experts at a variety of tasks, it’s often hard to articulate
the knowledge we have.

7

Lecture 17 • 7

Human Experts

• Encoding rules obtained from experts, e.g.
physicians for PathFinder

• Extracting these rules are very difficult, especially
getting reliable probability estimates

Humans are reasonably good at specifying the dependency structure of a network,
but they are particularly bad at specifying the probability distributions.

8

Lecture 17 • 8

Human Experts

• Encoding rules obtained from experts, e.g.
physicians for PathFinder

• Extracting these rules are very difficult, especially
getting reliable probability estimates

• Some rules have a simple deterministic form:

Age Legal
Drinker

Sometimes the relationships between nodes are really easy to articulate. One
example is a deterministic form. So, whether someone can drink alcohol legally
is a deterministic function of the person’s age (and perhaps their country or state
of residence).

9

Lecture 17 • 9

Human Experts

• Encoding rules obtained from experts, e.g.
physicians for PathFinder

• Extracting these rules are very difficult, especially
getting reliable probability estimates

• Some rules have a simple deterministic form:

Age Legal
Drinker

• But, more commonly, we have many potential
causes for a symptom and any one of these causes
are sufficient for a symptom to be true

There are other structured relationships that are relatively easy to specify. One is
when there are many possible causes for a symptom, and it is sufficient for at
least one of the causes to be true in order for the symptom to be true.

10

Lecture 17 • 10

Multiple Independent Causes

Fever

Flu

Malaria

Cold

Imagine that there are three possible causes for having a fever: flu, cold, and
malaria. This network encodes the fact that flu, cold, and malaria are mutually
independent of one another.

11

Lecture 17 • 11

Multiple Independent Causes

Fever

Flu

Malaria

Cold

In general, the table in the Fever node
gives prob of fever given all
combination of values of Flu, Cold and
Malaria P(Fev | Flu, Col, Mal)

Big, and hard to assess

In general, the conditional probability table for fever will have to specify the
probability of fever for all possible combinations of values of flu, cold, and
malaria. This is a big table, and it’s hard to assess. Physicians, for example,
probably don’t think very well about combinations of diseases.

12

Lecture 17 • 12

Multiple Independent Causes

Fever

Flu

Malaria

Cold

P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

In general, the table in the Fever node
gives prob of fever given all
combination of values of Flu, Cold and
Malaria P(Fev | Flu, Col, Mal)

Big, and hard to assess

It’s more natural to ask them individual conditional probabilities: what’s the
probability that someone has a fever if they have the flu? We’re essentially
ignoring the influence of Cold and Malaria while we think about the flu. The
same goes for the other conditional probabilities. We can ask about P(fever |
cold) and P(fever | malaria) separately.

13

Lecture 17 • 13

Noisy Or Example
P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

Fever

Flu

Malaria

Cold

Now, the question is, what can we do with those independently specified
conditional probabilities? They don’t by themselves, specify the whole CPT for
the fever node.

14

Lecture 17 • 14

Noisy Or Example
P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

We are assuming that the
causes act independently,
which reduces the set of
numbers that we need to
acquire

Fever

Flu

Malaria

Cold

One way to think about this is that P(fever | flu) is a probability that describes an
unreliable connection between flu and fever. If the patient has flu, and the
connection is on, then he will certainly have fever. Thus it is sufficient for one
connection to be made from a positive variable into fever, from any of its
causes. If none of the causes are true, then the probability of fever is assumed to
be zero (though it’s always possible to add an extra cause that’s always true, but
which has a weak connection, to model the possibility of getting a fever “for no
reason”).

15

Lecture 17 • 15

Noisy Or Example
P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

Look only at the causes that are true:

We are assuming that the
causes act independently,
which reduces the set of
numbers that we need to
acquire

Fever

Flu

Malaria

Cold

So, how can we compute the probability of fever given that a patient has the flu and
malaria, but not a cold. First of all, we’ve assumed that false variables play no
role in this probability, so we can ignore cold.

16

Lecture 17 • 16

Noisy Or Example
P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

Look only at the causes that are true:

We are assuming that the
causes act independently,
which reduces the set of
numbers that we need to
acquire

Fever

Flu

Malaria

Cold

),|(1),,|(MalFluFevPMalColFluFevP ¬−=¬

Now, we’re going to think about the probability of fever, given flu and malaria. It’s
easier to think about it in the negative.

17

Lecture 17 • 17

Noisy Or Example
P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

Look only at the causes that are true:

We are assuming that the
causes act independently,
which reduces the set of
numbers that we need to
acquire

Fever

Flu

Malaria

Cold

),|(1),,|(MalFluFevPMalColFluFevP ¬−=¬
),()|(),|(MalFevPFluFevPMalFluFevP ¬¬=¬

The probability that a patient won’t have a fever given that he has flu and malaria, is
the probability that both of those connections are broken. In order to get this
from the information we know, we’ll also have to assume that whether one
connection is broken is independent of whether the others are broken.

18

Lecture 17 • 18

Noisy Or Example
P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

Look only at the causes that are true:

We are assuming that the
causes act independently,
which reduces the set of
numbers that we need to
acquire

Fever

Flu

Malaria

Cold

),|(1),,|(MalFluFevPMalColFluFevP ¬−=¬
),()|(),|(MalFevPFluFevPMalFluFevP ¬¬=¬

So, in this special case, the probability of not fever given flu and malaria, is the
probability of not fever given flu times the probability of not fever given
malaria.

19

Lecture 17 • 19

Noisy Or Example
P(Fever | Flu) = 0.6
P(Fever | Cold) = 0.4
P(Fever | Malaria) = 0.9

Look only at the causes that are true:

We are assuming that the
causes act independently,
which reduces the set of
numbers that we need to
acquire

Fever

Flu

Malaria

Cold

),|(1),,|(MalFluFevPMalColFluFevP ¬−=¬
),()|(),|(MalFevPFluFevPMalFluFevP ¬¬=¬

04.0)1.0)(4.0(==

The probability of not fever given flu is 1 minus the probability of fever given flu,
which we know. The same thing applies for not fever given malaria, so we can
compute that P not fever given flu and malaria is .96.

20

Lecture 17 • 20

Noisy Or

• Store P(E|Ci) for all Ci

• Given a set, CT, of true causes

Effect

C1

Cn

C2

Here’s the general formula for noisy or. Assume we know P(effect | cause) for each
possible cause. And we’re given a set, CT, of causes that are true for a
particular case.

21

Lecture 17 • 21

Noisy Or

• Store P(E|Ci) for all Ci

• Given a set, CT, of true causes

Effect

C1

Cn

C2

Pr(E C) =1−Pr(¬E C)
=1−Pr(¬E CT)

=1− Pr(¬E |Ci)
Ci ∈CT

∏

=1− (1−Pr(E |Ci))
Ci ∈CT

∏

Then to compute probability of E given C, we approach it by computing probability
of not E given C.

22

Lecture 17 • 22

Noisy Or

• Store P(E|Ci) for all Ci

• Given a set, CT, of true causes

Effect

C1

Cn

C2

Pr(E C) =1−Pr(¬E C)
=1−Pr(¬E CT)

=1− Pr(¬E |Ci)
Ci ∈CT

∏

=1− (1−Pr(E |Ci))
Ci ∈CT

∏

That’s equal to the probability of not E just given the causes that are true in this
case, CT.

23

Lecture 17 • 23

Noisy Or

• Store P(E|Ci) for all Ci

• Given a set, CT, of true causes

Effect

C1

Cn

C2

Pr(E C) =1−Pr(¬E C)
=1−Pr(¬E CT)

=1− Pr(¬E |Ci)
Ci ∈CT

∏

=1− (1−Pr(E |Ci))
Ci ∈CT

∏

Now, because of the assumption that the causes operate independently (that, is,
whether one is in effect is independent of whether another is in effect), we can
take the product over the causes of the probability of the effect being absent
given the cause.

24

Lecture 17 • 24

Noisy Or

• Store P(E|Ci) for all Ci

• Given a set, CT, of true causes

Effect

C1

Cn

C2

Pr(E C) =1−Pr(¬E C)
=1−Pr(¬E CT)

=1− Pr(¬E |Ci)
Ci ∈CT

∏

=1− (1−Pr(E |Ci))
Ci ∈CT

∏

Finally, we can easily convert the probabilities of not E given C, into 1 – probability
of E given C.

25

Lecture 17 • 25

Recitation Problem

• Compute the conditional probability table for
P(Fever | Flu, Cold, Malaria), for all assignments to
the variables Flu, Cold, and Malaria.

Using the numbers from the previous example, fill in the whole CPT for fever given
flu, malaria, and cold.

26

Lecture 17 • 26

Learning Bayesian Networks

• Instance of the general problem of probability
density estimation

• discrete space
• interesting structure

Another way to get a Bayesian network is to learn it from data. It’s an instance of
the problem, known in the statistics literature as density estimation. We’re
trying to estimate a probability density (that is, a joint probability distribution)
from data. What makes the problem of learning bayes nets different from the
ones that statisticians typically consider is that our problem is in a discrete
space, and that we’re looking for models that encode the underlying conditional
independences in the data.

27

Lecture 17 • 27

Learning Bayesian Networks

• Instance of the general problem of probability
density estimation

• discrete space
• interesting structure

• Four cases
• structure known or unknown
• all variables observable or some unobservable

There are really four different cases in which you could try to learn bayes nets.
We’ll look at two today, and the other two next time. One question is whether
you are trying to learn the structure of the domain, or just the values in the
CPTs. The problem of learning values given structure is much easier. And
often a human can provide a reasonable structure. But sometimes we’ll want to
try to learn the structure as well.

28

Lecture 17 • 28

Learning Bayesian Networks

• Instance of the general problem of probability
density estimation

• discrete space
• interesting structure

• Four cases
• structure known or unknown
• all variables observable or some unobservable

This lecture: all variables observable, structure known or
unknown

The other question is whether all the variables are observable or not. Today, we’ll
focus on the case in which all of the variables in the network are observable.
This makes sense in some domains, but not in all of them. So, we’ll assume that
the data we are learning from contains samples of values from all the variables
in the net.

29

Lecture 17 • 29

Known Structure

• Given nodes and arcs of a Bayesian network with m
nodes

First, we’ll think about the case in which the structure of the network is given. That
is, we know exactly what nodes it has, and we have a set of directed arcs
between them.

30

Lecture 17 • 30

Known Structure

• Given nodes and arcs of a Bayesian network with m
nodes

• Given a data set D = {<v1
1,…,vm

1>,…, {<v1
k,…,vm

k>}

values of nodes
in sample 1

values of nodes
in sample k

We’re given a data set D. D is made up of a set of cases or samples, each of which
is a vector of values, one for each variable. So v with a superscript k refers to
data case k, and the subscript I indexes over variables.

31

Lecture 17 • 31

Known Structure

• Given nodes and arcs of a Bayesian network with m
nodes

• Given a data set D = {<v1
1,…,vm

1>,…, {<v1
k,…,vm

k>}

• Elements of D are assumed to be independent
given M

values of nodes
in sample 1

values of nodes
in sample k

In a medical example, you might imagine that each case or sample is a description
of a person that walked into the emergency room. The cases are assumed to be
drawn independently from some distribution that is specified by M. That
means, for instance, that there’s no information in the order in which they arrive.

32

Lecture 17 • 32

Known Structure

• Given nodes and arcs of a Bayesian network with m
nodes

• Given a data set D = {<v1
1,…,vm

1>,…, {<v1
k,…,vm

k>}

• Elements of D are assumed to be independent
given M

• Find the model M (in this case, CPTs) that
maximizes Pr(D|M)

values of nodes
in sample 1

values of nodes
in sample k

Our goal will be to find the model M that maximizes the probability of the data
given the model. In this case, a model is just all the CPTs required by the
specified network structure. We’d like to find the model that makes this data set
as likely as possible.

33

Lecture 17 • 33

Known Structure

• Given nodes and arcs of a Bayesian network with m
nodes

• Given a data set D = {<v1
1,…,vm

1>,…, {<v1
k,…,vm

k>}

• Elements of D are assumed to be independent
given M

• Find the model M (in this case, CPTs) that
maximizes Pr(D|M)

• Known as the maximum likelihood model

values of nodes
in sample 1

values of nodes
in sample k

There are other possible criteria for fitting models to data, but this is a simple,
standard one. It is often said that we are looking for the maximum likelihood
model.

34

Lecture 17 • 34

Known Structure

• Given nodes and arcs of a Bayesian network with m
nodes

• Given a data set D = {<v1
1,…,vm

1>,…, {<v1
k,…,vm

k>}

• Elements of D are assumed to be independent
given M

• Find the model M (in this case, CPTs) that
maximizes Pr(D|M)

• Known as the maximum likelihood model
• Humans are good at providing structure, data is

good at providing numbers

values of nodes
in sample 1

values of nodes
in sample k

This particular setting of the bayes net learning problem, is relatively easy from a
technical perspective, but also very important from a practical one. Humans
tend to be good at providing the network structure, but bad at specifying the
conditional probabilities. Computers, on the other hand, have a much harder
time figuring out the structure, but are great at estimating probabilities from
data, as we’ll see.

35

Lecture 17 • 35

Estimating Conditional Probabilities

V1

V3V2

V4

So, given a data set, how can we estimate the probability values in our network?
Let’s start with the easiest case, the probability that V1 is true. All we have to
do is count how many times v1 was true in our data set and divide by k, the total
number of cases in the data set.

36

Lecture 17 • 36

Estimating Conditional Probabilities

V1

V3V2

V4

That was easy! And the conditional probabilities are not much harder. To get an
estimate of the probability that v3 is true given that v1 is true, we just count the
number of cases in which v1 and v3 are both true, and divide by the number of
cases in which v1 is true.

37

Lecture 17 • 37

Estimating Conditional Probabilities

V1

V3V2

V4

The probability of V3 given not v1 is similar, as are all the elements of all the CPTs
in the network.

38

Lecture 17 • 38

Estimating Conditional Probabilities

V1

V3V2

V4

• Use counts and definition of conditional probability

What’s interesting about this is that this very simple estimation procedure is
guaranteed to give us the model that maximizes the probability of the data.
Proving that is a little bit complicated, but as long as we trust the statisticians,
then we can feel comfortable that by using these ratios to estimate our
probabilities, we are getting the maximum likelihood model.

39

Lecture 17 • 39

Estimating Conditional Probabilities

V1

V3V2

V4

• Use counts and definition of conditional probability

There is still a bit of a problem with this approach though. What happens when
we’re trying to estimate the probability of v3 given v1, but there are no cases of
v3 and v1 being true? We’ll get an estimate of 0 for that probability. That may
not be terrible, but if we haven’t seen a whole lot of data yet, it might seem a bit
hasty to conclude that something is impossible, just because you haven’t yet
seen an example of it. In general, putting 0s and 1s in a CPT is a very strong
thing to do: it means you’re absolutely sure that something is impossible.

40

Lecture 17 • 40

Estimating Conditional Probabilities

V1

V3V2

V4

• Use counts and definition of conditional probability
• Initializing all counters to 1 avoids 0 probabilities

generally, the number of
possible values of the variable

on the left of the bar

To guard against this, and also to keep out of trouble when we haven’t seen any
cases at all when v1 is true, we’ll apply a “Bayesian correction” to our
estimates. This means, essentially, initializing our counts at 1 rather than at 0.
So, we add a 1 to the count in the numerator, and a value m to the denominator,
where m is the number of possible different values the variable whose
probability we are estimating can take on. In this case, assuming binary
variables, we add a 2 in the denominator.

41

Lecture 17 • 41

Estimating Conditional Probabilities

V1

V3V2

V4

• Use counts and definition of conditional probability
• Initializing all counters to 1 avoids 0 probabilities

generally, the number of
possible values of the variable

on the left of the bar

This correction has the effect that if we haven’t seen any examples at all of v1, for
instance, we estimate the probability of v3 given v1 to be 0.5. That seems
reasonable, and certainly better than 0 or undefined!

42

Lecture 17 • 42

Estimating Conditional Probabilities

V1

V3V2

V4

• Use counts and definition of conditional probability
• Initializing all counters to 1 avoids 0 probabilities

and converges on the maximum likelihood estimate

generally, the number of
possible values of the variable

on the left of the bar

Of course, once we add this correction in, we will no longer be getting the
maximum likelihood model. But we might be getting one that has slightly
better generalization properties. And in the long run, as we get more data, the
correction will have less and less effect. So, in the limit of large data, we will
get the maximum likelihood model.

43

Lecture 17 • 43

Goodness of Fit

• Given data set D and model M, measure goodness
of fit using log likelihood

One thing we can do with a model and a data set is to measure the goodness of fit of
the model to the data. How well does this model account for the data? As our
measure of goodness of fit, we will use the log likelihood.

44

Lecture 17 • 44

Goodness of Fit

• Given data set D and model M, measure goodness
of fit using log likelihood

• Assume each data sample generated independently

Pr(DM) = Pr(v j M)
j
∏

= Pr(Ni = vi
j Parents(Ni),M)

i
∏

j
∏

We’ll start by computing the probability that this data would have been generated
by the model. Under the assumption that the cases within the data set are
generated independently given the model, the probability of the whole data set
given the model is the product of the probabilities of the individual cases, given
the model.

45

Lecture 17 • 45

Goodness of Fit

• Given data set D and model M, measure goodness
of fit using log likelihood

• Assume each data sample generated independently

Pr(DM) = Pr(v j M)
j
∏

= Pr(Ni = vi
j Parents(Ni),M)

i
∏

j
∏

Then, using the chain rule of bayes nets, we can break the probability of a case
down into a product of the probabilities of each node having the value it has in
this case, given the model and the values of its parents in this case.

46

Lecture 17 • 46

Goodness of Fit

• Given data set D and model M, measure goodness
of fit using log likelihood

• Assume each data sample generated independently

• Easier to compute the log; monotonic

Pr(DM) = Pr(v j M)
j
∏

= Pr(Ni = vi
j Parents(Ni),M)

i
∏

j
∏

Now, if we actually tried to compute this product in a computer, we’d run into
trouble before very long. We’re multiplying together a bunch of small numbers
and we’ll run into numeric underflow problems. So, rather than working
directly with the likelihood, we’ll work with its log. Because the log function is
monotonic, the same model that maximizes the likelihood will maximize the log
likelihood.

47

Lecture 17 • 47

Goodness of Fit

• Given data set D and model M, measure goodness
of fit using log likelihood

• Assume each data sample generated independently

• Easier to compute the log; monotonic

Pr(DM) = Pr(v j M)
j
∏

= Pr(Ni = vi
j Parents(Ni),M)

i
∏

j
∏

logPr(DM) = log Pr(Ni = vi
j Parents(Ni),M)

i
∏

j
∏

= logPr(Ni = vi
j Parents(Ni),M)

i
∑

j
∑

The log also has the nice property that it turns all of our multiplications into
additions, which are typically more efficient to compute.

48

Lecture 17 • 48

Goodness of Fit

• Given data set D and model M, measure goodness
of fit using log likelihood

• Assume each data sample generated independently

• Easier to compute the log; monotonic

Pr(DM) = Pr(v j M)
j
∏

= Pr(Ni = vi
j Parents(Ni),M)

i
∏

j
∏

logPr(DM) = log Pr(Ni = vi
j Parents(Ni),M)

i
∏

j
∏

= logPr(Ni = vi
j Parents(Ni),M)

i
∑

j
∑

So, given a model and a dataset, we can measure the goodness of fit effectively
using the log likelihood.

49

Lecture 17 • 49

Learning the Structure

• For a fixed structure, our counting estimates of the
CPT converge to the maximum likelihood model

Now we know how to find the parameter values to make the maximum likelihood
model, if we’ve already been given the structure.

50

Lecture 17 • 50

Learning the Structure

• For a fixed structure, our counting estimates of the
CPT converge to the maximum likelihood model

• What if we get to pick the structure as well?

What if we get to pick the structure as well? It seems to make sense to keep the
same criterion: we want to maximize the likelihood of the data given the
model.

51

Lecture 17 • 51

Learning the Structure

• For a fixed structure, our counting estimates of the
CPT converge to the maximum likelihood model

• What if we get to pick the structure as well?
• In general, the best model will have no conditional

independence relationships

Unfortunately, it will almost always be the case that the maximum likelihood
structural model will have no conditional independence relationships. Even if
we have two variables that are completely independent, when we examine a data
set generated from those variables, they will look every-so-slightly dependent,
and by making them dependent in our model, we’ll be able to increase the
likelihood.

52

Lecture 17 • 52

Learning the Structure

• For a fixed structure, our counting estimates of the
CPT converge to the maximum likelihood model

• What if we get to pick the structure as well?
• In general, the best model will have no conditional

independence relationships
• Undesirable, for reasons of overfitting

Unfortunately, these aren’t really the models we want. We’d like to be able to find
models that reveal the conditional independence relationships that are present in
the world. We’d also like to be able to find models that are relatively small and
easy to work with. Additionally, these models suffer from a problem called
overfitting, which is easiest to illustrate first in a slightly different context.

53

Lecture 17 • 53

Overfitting

• Given a set of data points

x

y

Imagine you were given the following set of points in the X-Y plane, and I asked
you to make a model of them in the form of a function from x to y.

54

Lecture 17 • 54

Overfitting

• Given a set of data points, you could
• fit them with a line, with a lot of error

x

y

You might fit them with a straight line, with a large amount of error.

55

Lecture 17 • 55

Overfitting

• Given a set of data points, you could
• fit them with a line, with a lot of error
• fit with a parabola, with a little error

x

y

You might get a better fit by moving to a parabola, a polynomial of degree two, by
making your class of models more complex.

56

Lecture 17 • 56

Overfitting

• Given a set of data points, you could
• fit them with a line, with a lot of error
• fit with a parabola, with a little error
• fit with 10th order polynomial, with no error

x

y

You could even fit them with a 10-th order polynomial, with no error at all.

57

Lecture 17 • 57

Overfitting

• Given a set of data points, you could
• fit them with a line, with a lot of error
• fit with a parabola, with a little error
• fit with 10th order polynomial, with no error

x

y

Which of these models, or explanations of the data, is best? It’s really hard to
answer that question without knowing something about the world that you’re
living in; something about the process that generated your data.

58

Lecture 17 • 58

Overfitting

• Given a set of data points, you could
• fit them with a line, with a lot of error
• fit with a parabola, with a little error
• fit with 10th order polynomial, with no error

• 10th order polynomial over fits
• less robust to variations in data

x

y

Intuitively, though, we all feel like the 10th order polynomial is not a very good
model. A machine learning person would say that it overfits the data. That
means that it is too sensitive to this particular data set. If you were to get
slightly different data points, the linear model wouldn’t change much at all, the
parabola might change a little bit, but the high-order model might change
dramatically, with the loops moving way up and down.

59

Lecture 17 • 59

Overfitting

• Given a set of data points, you could
• fit them with a line, with a lot of error
• fit with a parabola, with a little error
• fit with 10th order polynomial, with no error

• 10th order polynomial over fits
• less robust to variations in data
• less likely to generalize well

x

y

Because of this lack of robustness to variations in the data, we expect that the model
won’t do a very good job of predicting the y values for x values that we haven’t
seen before, which is one of the goals of learning.

60

Lecture 17 • 60

Overfitting

• Given a set of data points, you could
• fit them with a line, with a lot of error
• fit with a parabola, with a little error
• fit with 10th order polynomial, with no error

• 10th order polynomial over fits
• less robust to variations in data
• less likely to generalize well

x

y

In general, the more data you have, the more complex a model you can use robustly.
But there’s always a tradeoff between getting a model that’s simple versus a
model that perfectly captures the particular data that you have at the moment.
This tradeoff is pervasive in statistics and machine learning, and is the subject of
much of the theoretical and foundational research.

61

Lecture 17 • 61

Scoring Metric

• What if we want to vary the structure?

So, to guard against overfitting, we are going to use something a bit more complex
than maximum likelihood to select the model that we most want. It becomes
crucial to address this point when we want to compare models with different
structures.

62

Lecture 17 • 62

Scoring Metric

• What if we want to vary the structure?

• We want a network that has conflicting properties
• good fit to data: log likelihood

In particular, we want models that fit the data well.

63

Lecture 17 • 63

Scoring Metric

• What if we want to vary the structure?

• We want a network that has conflicting properties
• good fit to data: log likelihood
• low complexity: total number of parameters

But we also want models with low complexity. We will characterize the
complexity of a network structure by the total number of parameters in the
conditional probability tables. For a binary node with no parents, one parameter
is required (because the probability that the variable takes on the other value is 1
minus the specified probability). In general, for a binary node with k parents,
2^k parameters are required. For a node that can take on n values, with k
parents, each of which can take on m values, (n-1) m^k parameters are required.

64

Lecture 17 • 64

Scoring Metric

• What if we want to vary the structure?

• We want a network that has conflicting properties
• good fit to data: log likelihood
• low complexity: total number of parameters

• Try to maximize scoring metric, by varying M
(structure and parameters) given D

logPr(DM) −α#M

So, we’ll use as our metric a function with two terms: the first will be the log
likelihood of the data given the model, and the second will be a penalty term
that is linear in the number of parameters in the model.

65

Lecture 17 • 65

Scoring Metric

• What if we want to vary the structure?

• We want a network that has conflicting properties
• good fit to data: log likelihood
• low complexity: total number of parameters

• Try to maximize scoring metric, by varying M
(structure and parameters) given D

• Parameter α controls the tradeoff between fit and
complexity

logPr(DM) −α#M

The parameter alpha is a knob that we can adjust, which controls the tradeoff
between how much we emphasize goodness of fit to the data and how much we
emphasize complexity. There are theoretical analyses that might help us set
alpha (particularly as a function of the amount of data we have), but we won’t
go into them in this class.

66

Lecture 17 • 66

Search in Structure Space

• No direct way to find the best structure

Now we know what we’re looking for: the network structure and parameters that
maximizes the scoring metric. But how do we find it? Unfortunately, there’s no
way to find the best structure directly.

67

Lecture 17 • 67

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

And there are, in general, way too many possible structures to enumerate them all
(except in some small problems).

68

Lecture 17 • 68

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

So, we come back to a technique that we started with: local search in the space of
structures. We really only need to search structure space, because for any given
structure, we can find the best parameters.

69

Lecture 17 • 69

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

• Start with some initial structure

To do local search, we need to start with some initial structure.

70

Lecture 17 • 70

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

• Start with some initial structure
• Do local search in structure space

Then, we move through the space of structures, trying to improve the score of our
model.

71

Lecture 17 • 71

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

• Start with some initial structure
• Do local search in structure space

• neighborhood: add, delete, or reverse an arc

There are lots of possible search strategies, but a typical one considers that the
neighbors of a given structure are those structures that can be reached by adding
a single arc, deleting an arc, or reversing an arc. Reversing an arc is not strictly
necessary, since it can be accomplished by deleting an arc, and then adding it
back in in the other direction. However, deleting the arc often causes a decrease
in the score, making it an unappealing move.

72

Lecture 17 • 72

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

• Start with some initial structure
• Do local search in structure space

• neighborhood: add, delete, or reverse an arc
• maintain no directed cycles

Throughout the course of the search, including during the initialization process, it’s
crucial to be sure that your network doesn’t have any directed cycles.

73

Lecture 17 • 73

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

• Start with some initial structure
• Do local search in structure space

• neighborhood: add, delete, or reverse an arc
• maintain no directed cycles
• once you pick a structure, compute maximum-

likelihood parameters, and then calculate the
score of the model

Once you pick a structure, you can use the counting methods to compute the
maximum-likelihood values for the parameters. Now you have a complete
model that you can score using the scoring metric.

74

Lecture 17 • 74

Search in Structure Space

• No direct way to find the best structure
• Too many to enumerate them all

• Start with some initial structure
• Do local search in structure space

• neighborhood: add, delete, or reverse an arc
• maintain no directed cycles
• once you pick a structure, compute maximum-

likelihood parameters, and then calculate the
score of the model

• increase score (or decrease sometimes, as in
walkSAT or simulated annealing)

There are also options about what moves to accept. In the most straightforward
implementations, you propose moves at random, and take them if they improve
the score. You might also consider all possible moves and take the best (though
it might be pretty expensive computationally), or even do simulated annealing.
There are often serious problems with local minima, which might also mean that
you should restart multiple times with different initial structures.

75

Lecture 17 • 75

Initialization

Lots of choices!

There are lots of ways to generate an initial network.

76

Lecture 17 • 76

Initialization

Lots of choices!
• no arcs

One obvious one is to start with no arcs at all.

77

Lecture 17 • 77

Initialization

Lots of choices!
• no arcs
• choose random ordering V1 … Vn

–variable Vi has all parents V1 … Vn-1

Another alternative is to choose a random ordering on the nodes, and then either
make a completely connected network, in which each variable Vi has all parents
V1 through Vi-1,

78

Lecture 17 • 78

Initialization

Lots of choices!
• no arcs
• choose random ordering V1 … Vn

–variable Vi has all parents V1 … Vn-1

–variable Vi has parents randomly chosen
from V1 … Vn-1

Or, if you want to start with a sparser network (which you have to do if you have a
lot of variables), you can just select parents randomly from the preceding
variables.

79

Lecture 17 • 79

Initialization

Lots of choices!
• no arcs
• choose random ordering V1 … Vn

–variable Vi has all parents V1 … Vn-1

–variable Vi has parents randomly chosen
from V1 … Vn-1

• best tree network (can be computed in
polynomial time)

Another initialization method, which is very appealing, is to find the best tree-
structured network. It turns out that it’s possible to find the best tree-structured
network in polynomial time in the number of nodes, using an algorithm due to
Chow and Liu.

80

Lecture 17 • 80

Initialization

Lots of choices!
• no arcs
• choose random ordering V1 … Vn

–variable Vi has all parents V1 … Vn-1

–variable Vi has parents randomly chosen
from V1 … Vn-1

• best tree network (can be computed in
polynomial time)

–compute pairwise mutual information
between every pair of variables

The rough idea is that you compute the mutual information between every pair of
variables. Mutual information is a statistic that measures the degree to which
two variables are dependent.

81

Lecture 17 • 81

Initialization

Lots of choices!
• no arcs
• choose random ordering V1 … Vn

–variable Vi has all parents V1 … Vn-1

–variable Vi has parents randomly chosen
from V1 … Vn-1

• best tree network (can be computed in
polynomial time)

–compute pairwise mutual information
between every pair of variables

–find maximum-weight spanning tree

Then, you find a spanning tree (that is, a tree that connects all the nodes) whose
edges have maximum total weight, where the edge weights are the mutual
information values.

82

Lecture 17 • 82

Initialization

Lots of choices!
• no arcs
• choose random ordering V1 … Vn

–variable Vi has all parents V1 … Vn-1

–variable Vi has parents randomly chosen
from V1 … Vn-1

• best tree network (can be computed in
polynomial time)

–compute pairwise mutual information
between every pair of variables

–find maximum-weight spanning tree

Now you have all the pieces you need to implement a basic Bayesian-network
learning algorithm, even without being given the structure in advance. Next
time, we’ll consider what to do when some of the variables are not observable in
the data set.

83

Lecture 17 • 83

Recitation problem

Consider a domain with three binary nodes: A, B, and C
1. How many possible network structures are there over three

nodes?
Data set: {<0,1,1>, <0, 1, 1>, <1,0,0>}
2. What parameter estimates would you get for the CPTs in

each of the network structures on the following slide?
3. What is the log likelihood of the data given each of the

models (given the estimates from the previous part)?
4. Do parts 2 and 3 again without the Bayesian correction (or

with it, if you didn’t use it the first time)
5. How many parameters are there in each of the models?

(Don’t count p and 1-p as separate parameters)

There are too many network structures for everyone to do every problem. So, if the
day of your birthday is 0 mod 3, then do structures s1 and s2. If it’s 1 mod 3, then do
structures s3 and s4. And if it’s 2 mod 3, then do structures s5 and s6.

Here is a fairly complex recitation problem. There are too many network structures
for everyone to do every problem. So, if the day of your birthday is 0 mod 3,
then do structures s1 and s2. If it’s 1 mod 3, then do structures s3 and s4. And
if it’s 2 mod 3, then do structures s5 and s6.

84

Lecture 17 • 84

Recitation Problem

A

CB

A

CB

A

CB

A

CB

A

CB

A

CB

S1

S6S4S3

S5S2

