
1

Lecture 4 • 1

6.825 Techniques in Artificial Intelligence

Satisfiability and Validity

Last time we talked about propositional logic. There's no better way to empty out a
room than to talk about logic. So now, -- having gone to all that work of
establishing syntax and semantics -- what might you actually want to do with
some descriptions that are written down in logic? There are two things that we
might want to automatically determine about a sentence of logic. One is
satisfiability, and another is validity.

2

Lecture 4 • 2

6.825 Techniques in Artificial Intelligence

Satisfiability and Validity
Satisfiable sentence: there exists a truth value

assignment for the variables that makes the
sentence true (truth value = t).

• Algorithm?

Last time we talked about a way to determine whether a sentence is satisfiable.
Can you remember what it is? You know an algorithm for this.

3

Lecture 4 • 3

6.825 Techniques in Artificial Intelligence

Satisfiability and Validity
Satisfiable sentence: there exists a truth value

assignment for the variables that makes the
sentence true (truth value = t).

• Algorithm?
• Try all the possible assignments to see if one

works.

Try all possible assignments and see if there is one that makes the sentence true.

4

Lecture 4 • 4

6.825 Techniques in Artificial Intelligence

Satisfiability and Validity
Satisfiable sentence: there exists a truth value

assignment for the variables that makes the
sentence true (truth value = t).

• Algorithm?
• Try all the possible assignments to see if one

works.
Valid sentence: all truth value assignments for the

variables make the sentence true.
• Algorithm?

And how do you tell if a sentence is valid? What’s the algorithm?

5

Lecture 4 • 5

6.825 Techniques in Artificial Intelligence

Satisfiability and Validity
Satisfiable sentence: there exists a truth value

assignment for the variables that makes the
sentence true (truth value = t).

• Algorithm?
• Try all the possible assignments to see if one

works.
Valid sentence: all truth value assignments for the

variables make the sentence true.
• Algorithm?
• Try all possible assignments and check that they

all work.

Try all possible assignments and be sure that all of them make the sentence true.

6

Lecture 4 • 6

6.825 Techniques in Artificial Intelligence

Satisfiability and Validity
Satisfiable sentence: there exists a truth value

assignment for the variables that makes the
sentence true (truth value = t).

• Algorithm?
• Try all the possible assignments to see if one

works.
Valid sentence: all truth value assignments for the

variables make the sentence true.
• Algorithm?
• Try all possible assignments and check that they

all work.
Are there better algorithms than these?

We're going to spend some time talking about better ways to compute satisfiability
and better ways to compute validity.

7

Lecture 4 • 7

Satisfiability Problems

Many problems can be expressed as a list of constraints.
Answer is assignment to variables that satisfy all the
constraints.

There are lots of satisfiability problems in the real world. They end up being
expressed essentially as lists of constraints, where you're trying to find some
assignment of values to variables that satisfy the constraints.

8

Lecture 4 • 8

Satisfiability Problems

Many problems can be expressed as a list of constraints.
Answer is assignment to variables that satisfy all the
constraints.

Examples:
• Scheduling people to work in shifts at a hospital

– Some people don’t work at night
– No one can work more than x hours a week
– Some pairs of people can’t be on the same shift
– Is there assignment of people to shifts that satisfy all

constraints?

One example is scheduling nurses to work shifts in a hospital. Different people
have different constraints, some don't want to work at night, no individual can
work more than this many hours out of that many hours, these two people don't
want to be on the same shift, you have to have at least this many per shift and
so on. So you can often describe a setting like that as a bunch of constraints on
a set of variables.

9

Lecture 4 • 9

Satisfiability Problems

Many problems can be expressed as a list of constraints.
Answer is assignment to variables that satisfy all the
constraints.

Examples:
• Scheduling people to work in shifts at a hospital

– Some people don’t work at night
– No one can work more than x hours a week
– Some pairs of people can’t be on the same shift
– Is there assignment of people to shifts that satisfy all

constraints?
• Finding bugs in programs [Daniel Jackson, MIT]

– Write logical specification of, e.g. air traffic controller
– Write assertion “two airplanes on same runway at

same time”
– Can these be satisfied simultaneously?

There's an interesting application of satisfiability that's going on here at MIT in the
Lab for Computer Science. Professor Daniel Jackson's interested in trying to
find bugs in programs. That's a good thing to do, but (as you know!) it’s hard
for humans to do reliably, so he wants to get the computer to do it automatically.

One way to do it is to essentially make a small example instance of a program. So
an example of a kind of program that he might want to try to find a bug in
would be an air traffic controller. The air traffic controller has all these rules
about how it works, right? So you could write down the logical specification of
how the air traffic control protocol works, and then you could write down
another sentence that says, "and there are two airplanes on the same runway at
the same time." And then you could see if there is a satisfying assignment;
whether there is a configuration of airplanes and things that actually satisfies the
specifications of the air traffic control protocol and also has two airplanes on
the same runway at the same time. And if you can find -- if that whole
sentence is satisfiable, then you have a problem in your air traffic control
protocol.

10

Lecture 4 • 10

Conjunctive Normal Form

Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

Satisfiability problems are typically written as sets of constraints, and that means
that they're often written – just about always written -- in conjunctive normal
form.

11

Lecture 4 • 11

Conjunctive Normal Form

Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C)

A sentence is written in conjunctive normal form looks like ((A or B or not C) and
(B or D) and (not A) and (B or C or F)). Or something like that.

12

Lecture 4 • 12

Conjunctive Normal Form

Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

• s a clause

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C)

(A ∨ B ∨¬C) i

Its outermost structure is a conjunction. It's a conjunction of multiple units. These
units are called "clauses."

13

Lecture 4 • 13

Conjunctive Normal Form

Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

• s a clause, which is a disjunction
of literals

• A, B, and ¬ C are literals

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C)

(A ∨ B ∨¬C) i

A clause is the disjunction of many things. The units that make up a clause are
called literals.

14

Lecture 4 • 14

Conjunctive Normal Form

Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

• s a clause, which is a disjunction
of literals

• A, B, and ¬ C are literals, each of which is a
variable or the negation of a variable.

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C)

(A ∨ B ∨¬C) i

And a literal is either a variable or the negation of a variable.

15

Lecture 4 • 15

Conjunctive Normal Form

Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

• s a clause, which is a disjunction
of literals

• A, B, and ¬ C are literals, each of which is a
variable or the negation of a variable.

• Each clause is a requirement which must be
satisfied and it has different ways of being
satisfied.

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C)

(A ∨ B ∨¬C) i

So you get an expression where the negations are pushed in as tightly as possible,
then you have ors, then you have ands. This is like saying, that every
assignment has to meet each of a set of requirements. You can think of each
clause as a requirement. So somehow, the first clause has to be satisfied, and it
has different ways that it can be satisfied, and the second one has to be satisfied,
and the third one has to be satisfied, and so on.

16

Lecture 4 • 16

Conjunctive Normal Form

Satisfiability problems are written as conjunctive
normal form (CNF) formulas:

• s a clause, which is a disjunction
of literals

• A, B, and ¬ C are literals, each of which is a
variable or the negation of a variable.

• Each clause is a requirement which must be
satisfied and it has different ways of being
satisfied.

• Every sentence in propositional logic can be
written in CNF

(A ∨ B ∨¬C) ∧ (B ∨ D) ∧ (¬A) ∧ (B ∨ C)

(A ∨ B ∨¬C) i

You can take any sentence in propositional logic and write it in conjunctive normal
form.

17

Lecture 4 • 17

Converting to CNF

Here’s the procedure for converting sentences to conjunctive normal form.

18

Lecture 4 • 18

Converting to CNF

1. Eliminate arrows using definitions

The first step is to eliminate single and double arrows using their definitions.

19

Lecture 4 • 19

Converting to CNF

1. Eliminate arrows using definitions
2. Drive in negations using De Morgan’s Laws

ϕφϕφ ¬∧¬≡∨¬)(
ϕφϕφ ¬∨¬≡∧¬)(

The next step is to drive in negation. We do it using DeMorgan's Laws. You might
have seen them in a digital logic class. Not (phi or psi) is equivalent to (not phi
and not psi). And, Not (phi and psi) is equivalent to (not phi or not psi).

So if you have a negation on the outside, you can push it in and change the
connective from and to or, or from or to and.

20

Lecture 4 • 20

Converting to CNF

1. Eliminate arrows using definitions
2. Drive in negations using De Morgan’s Laws

3. Distribute or over and

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

ϕφϕφ ¬∧¬≡∨¬)(
ϕφϕφ ¬∨¬≡∧¬)(

The third step is to distribute or over and. That is, if we have (A or (B and C)) we
can rewrite it as (A or B) and (A or C).

You can prove to yourself, using the method of truth tables, that the distribution rule
(and DeMorgan’s laws) are valid.

21

Lecture 4 • 21

Converting to CNF

1. Eliminate arrows using definitions
2. Drive in negations using De Morgan’s Laws

3. Distribute or over and

4. Every sentence can be converted to CNF, but it
may grow exponentially in size

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C)

ϕφϕφ ¬∧¬≡∨¬)(
ϕφϕφ ¬∨¬≡∧¬)(

One problem with conjunctive normal form is that, although you can convert any
sentence to conjunctive normal form, you might do it at the price of an
exponential increase in the size of the expression. Because if you have A and B
and C OR D and E and F, you end up making the cross- product of all of those
things.

For now, we’ll think about satisfiability problems, which are generally fairly
efficiently converted into CNF. But on homework 1, we’ll have to think a lot
about the size of expressions in CNF.

22

Lecture 4 • 22

CNF Conversion Example

(A ∨ B) → (C → D)

Here’s an example of converting a sentence to CNF.

23

Lecture 4 • 23

CNF Conversion Example

1. Eliminate arrows

(A ∨ B) → (C → D)

)()(DCBA ∨¬∨∨¬

First we get rid of both arrows, using the rule that says “A implies B” is equivalent
to “not A or B”.

24

Lecture 4 • 24

CNF Conversion Example

1. Eliminate arrows

2. Drive in negations

(A ∨ B) → (C → D)

)()(DCBA ∨¬∨∨¬

(¬A ∧¬B) ∨ (¬C ∨ D)

Then we drive in the negation using deMorgan’s law.

25

Lecture 4 • 25

CNF Conversion Example

1. Eliminate arrows

2. Drive in negations

3. Distribute

(A ∨ B) → (C → D)

)()(DCBA ∨¬∨∨¬

(¬A ∧¬B) ∨ (¬C ∨ D)

(¬A ∨¬C ∨ D) ∧ (¬B ∨¬C ∨ D)

Finally, we dstribute or over and to get the final CNF expression.

26

Lecture 4 • 26

Simplifying CNF

We’re going to be doing a lot of manipulations of CNF sentences, and we’ll
sometimes end up with these degenerate cases. Let’s understand what they
mean.

27

Lecture 4 • 27

Simplifying CNF

• An empty clause is false (no options to satisfy)

An empty clause is false. In general, a disjunction with no disjuncts is false.
In order to make such an expression true, you have to satisfy one of the
options, and if there aren’t any, you can’t make it true.

28

Lecture 4 • 28

Simplifying CNF

• An empty clause is false (no options to satisfy)
• A sentence with no clauses is true (no

requirements)

A sentence with no clauses is true. In general a conjunction with no
conjuncts is true. In order to make such an expression true, you have to
make all of its conditions true, and if there aren’t any, then it’s just true.

29

Lecture 4 • 29

Simplifying CNF

• An empty clause is false (no options to satisfy)
• A sentence with no clauses is true (no

requirements)
• A sentence containing an empty clause is false

(there is an impossible requirement)

A sentence containing an empty clause is false. This is because the empty
clause is false, and false conjoined with anything else is always false.

30

Lecture 4 • 30

Recitation Problems - I

Convert to CNF
1.

2.

3.

4.

5.

6.

(A → B) → C

A → (B → C)

(A → B) ∨ (B → A)

¬(¬P → (P → Q))

(P → (Q → R)) → (P → (R → Q))

(P → Q) → ((Q → R) → (P → R))

Please do at least two of these problems before going on with the rest of the
lecture (and do the rest of them before recitation).

31

Lecture 4 • 31

Algorithms for Satisfiability

Given a sentence in CNF, how can we prove it is
satisfiable?

How can we prove that a CNF sentence is satisfiable? By showing that
there is a satisfying assignment, that is, an assignment of truth values to
variables that makes the sentence true. So, we have to try to find a
satisfying assignment.

32

Lecture 4 • 32

Algorithms for Satisfiability

Given a sentence in CNF, how can we prove it is
satisfiable?

Enumerate all possible assignments and see if
sentence is true for any of them. he number
of possible assignments grows exponentially in the
number of variables.

But, t

One strategy would be to enumerate all possible assignments, and evaluate
the sentence in each one. But the number of possible assignments grows in
the number of variables, and it would be way too slow.

33

Lecture 4 • 33

Algorithms for Satisfiability

Given a sentence in CNF, how can we prove it is
satisfiable?

Enumerate all possible assignments and see if
sentence is true for any of them. he number
of possible assignments grows exponentially in the
number of variables.

Consider a search tree where at each level we
consider the possible assignments to one variable,
say P. On one branch, we assume P is f and on the
other that it is t.

But, t

Let's make a search tree. We'll start out by considering the possible
assignments that we can make to the variable P. We can assign it true or
false.

34

Lecture 4 • 34

Algorithms for Satisfiability

Given a sentence in CNF, how can we prove it is
satisfiable?

Enumerate all possible assignments and see if
sentence is true for any of them. he number
of possible assignments grows exponentially in the
number of variables.

Consider a search tree where at each level we
consider the possible assignments to one variable,
say P. On one branch, we assume P is f and on the
other that it is t.

Given an assignment for a variable, we can simplify
the sentence and then repeat the process for
another variable.

But, t

Now, if I assign P "false", that simplifies my problem a little bit. You could
say, before I made any variable assignments, I had to find an assignment to
all the variables that would satisfy this set of requirements. Having assigned
P the value "false", now there is a simpler set of requirements on the rest of
the assignment.

35

Lecture 4 • 35

Assign and Simplify Example

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

So let's think about how we can simplify a sentence based on a partial
assignment. Here’s a complicated sentence. Let’s actually figure out how to
simplify the sentence in this case, and then we can write down the general
rule.

36

Lecture 4 • 36

Assign and Simplify Example

If we assign P=f, we get simpler set of constraints

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

OK, so if I assign P the value "false", what happens?

37

Lecture 4 • 37

Assign and Simplify Example

If we assign P=f, we get simpler set of constraints
• simplifies to

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

P ∨ Q Q

The first clause (P or Q) simplifies to Q. If we force P to be false, then the
only possible way to satisfy is requirement is for Q to be true.

38

Lecture 4 • 38

Assign and Simplify Example

If we assign P=f, we get simpler set of constraints
• simplifies to
• simplifies to

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

P ∨ Q Q

P ∨¬Q ∨ R ¬Q ∨ R

Similarly, (P or not Q or R) simplifies to (not Q or R).

39

Lecture 4 • 39

Assign and Simplify Example

If we assign P=f, we get simpler set of constraints
• simplifies to
• simplifies to
• is satisfied and can be removed

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

P ∨ Q Q

P ∨¬Q ∨ R ¬Q ∨ R

TP ¬∨¬

The clause (not P or not T) can be removed entirely. Once we’ve decided to
make P false, we’ve satisfied this clauses (made it true) and we don’t have
to worry about it any more.

40

Lecture 4 • 40

Assign and Simplify Example

If we assign P=f, we get simpler set of constraints
• simplifies to
• simplifies to
• is satisfied and can be removed
• simplifies to

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

P ∨ Q Q

P ∨¬Q ∨ R ¬Q ∨ R

TP ¬∨¬

P ∨ S S

P or S simplifies to S.

41

Lecture 4 • 41

Assign and Simplify Example

If we assign P=f, we get simpler set of constraints
• simplifies to
• simplifies to
• is satisfied and can be removed
• simplifies to

Result is

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

P ∨ Q Q

P ∨¬Q ∨ R ¬Q ∨ R

TP ¬∨¬

P ∨ S S

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R) ∧ (S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

So, now we have a resulting expression that doesn’t mention P, and is
simpler than the one we started with.

42

So, a little bit more formally, the “assign and simplify” process goes like this:
Given a CNF sentence phi and a literal U (remember a literal is either a
variable or a negated variable),

Lecture 4 • 42

Assign and Simplify

Given a CNF sentence φ and a literal U

43

Lecture 4 • 43

Assign and Simplify

Given a CNF sentence φ and a literal U
• Delete all clauses containing U (they’re satisfied)

delete all clauses from Phi that contain U (because they’re satisfied)

44

Lecture 4 • 44

Assign and Simplify

Given a CNF sentence φ and a literal U
• Delete all clauses containing U (they’re satisfied)
• Delete ¬U from all remaining clauses (because U

is not an option)

delete not U from all remaining clauses (because U is not an option)

45

Lecture 4 • 45

Assign and Simplify

Given a CNF sentence φ and a literal U
• Delete all clauses containing U (they’re satisfied)
• Delete ¬U from all remaining clauses (because U

is not an option)

We denote the simplified sentence by φ(U)
Works for positive and negative literals U

We’ll call the resulting sentence phi of u.

46

Lecture 4 • 46

Search Example

Here’s a big example, illustrating a tree-structured process of searching for a
satisfying assignment by assigning values to variables and simplifying the
resulting expressions.

47

Lecture 4 • 47

Search Example

φ(¬P) φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

We’ll start with our previous example formula. And we’ll arbitrarily pick the
variable P to start with and consider what happens if we assign it to have the
value f.

48

Lecture 4 • 48

Search Example

φ(¬P) φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

We do an “assign and simplify” operation, and end up with the smaller
expression we got when we did this example before.

49

Lecture 4 • 49

Search Example

φ(Q)

φ(¬P)

φ(¬Q)

φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

Now, let’s pick Q as our variable, and try assigning it to f.

50

Lecture 4 • 50

Search Example

φ(Q)

φ(¬P)

φ(¬Q)

φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

When we assign and simplify, we find that the resulting expression has an
empty clause, which means that it’s false. That means that, given the
assignments we’ve made on this path of the tree (P false and Q false), the
sentence is unsatisfiable. There’s no reason to continue on with this branch,
so we’ll have to back up and try a different choice somewhere.

51

Lecture 4 • 51

Search Example

φ(Q)

φ(¬P)

φ(¬Q)

φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

Let’s go up to our most recent decision and try assigning Q to be t.
Simplifying gives us this expression.

52

Lecture 4 • 52

Search Example

φ(Q)

φ(¬R) φ(R)

φ(¬P)

φ(¬Q)

φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

Now, let’s try assigning R to be f.

53

Lecture 4 • 53

Search Example

φ(Q)

φ(¬R) φ(R)

φ(¬P)

φ(¬Q)

φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

Again, when we assign and simplify, we get an empty clause, signaling
failure.

54

Lecture 4 • 54

Search Example

φ(Q)

φ(¬R) φ(R)

φ(¬P)

φ(¬Q)

φ(P)

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

(T) ∧ (S) ∧ (¬S ∨ T)

So, we go back up, assign R to be t and simplify.

55

Lecture 4 • 55

Search Example

φ(Q)

φ(¬R) φ(R)

φ(¬P)

φ(¬Q)

φ(P)

The assignment for a literal
appearing by itself in a clause
is forced: true for a positive
literal, false for a negative
literal.

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

(T) ∧ (S) ∧ (¬S ∨ T)

At this point, we can see a way to be smarter about choosing an assignment
to try first. As we saw with Q and with R, if a literal appears by itself in a
clause, its assignment is forced: true for a positive literal, false for a
negative literal. If you try the negation of that assignment, you’ll reach a
dead end and have to back up.

56

Lecture 4 • 56

Search Example

φ(Q)

φ(¬R) φ(R)

φ(S)

φ(¬P)

φ(¬Q)

φ(P)

The assignment for a literal
appearing by itself in a clause
is forced: true for a positive
literal, false for a negative
literal.

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

(T) ∧ (S) ∧ (¬S ∨ T)

(T) ∧ (T)

So, we’ll be smarter and try assigning S to t, which gives us a simple
sentence.

57

Lecture 4 • 57

Search Example

φ(Q)

φ(¬R) φ(R)

True

φ(T)

φ(S)

φ(¬P)

φ(¬Q)

φ(P)

The assignment for a literal
appearing by itself in a clause
is forced: true for a positive
literal, false for a negative
literal.

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

(T) ∧ (S) ∧ (¬S ∨ T)

(T) ∧ (T)

Again, we’re forced to assign T to t, yielding a final result of “True”.

58

Lecture 4 • 58

Search Example

φ(Q)

φ(¬R) φ(R)

True

φ(T)

φ(S)

φ(¬P)

φ(¬Q)

φ(P)

The assignment for a literal
appearing by itself in a clause
is forced: true for a positive
literal, false for a negative
literal.

(P ∨ Q) ∧ (P ∨¬Q ∨ R) ∧ (T ∨¬R) ∧ (¬P ∨¬T)
∧(P ∨ S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

(Q) ∧ (¬Q ∨ R) ∧ (T ∨¬R)
∧(S) ∧ (T ∨ R ∨ S) ∧ (¬S ∨ T)

() ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

()∧ (S) ∧ (T ∨ S) ∧ (¬S ∨ T)

(R) ∧ (T ∨¬R) ∧ (S)
∧(T ∨ R ∨ S) ∧ (¬S ∨ T)

(T) ∧ (S) ∧ (¬S ∨ T)

(T) ∧ (T)

Now, this path through the tree represents the assignment: P false, Q true, R
true, S true, and T true. And because , given those assignments, the
sentence simplified to “true”, that is a satisfying assignment.

59

Lecture 4 • 59

Another Example

Since T occurs only
positively, it might
as well be assigned
to true

(T ∨ X) ∧ (¬S ∨ T) ∧ (S ∨ X)

Here’s one more small example to illustrate another way to make searching
for a satisfying assignment more directed. Consider this sentence. The
variable T occurs only positively. Although we don’t have to make it true, we
don’t lose anything by doing so.
So, if you have a sentence in which a variable occurs always positively, you
should just set it to true. If a variable occurs always negatively, you should
just set it to false.

60

Lecture 4 • 60

Another Example

True

φ(S)

φ(T)

Since T occurs only
positively, it might
as well be assigned
to true

(T ∨ X) ∧ (¬S ∨ T) ∧ (S ∨ X)

(S ∨ X)

Once we assign T to true, all of the clauses containing it drop out, and we’re
left with a very simple problem to finish.

61

Lecture 4 • 61

DPLL(φ)

All the insight we gained from the previous example can be condensed into
an algorithm. It’s called DPLL, which stands for the names of the inventors
of the algorithm (Davis, Putnam, Logeman and Loveland). It’s very well
described in a paper by Cook, which we have linked into the syllabus (the
Cook paper also describes the GSAT and WalkSAT algorithms that we’ll talk
about later).
The DPLL algorithm takes a CNF sentence phi as input, and returns true if it
is satisfiable and false otherwise. It works recursively.

62

Lecture 4 • 62

DPLL(φ)

• If φ is empty, return true
(embrace truth)

If phi is empty, then return true. Our work is done!

63

Lecture 4 • 63

DPLL(φ)

• If φ is empty, return true
(embrace truth)

• If there is an empty clause in φ, return false
(reject falsity)

If there is an empty clause in phi, then return false. Remember than an
empty clause is false, and once we have one false clause, the whole
sentence is false.

64

Lecture 4 • 64

DPLL(φ)

• If φ is empty, return true
(embrace truth)

• If there is an empty clause in φ, return false
(reject falsity)

• If there is a unit clause U in φ, return DPLL(φ(U))
(accept the inevitable)

Unit clause has only one literal

If there is a unit clause containing literal U in phi (remember, a unit clause
has only one literal, and so its assignment is forced), then assign the literal,
simplify, and call DPLL recursively on the simplified sentence.

65

Lecture 4 • 65

DPLL(φ)

• If φ is empty, return true
(embrace truth)

• If there is an empty clause in φ, return false
(reject falsity)

• If there is a unit clause U in φ, return DPLL(φ(U))
(accept the inevitable)

• If there is a pure literal U in φ, return DPLL(φ(U))
(go with the flow)

Unit clause has only one literal
Pure literal only occurs positively or negatively

If there is a pure literal U in phi (that is, the variable in the literal U always
occurs either positively or negatively in phi), then assign the literal, simplify,
and call DPLL recursively on the simplified sentence.

66

Lecture 4 • 66

DPLL(φ)

• If φ is empty, return true
(embrace truth)

• If there is an empty clause in φ, return false
(reject falsity)

• If there is a unit clause U in φ, return DPLL(φ(U))
(accept the inevitable)

• If there is a pure literal U in φ, return DPLL(φ(U))
(go with the flow)

• For some variable v
(take a guess)

Unit clause has only one literal
Pure literal only occurs positively or negatively

If none of the previous conditions hold, then we have to take a guess.
Choose any variable v occurring in phi.

67

Lecture 4 • 67

DPLL(φ)

• If φ is empty, return true
(embrace truth)

• If there is an empty clause in φ, return false
(reject falsity)

• If there is a unit clause U in φ, return DPLL(φ(U))
(accept the inevitable)

• If there is a pure literal U in φ, return DPLL(φ(U))
(go with the flow)

• For some variable v
(take a guess)
– If DPLL(φ(v)) then return true

Unit clause has only one literal
Pure literal only occurs positively or negatively

Try assigning it to be true: simplify and call DPLL recursively on the
simplified sentence. If it returns true, then the sentence is satisfiable, and
we can return true as well.

68

Lecture 4 • 68

DPLL(φ)

• If φ is empty, return true
(embrace truth)

• If there is an empty clause in φ, return false
(reject falsity)

• If there is a unit clause U in φ, return DPLL(φ(U))
(accept the inevitable)

• If there is a pure literal U in φ, return DPLL(φ(U))
(go with the flow)

• For some variable v
(take a guess)
– If DPLL(φ(v)) then return true
– Else return DPLL(φ(¬ v))

Unit clause has only one literal
Pure literal only occurs positively or negatively

If not, then try assigning v to be false, simplify, and call DPLL recursively.

69

Lecture 4 • 69

Recitation Problems - II

How would you modify DPLL so it:
• returns a satisfying assignment if there is one,

and false otherwise
• returns all satisfying assignments

Would using DPLL to return all satisfying
assignments be any more efficient than simply
listing all the assignments and checking to see
whether they’re satisfying? ot? Why or why n

Please do these problems before going on with the lecture.

70

Lecture 4 • 70

Making good guesses

MOMS heuristic for choosing variable v:

Maximum number of Occurrences,
Minimum Sized clauses

What’s a good way to choose the variable to assign? There are lots of
different heuristics. One that seems to work out reasonably well in practice
is the “MOMS” heuristic: choose the variable that has the maximum number
of occurrences in minimum sized clauses.

71

Lecture 4 • 71

Making good guesses

MOMS heuristic for choosing variable v:

Maximum number of Occurrences,
Minimum Sized clauses

• Choose highly constrained variables
• If you’re going to fail, fail early

The idea is that such variables are highly constrained. If you are going to
fail, you’d like to fail early (that is, if you’ve made some bad assignments that
will lead to a false Phi, you might as well know that before you make a lot of
other assignments and grow out a huge tree).
So, intuitively, assigning values to the variables that are most constrained is
more likely to reveal problems soon.

72

The correctness of a variety of algorithms can be described in terms of
soundness and completeness

Lecture 4 • 72

Soundness and Completeness

73

Lecture 4 • 73

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct

An algorithm is sound if, whenever it gives you an answer, it’s correct.

74

Lecture 4 • 74

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct
• Complete – it always gives you an answer

An algorithm is complete if it always gives you an answer.

75

Lecture 4 • 75

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct
• Complete – it always gives you an answer

DPLL is sound and complete

The DPLL algorithm, being a systematic search algorithm that only skips
assignments that are sure to be unsatisfactory, is sound and complete. But
sometimes it can be slow!

76

Lecture 4 • 76

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct
• Complete – it always gives you an answer

DPLL is sound and complete

We will now consider some algorithms for
satisfiability that are sound but not complete.

Now we’re going to consider a couple of algorithms for solving satisfiability
problems that have been found to be very effective in practice. They are
sound, but not complete.

77

Lecture 4 • 77

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct
• Complete – it always gives you an answer

DPLL is sound and complete

We will now consider some algorithms for
satisfiability that are sound but not complete.

• If they give an answer, it is correct

So, if they give an answer, it’s correct.

78

Lecture 4 • 78

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct
• Complete – it always gives you an answer

DPLL is sound and complete

We will now consider some algorithms for
satisfiability that are sound but not complete.

• If they give an answer, it is correct
• But, they may not give an answer

But they may not always give an answer

79

Lecture 4 • 79

Soundness and Completeness

Properties of satisfiability algorithms:
• Sound – if it gives you an answer, it’s correct
• Complete – it always gives you an answer

DPLL is sound and complete

We will now consider some algorithms for
satisfiability that are sound but not complete.

• If they give an answer, it is correct
• But, they may not give an answer
• They may be faster than any complete algorithm

And, on average, they tend to be much faster than any complete algorithm.

80

The GSAT algorithm is an example of an ‘iterative improvement’ algorithm,
such as those discussed in section 4.4 of the book. It does hill-climbing in
the space of complete assignments, with random restarts.

Lecture 4 • 80

GSAT

Hill climbing in the space of total assignments

81

Lecture 4 • 81

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)

We start with a random assignment to the variables, and then move to the
“neighboring” assignment with the least cost. The assignments that are
neighbors of the current assignment are those that can be reached by
“flipping” a single bit of the current assignment. “Flipping” a bit is changing
the assignment of one variable from true to false, or from false to true.

82

Lecture 4 • 82

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)
Cost(assignment) = number of unsatisfied clauses

The cost of an assignment is the number of clauses in the sentence that are
unsatisfied under the assignment.

83

Lecture 4 • 83

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)
Cost(assignment) = number of unsatisfied clauses

Loop n times

Okay. Here’s the algorithm in pseudocode. We’re going to do n different
hill-climbing runs,

84

Lecture 4 • 84

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)
Cost(assignment) = number of unsatisfied clauses

Loop n times
• Randomly choose assignment A

starting from different randomly chosen initial assignments.

85

Lecture 4 • 85

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)
Cost(assignment) = number of unsatisfied clauses

Loop n times
• Randomly choose assignment A
• Loop m times

Now, we loop for m steps, we consider the cost of all the neighboring
assignments (those with a single variable assigned differently), and we

86

Lecture 4 • 86

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)
Cost(assignment) = number of unsatisfied clauses

Loop n times
• Randomly choose assignment A
• Loop m times

– Flip the variable that results in lowest cost

flip the variable that results in the lowest cost (even if that cost is higher than
the cost of the current assignment! This may keep us walking out of some
local minima).

87

Lecture 4 • 87

GSAT

Hill climbing in the space of total assignments
• Starts with random assignment for all variables
• Moves to “neighboring” assignment with least

cost (flip a single bit)
Cost(assignment) = number of unsatisfied clauses

Loop n times
• Randomly choose assignment A
• Loop m times

– Flip the variable that results in lowest cost
– Exit if cost is zero

If the cost is zero, we’ve found a satisfying assignment. Yay! Exit.

88

Lecture 4 • 88

GSAT vs DPLL

So, how does GSAT compare to DPLL?

89

Lecture 4 • 89

GSAT vs DPLL

• GSAT is sound

GSAT is sound. If it gives you an answer, it’s correct.

90

Lecture 4 • 90

GSAT vs DPLL

• GSAT is sound
• It’s not complete

GSAT is not complete. No matter how long you give it to wander around in
the space of assignments, or how many times you restart it, there’s always a
chance it will miss an existing solution.

91

Lecture 4 • 91

GSAT vs DPLL

• GSAT is sound
• It’s not complete
• You couldn’t use it effectively to generate all

satisfying assignments

It’s particularly unhelpful if you want to enumerate all the satisfying
assignments; since it’s not systematic, you could never know whether you
had gotten all of them.

92

Lecture 4 • 92

GSAT vs DPLL

• GSAT is sound
• It’s not complete
• You couldn’t use it effectively to generate all

satisfying assignments
• For a while, it was beating DPLL in SAT contests,

but now the DPLL people are tuning up their
heuristics and doing better

For a while, GSAT was doing hugely better than DPLL in contests. But now
people are adding better heuristics to DPLL and it is starting to do better
than GSAT.

93

Lecture 4 • 93

GSAT vs DPLL

• GSAT is sound
• It’s not complete
• You couldn’t use it effectively to generate all

satisfying assignments
• For a while, it was beating DPLL in SAT contests,

but now the DPLL people are tuning up their
heuristics and doing better

• Weakly constrained problems are easy for both
DPLL and GSAT

The Cook paper has an interesting discussion of which kinds of problems
are easy and hard. Problems that are weakly constrained have many
solutions. They’re pretty easy for both DPLL and GSAT to solve.

94

Lecture 4 • 94

GSAT vs DPLL

• GSAT is sound
• It’s not complete
• You couldn’t use it effectively to generate all

satisfying assignments
• For a while, it was beating DPLL in SAT contests,

but now the DPLL people are tuning up their
heuristics and doing better

• Weakly constrained problems are easy for both
DPLL and GSAT

• Highly constrained problems are easy for DPLL
but hard for GSAT

Highly constrained problems, have only one, or very few solutions. They’re
easy for DPLL, because the simplification process will tend to quickly realize
that a particular partial assignment has no possible satisfying extensions,
and cut off huge chucks of the search space at once. For GSAT, on the
other hand, it’s like looking for a needle in a haystack.

95

Lecture 4 • 95

GSAT vs DPLL

• GSAT is sound
• It’s not complete
• You couldn’t use it effectively to generate all

satisfying assignments
• For a while, it was beating DPLL in SAT contests,

but now the DPLL people are tuning up their
heuristics and doing better

• Weakly constrained problems are easy for both
DPLL and GSAT

• Highly constrained problems are easy for DPLL
but hard for GSAT

• Problems in the middle are hard for everyone

There is a class of problems that are neither weakly nor highly constrained.
They’re very hard for all known algorithms.

96

Here’s another algorithm that’s sort of like GSAT, called WalkSAT. It also
moves through the space of complete assignments, but with a good deal
more randomness than GSAT.

Lecture 4 • 96

WALKSAT

Like GSAT with additional “noise”

97

Lecture 4 • 97

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A

It has the same external structure as GSAT. There’s an outer loop of n
restarts at randomly chosen assignments.

98

Lecture 4 • 98

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A
• Loop m times

Then, we take m steps, but the steps are somewhat different.

99

Lecture 4 • 99

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A
• Loop m times

– Randomly select unsatisfied clause C

First we randomly pick an unsatisfied clause C (on the grounds that, in order
to find a solution, we have to find a way to satisfy all the unsatisfied clauses).

100

Lecture 4 • 100

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A
• Loop m times

– Randomly select unsatisfied clause C
– With p = 0.5 either

Then, we flip a coin. With probability .5, we either

101

Lecture 4 • 101

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A
• Loop m times

– Randomly select unsatisfied clause C
– With p = 0.5 either

– Flip the variable in C that results in lowest cost, or

Flip the variable in C that results in the lowest cost, or

102

Lecture 4 • 102

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A
• Loop m times

– Randomly select unsatisfied clause C
– With p = 0.5 either

– Flip the variable in C that results in lowest cost, or
– Flip a randomly chosen variable in C

Simply flip a randomly chosen variable in C. The reason for flipping
randomly chosen variables is that sometimes (as in simulated annealing), its
important to take steps that make things worse temporarily, but have the
potential to get us into a much better part of the space.

103

Lecture 4 • 103

WALKSAT

Like GSAT with additional “noise”

Loop n times
• Randomly choose assignment A
• Loop m times

– Randomly select unsatisfied clause C
– With p = 0.5 either

– Flip the variable in C that results in lowest cost, or
– Flip a randomly chosen variable in C

– Exit if cost is zero

Of course, if we find an assignment with cost 0, we’re done.
The extra randomness in this algorithm has made it perform better,
empirically, than GSAT. But, as you can probably guess from looking at this
crazy algorithm, there’s no real science to crafting such a local search
algorithm. You just have to try some things and see how well they work out
in your domain.

104

Lecture 4 • 104

Validity

Okay. Now we’re going to switch gears a bit. We have been thinking about
procedures to test whether a sentence is satisfiable. Now, we’re going to
look at procedures for testing validity.
Why are we interested in validity? Remember the discussion we had near
the end of the last lecture, with the complicated diagram? It ended with the
following theorem:

105

Lecture 4 • 105

Validity

• KB is a knowledge base, which is, a set of sentences (or a
conjunction of all those sentences).

• KB entails φ if and only if the sentence “KB → φ” is valid.

• A sentence is valid if it is true in all interpretations.

KB entails phi if and only if the sentence “KB implies phi” is valid. So, if we
can test the validity of sentences, we can tell whether a conclusion is
entailed by, or “follows from” some premises.

106

Lecture 4 • 106

Validity

• KB is a knowledge base, which is, a set of sentences (or a
conjunction of all those sentences).

• KB entails φ if and only if the sentence “KB → φ” is valid.

• A sentence is valid if it is true in all interpretations.

Proof is a way of determining validity without examining all
models

Proof is a way of determining validity without examining all models. It works
by manipulating the syntactic expressions directly.

107

Lecture 4 • 107

Validity

• KB is a knowledge base, which is, a set of sentences (or a
conjunction of all those sentences).

• KB entails φ if and only if the sentence “KB → φ” is valid.

• A sentence is valid if it is true in all interpretations.

Proof is a way of determining validity without examining all
models

KB ` φ (means “φ can be proved from KB”)

We’ll introduce a new symbol, single-turnstile, so that KB single-turnstyle Phi
means “phi can be proved from KB”).
A proof system is a mechanical means of getting new sentences from a set
of old ones.

108

Lecture 4 • 108

Validity

• KB is a knowledge base, which is, a set of sentences (or a
conjunction of all those sentences).

• KB entails φ if and only if the sentence “KB → φ” is valid.

• A sentence is valid if it is true in all interpretations.

Proof is a way of determining validity without examining all
models

KB ` φ (means “φ can be proved from KB”)
• Soundness: if KB ` φ then KB ² φ

A proof system is sound if whenever something is provable from KB it is
entailed by KB.

109

Lecture 4 • 109

Validity

• KB is a knowledge base, which is, a set of sentences (or a
conjunction of all those sentences).

• KB entails φ if and only if the sentence “KB → φ” is valid.

• A sentence is valid if it is true in all interpretations.

Proof is a way of determining validity without examining all
models

KB ` φ (means “φ can be proved from KB”)
• Soundness: if KB ` φ then KB ² φ
• Completeness: if KB ² φ then KB ` φ

A proof system is complete if whenever something is entailed by KB it is
provable from KB.
Wouldn’t it be great if you were sound and complete derivers of answers to
problems? You’d always get an answer and it would always be right!

110

Lecture 4 • 110

Natural Deduction

1. So what is a proof system? What is this single turnstile about,
anyway? Well, presumably all of you have studied high-school geometry,
that's often people's only exposure to formal proof. Remember that? You
knew some things about the sides and angles of two triangles and then you
applied the side-angle-side theorem to conclude -- at least people in
American high schools were familiar with side-angle-side -- The side-angle-
side theorem allowed you to conclude that the two triangles were similar,
right?
That is formal proof. You've got some set of rules that you can apply. You've
got some things written down on your page, and you kind of grind through,
applying the rules that you have to the things that are written down, to write
some more stuff down and so finally you've written down the things that you
wanted to, and then you to declare victory. That's the single turnstile.
There are (at least) two styles of proof system; we're going to talk about one
briefly today and then the other one at some length next time.
Natural deduction refers to a set of proof systems that are very similar to the
kind of system you used in high-school geometry. We'll talk a little bit about
natural deduction just to give you a flavor of how it goes in propositional
logic, but it's going to turn out that it's not very good as a general strategy for
computers. So this is a proof system that humans like, and then we'll talk
about a proof system that computers like, to the extent that computers can
like anything.

111

Lecture 4 • 111

Natural Deduction

Proof is a sequence of sentences

A proof is a sequence of sentences. This is going to be true in almost all
proof systems.

112

First we'll list the premises. These are the sentences in your knowledge
base. The things that you know to start out with. You're allowed to write
those down on your page. Sometimes they're called the "givens." You can
put the givens down.

Lecture 4 • 112

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)

113

Lecture 4 • 113

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)
Then, you can write down on line j the result of

applying an inference rule to previous lines

Then, you can write down on a new line of your proof the results of applying
an inference rule to the previous lines.

114

Lecture 4 • 114

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)
Then, you can write down on line j the result of

applying an inference rule to previous lines
When φ is on a line, you know KB ` φ

Then, when Phi is on some line, you just proved Phi from KB.

115

Lecture 4 • 115

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)
Then, you can write down on line j the result of

applying an inference rule to previous lines
When φ is on a line, you know KB ` φ

If inference rules are sound, then KB ² φ

And if your inference rules are sound, and they'd better be, then KB entails
Phi.

116

Lecture 4 • 116

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)
Then, you can write down on line j the result of

applying an inference rule to previous lines
When φ is on a line, you know KB ` φ

If inference rules are sound, then KB ² φ

α → β

α

β

Modus
ponens

So let's look at inference rules, and learn how they work by example. Here’s
a famous one (written down by Aristotle); it has the great Latin name,
"modus ponens", which means “affirming method”.
It says that if you have “alpha implies beta” written down somewhere on your
page, and you have alpha written down somewhere on your page, then you
can write beta down on a new line. (Alpha and beta here are metavariables,
like phi and psi, ranging over whole complicated sentences).
It’s important to remember that inference rules are just about ink on paper,
or bits on your computer screen. They're not about anything in the world.
Proof is just about writing stuff on a page, just syntax. But if you're careful in
your proof rules and they're all sound, then at the end when you have some
bit of syntax written down on your page, you can go back via the
interpretation to some semantics.
So you start out by writing down some facts about the world formally as your
knowledge base. You do stuff with ink and paper for a while and now you
have some other symbols written down on your page. You can go look them
up in the world and say, "Oh, I see. That's what they mean."

117

Lecture 4 • 117

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)
Then, you can write down on line j the result of

applying an inference rule to previous lines
When φ is on a line, you know KB ` φ

If inference rules are sound, then KB ² φ

α → β

α

β

α → β

¬ β

¬ α

Modus
ponens

Modus
tolens

Here’s another inference rule. “Modus tollens” (denying method) says that,
from “alpha implies beta” and “not beta” you can conclude “not alpha”.

118

Lecture 4 • 118

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)
Then, you can write down on line j the result of

applying an inference rule to previous lines
When φ is on a line, you know KB ` φ

If inference rules are sound, then KB ² φ

α → β

α

β

α

β

α Æ β

α → β

¬ β

¬ α

Modus
ponens

And-
introduction

Modus
tolens

And-introduction say that from “alpha” and from “beta” you can conclude
“alpha and beta”. That seems pretty obvious.

119

Lecture 4 • 119

Natural Deduction

Proof is a sequence of sentences
First ones are premises (KB)
Then, you can write down on line j the result of

applying an inference rule to previous lines
When φ is on a line, you know KB ` φ

If inference rules are sound, then KB ² φ

α → β

α

β

α

β

α Æ β

α Æ β

α

α → β

¬ β

¬ α

Modus
ponens

And-
introduction

And-
elimination

Modus
tolens

Conversely, and-elimination says that from “alpha and beta” you can
conclude “alpha”.

120

Lecture 4 • 120

Natural deduction example

DerivationFormulaStep

Prove S

Now let’s do a sample proof just to get the idea of how it works. Pretend
you’re back in high school…

121

Lecture 4 • 121

Natural deduction example

Given(Q Æ R) → S3

GivenP → R2

GivenP Æ Q1

DerivationFormulaStep

Prove S

We’ll start with 3 sentences in our knowledge base, and we’ll write them on
the first three lines of our proof: (P and Q), (P implies R), and (Q and R imply
S).

122

Lecture 4 • 122

Natural deduction example

1 And-ElimP4

Given(Q Æ R) → S3

GivenP → R2

GivenP Æ Q1

DerivationFormulaStep

Prove S

From line 1, using the and-elimination rule, we can conclude P, and write it
down on line 4 (together with a reminder of how we derived it).

123

Lecture 4 • 123

Natural deduction example

4,2 Modus PonensR5

1 And-ElimP4

Given(Q Æ R) → S3

GivenP → R2

GivenP Æ Q1

DerivationFormulaStep

Prove S

From lines 4 and 2, using modus ponens, we can conclude R.

124

6

5

4

3

2

1

Lecture 4 • 124

Natural deduction example

1 And-ElimQ

4,2 Modus PonensR

1 And-ElimP

Given(Q Æ R) → S
GivenP → R
GivenP Æ Q

DerivationFormulaStep

Prove S

From line 1, we can use and-elimination to get Q.

125

7

6

5

4

3

2

1

Lecture 4 • 125

Natural deduction example

5,6 And-IntroQ Æ R
1 And-ElimQ

4,2 Modus PonensR

1 And-ElimP

Given(Q Æ R) → S
GivenP → R
GivenP Æ Q

DerivationFormulaStep

Prove S

From lines 5 and 6, we can use and-introduction to get (Q and R)

126

8

7

6

5

4

3

2

1

Lecture 4 • 126

Natural deduction example

7,3 Modus PonensS

5,6 And-IntroQ Æ R
1 And-ElimQ

4,2 Modus PonensR

1 And-ElimP

Given(Q Æ R) → S
GivenP → R
GivenP Æ Q

DerivationFormulaStep

Prove S

Finally, from lines 7 and 3, we can use modus ponens to get S. Whew! We
did it!

127

Lecture 4 • 127

Proof systems

There are many natural deduction systems; they are typically
“proof checkers”, sound but not complete

The process of formal proof seems pretty mechanical. So why can’t
computers do it?
They can. For natural deduction systems, there are a lot of “proof checkers”,
in which you tell the system what conclusion it should try to draw from what
premises. They’re always sound, but nowhere near complete. You typically
have to ask them to do the proof in baby steps, if you’re trying to prove
anything at all interesting.

128

Lecture 4 • 128

Proof systems

There are many natural deduction systems; they are typically
“proof checkers”, sound but not complete

Natural deduction uses lots of inference rules which introduces a
large branching factor in the search for a proof.

Part of the problem is that they have a lot of inference rules, which
introduces a very big branching factor in the search for proofs.

129

Lecture 4 • 129

Proof systems

P → R3

Q → R2

P v Q1

Prove R

There are many natural deduction systems; they are typically
“proof checkers”, sound but not complete

Natural deduction uses lots of inference rules which introduces a
large branching factor in the search for a proof.

In general, you need to do “proof by cases” which introduces
even more branching.

Another big problem is the need to do “proof by cases”. What if you wanted
to prove R from (P or Q), (Q implies R), and (P implies R)? You have to do
it by first assuming that P is try and proving R, then assuming Q is true and
proving R. And then finally applying a rule that allows you to conclude that R
follows no matter what. This kind of proof by cases introduces another large
amount of branching in the space.

130

Lecture 4 • 130

Proof systems

P → R3

Q → R2

P v Q1

Prove R
An alternative is
resolution, a single,
sound and complete
inference rule for
propositional logic.

There are many natural deduction systems; they are typically
“proof checkers”, sound but not complete

Natural deduction uses lots of inference rules which introduces a
large branching factor in the search for a proof.

In general, you need to do “proof by cases” which introduces
even more branching.

An alternative is resolution, a single inference rule that is sound and
complete, all by itself. It’s not very intuitive for humans to use, but it’s great
for computers. We’ll look at it in great detail next time.

