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6.825 Techniques in Artificial Intelligence 

Resolution Theorem Proving: 
Propositional Logic 

• Propositional resolution 
• Propositional theorem proving 
• Unification 

Today we’re going to talk about resolution, which is a proof strategy. First, we’ll 
look at it in the propositional case, then in the first-order case. It will actually take 
two lectures to get all the way through this. Then, we’ll have you do problem set 2, 
which involves using the resolution proof technique on a moderately big problem in 
first-order inference. 
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Propositional Resolution 

At the end of propositional logic, we talked a little bit about proof, what it was, with 
the idea that you write down some axioms, statements that you’re given, and 
then you try to derive something from them. And we've all had practice doing 
that in high school geometry and we've talked a little bit about natural 
deduction. So what we're going to talk about today is resolution. Which is the 
way that pretty much every modern automated theorem-prover is implemented. 
It's apparently the best way for computers to think about proving things. 
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Propositional Resolution 

• Resolution rule: 
α v β 
¬β v γ 

α v γ 

So here's the Resolution Inference Rule, in the propositional case. It says that if you 
know “alpha or beta”, and you know “not beta or gamma”, then you're allowed to 
conclude “alpha or gamma”. OK. Remember from when we looked at inference 
rules before that these greek letters are meta-variables. They can stand for big 
chunks of propositional logic, as long as the parts match up in the right way. So if 
you know something of the form “alpha or beta”, and you also know that “not beta 
or gamma”, then you can conclude “alpha or gamma”. 
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Propositional Resolution 

• Resolution rule: 
α v β 
¬β v γ 

α v γ 
• Resolution refutation: 

It turns out that that one rule is all you need to prove things. At least, to prove that a 
set of sentences is not satisfiable. So, let's see how this is going to work. There's 
a proof strategy called Resolution Refutation, with three steps. And it goes like 
this. 
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Propositional Resolution 

• Resolution rule: 
α v β 
¬β v γ 

α v γ 
• Resolution refutation: 

• Convert all sentences to CNF 

First, you convert all of your sentences to conjunctive normal form. You already 
know how to do this! Then, you write each clause down as a premise or given in 
your proof. 
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Propositional Resolution 

• Resolution rule: 
α v β 
¬β v γ 

α v γ 
• Resolution refutation: 

• Convert all sentences to CNF 
• Negate the desired conclusion (converted to CNF) 

Then, you negate the desired conclusion -- so you have to say what you're trying to 
prove, but what we're going to do is essentially a proof by contradiction. You've 
all seen the strategy of proof by contradiction (or, if we’re being fancy and 
Latin, reductio ad absurdum). You assert that the thing that you're trying to 
prove is false, and then you try to derive a contradiction. That's what we're 
going to do. So you negate the desired conclusion and convert that to CNF. And 
you add each of these clauses as a premise of your proof, as well. 
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Propositional Resolution 

• Resolution rule: 
α v β 
¬β v γ 

α v γ 
• Resolution refutation: 

• Convert all sentences to CNF 
• Negate the desired conclusion (converted to CNF) 
• Apply resolution rule until either 

– Derive false (a contradiction) 
– Can’t apply any more 

And then we apply the Resolution Rule until either you can derive "false" -- which 
means that the conclusion did, in fact, follow from the things that you had 
assumed, right?  If you assert that the negation of the thing that you're interested 
in is true, and then you prove for a while and you manage to prove false, then 
you've succeeded in a proof by contradiction of the thing that you were trying to 
prove in the first place. So you run the resolution rule until you derive false or 
until you can't apply it anymore. 
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Propositional Resolution 

• Resolution rule: 
α v β 
¬β v γ 

α v γ 
• Resolution refutation: 

• Convert all sentences to CNF 
• Negate the desired conclusion (converted to CNF) 
• Apply resolution rule until either 

– Derive false (a contradiction) 
– Can’t apply any more 

• Resolution refutation is sound and complete 
• If we derive a contradiction, then the conclusion follows from the 

axioms 
• If we can’t apply any more, then the conclusion cannot be proved 

from the axioms. 

What if you can't apply the Resolution Rule anymore?  Is there anything in 
particular that you can conclude?  In fact, you can conclude that the thing that 
you were trying to prove can't be proved. So resolution refutation for 
propositional logic is a complete proof procedure.  So if the thing that you're 
trying to prove is, in fact, entailed by the things that you've assumed, then you 
can prove it using resolution refutation. In the propositional case. It’s more 
complicated in the first-order case, as we’ll see. But in the propositional case, it 
means that if  you've applied the Resolution Rule and you can't apply it 
anymore, then your desired conclusion can’t be proved. 

It’s guaranteed that you’ll always either prove false, or run out of possible steps. 
It’s complete, because it always generates an answer. Furthermore, the process 
is sound: the answer is always correct. 
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Propositional Resolution Example 

DerivationFormulaStep 

Q → R3 

P → R2 

P v Q1 

Prove R 

So let's just do a proof. Let's say I'm given “P or Q”, “P implies R” and “Q implies 
R”. I would like to conclude R from these three axioms. I'll use the word 
"axiom" just to mean things that are given to me right at the moment. 
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Propositional Resolution Example 
DerivationFormulaStep 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

We start by converting this first sentence into conjunctive normal form. We don’t 
actually have to do anything. It’s already in the right form. 
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Propositional Resolution Example 
DerivationFormulaStep 

Given ¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

Now, “P implies R” turns into “not P or R”. 
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Propositional Resolution Example 
DerivationFormulaStep 

Given ¬ Q v R3 

Given ¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

Similarly, “Q implies R” turns into “not Q or R 
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Propositional Resolution Example 
DerivationFormulaStep 

Negated 

conclusion 

¬ R4 

Given ¬ Q v R3 

Given ¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

Now we want to add one more thing to our list of given statements. What's it going 
to be? 

Not R. Right? We're going to assert the negation of the thing we're trying to prove. 
We'd like to prove that R follows from these things. But what we're going to do 
instead is say not R, and now we're trying to prove false. And if we manage to 
prove false, then we will have a proof that R is entailed by the assumptions. 
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Propositional Resolution Example 
DerivationFormulaStep 

Negated 

conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

Now, we’ll draw a blue line just to divide the assumptions from the proof steps. 
And now, we look for opportunities to apply the resolution rule. You can do it in 

any order you like (though some orders of application will result in much 
shorter proofs than others). 
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Propositional Resolution Example 
DerivationFormulaStep 

1,2Q v R5 

Negated 

conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

We can apply resolution to lines 1 and 2, and get “Q or R” by resolving away P. 
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Propositional Resolution Example 
DerivationFormulaStep 

2,4¬ P6 

1,2Q v R5 

Negated 

conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

And we can take lines 2 and 4, resolve away R, and get “not P.” 
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Propositional Resolution Example 
DerivationFormulaStep 

3,4¬ Q7 

2,4¬ P6 

1,2Q v R5 

Negated 

conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

Similarly, we can take lines 3 and 4, resolve away R, and get “not Q”. 
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Propositional Resolution Example 
DerivationFormulaStep 

5,7R8 

3,4¬ Q7 

2,4¬ P6 

1,2Q v R5 

Negated 

conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

By resolving away Q in lines 5 and 7, we get R. 
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Propositional Resolution Example 
DerivationFormulaStep 

4,8•9 

5,7R8 

3,4¬ Q7 

2,4¬ P6 

1,2Q v R5 

Negated 
conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

And finally, resolving away R in lines 4 and 8, we get the empty clause, which is 
false. We’ll often draw this little black box to indicate that we’ve reached the 
desired contradiction. 
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Propositional Resolution Example 
DerivationFormulaStep 

4,8•9 

5,7R8 

3,4¬ Q7 

2,4¬ P6 

1,2Q v R5 

Negated 
conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

false v R 
¬ R v false 

false v false 

How did I do this last resolution? Let’s see how the resolution rule is applied to 
lines 4 and 8. The way to look at it is that R is really “false or R”, and that “not 
R” is really “not R or false”. (Of course, the order of the disjuncts is irrelevant, 
because disjunction is commutative). So, now we resolve away R, getting “false 
or false”, which is false. 
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Propositional Resolution Example 
DerivationFormulaStep 

4,8•9 

5,7R8 

3,4¬ Q7 

P 
1,2Q v R5 

Negated 
conclusion 

¬ R4 

Given¬ Q v R3 

Given¬ P v R2 

GivenP v Q1 

Q → R3 

P → R2 

P v Q1 

Prove R 

false v R 
¬ R v false 

false v false 

One of these steps is unnecessary. Which one?  Line 6. It’s a perfectly good proof 
step, but it doesn’t contribute to the final conclusion, so we could have omitted 
it. 
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The Power of False 

Here’s a question. Does “P and not P” entail Z? 
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The Power of False 

DerivationFormulaStep 

¬ P2 

P1 

Prove Z 

It does, and it’s easy to prove using resolution refutation. 
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The Power of False 

DerivationFormulaStep 

Negated 
conclusion 

¬ Z3 

Given¬ P2 

GivenP1 

¬ P2 

P1 

Prove Z 

We start by writing down the assumptions and the negation of the conclusion. 
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The Power of False 

DerivationFormulaStep 

1,2•4 

Negated 
conclusion 

¬ Z3 

Given¬ P2 

GivenP1 

¬ P2 

P1 

Prove Z 

Then, we can resolve away P in lines 1 and 2, getting a contradiction right away. 
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The Power of False 

DerivationFormulaStep 

1,2•4 

Negated 
conclusion 

¬ Z3 

Given¬ P2 

GivenP1 

¬ P2 

P1 

Prove Z 

Note that (P Æ ¬ P) → Z is valid 

Because we can prove Z from “P and not P” using a sound proof procedure, then “P 
and not P” entails Z. And, by the theorem relating entailment and validity, we 
have that the sentence “P and not P implies Z” is valid. 
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The Power of False 

DerivationFormulaStep 

1,2•4 

Negated 
conclusion 

¬ Z3 

Given¬ P2 

GivenP1 

¬ P2 

P1 

Prove Z 

Note that (P Æ ¬ P) → Z is valid 

Any conclusion follows from a contradiction – and so 
strict logic systems are very brittle. 

So, we see, again, that any conclusion follows from a contradiction. This is the 
property that can make logical systems quite brittle; they’re not robust in the 
face of noise. We’ll address this problem when we move to probabilistic 
inference. 
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Example Problem 

(R → S) → ¬(S → Q)3 

(P → P) → R2 

(P → Q) → Q1 

Prove R 
Convert to CNF 

Here’s an example problem. Stop and do the conversion into CNF before you go to 
the next slide. 
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Example Problem 

(R → S) → ¬(S → Q)3 

(P → P) → R2 

(P → Q) → Q1 

Prove R • ¬(¬ P v Q) v Q 
• P Æ ¬ Q) v Q 
• P  v  Q) Æ (¬ Q v Q) 

• P  v  Q) 

Convert to CNF 

(
(

(

So, the first formula turns into “P or Q”. 
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Example Problem 

(R → S) → ¬(S → Q)3 

(P → P) → R2 

(P → Q) → Q1 

Prove R • ¬(¬ P v Q) v Q 
• P Æ ¬ Q) v Q 
• P  v  Q) Æ (¬ Q v Q) 

• P  v  Q) 

• ¬(¬ P v P) v R 
• P Æ ¬ P) v R 
• P  v  R) Æ (¬ P v R) 

Convert to CNF 

(
(

(

(
(

The second turns into (“P or R” and “not P or R”). We probably should have 
simplified it into “False or R” at the second step, which reduces just to R. But 
we’ll leave it as is, for now. 
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Example Problem 

(R → S) → ¬(S → Q)3 

(P → P) → R2 

(P → Q) → Q1 

Prove R • ¬(¬ P v Q) v Q 
• P Æ ¬ Q) v Q 
• P  v  Q) Æ (¬ Q v Q) 

• P  v  Q) 

• ¬(¬ P v P) v R 
• P Æ ¬ P) v R 
• P  v  R) Æ (¬ P v R) 

• ¬(¬ R v S) v ¬ (¬ S v Q) 
• R Æ ¬ S) v (S Æ ¬ Q) 
• R  v  S) Æ (¬ S v S) Æ(R v ¬ Q) Æ(¬ S v ¬ Q) 
• R  v  S) Æ (R v ¬ Q) Æ(¬ S v ¬ Q) 

Convert to CNF 

(
(

(

(
(

(
(
(

Finally, the last formula requires us to do a big expansion, but one of the terms is 
true and can be left out. So, we get “(R or S) and (R or not Q) and (not S or not 
Q)”. 
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Resolution Proof Example 

(R → S) 
→ ¬(S → Q)3 

(P → P) → R2 

(P → Q) → Q1 

Prove R 

¬ S v ¬ Q6 

Neg¬ R7 

R v ¬ Q5 

R v S4 

¬ P v R3 

P v R2 

P v Q1 

Now we can almost start the proof. We copy each of the clauses over here, and we 
add the negation of the query. 

Please stop and do this proof yourself before going on. 
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Resolution Proof Example 

(R → S) 
→ ¬(S → Q)3 

(P → P) → R2 

(P → Q) → Q1 

Prove R 

¬ S v ¬ Q 

6,8¬ Q 

1,9P 
3,10R 

4,7S 

7,11• 

Neg¬ R 

R v ¬ Q 
R v S 

¬ P v R 
P v R 

P v Q 

Here’s a sample proof. It’s one of a whole lot of possible proofs. 



34

In choosing among all the possible proof steps that you can do at any point, there 
are two rules of thumb that are really important. 

Lecture 7 • 34 

Proof Strategies 
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Proof Strategies 

• Unit preference: prefer a resolution step involving 
an unit clause (clause with one literal). 

• Produces a shorter clause – which is good since we are 
trying to produce a zero-length clause, that is, a 
contradiction. 

The unit preference rule says that if you can involve a clause that has only one 
literal in it, that's usually a good idea.  It’s good because you get back a shorter 
clause. And the shorter a clause is, the closer it is to false. 
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Proof Strategies 

• Unit preference: prefer a resolution step involving 
an unit clause (clause with one literal). 

• Produces a shorter clause – which is good since we are 
trying to produce a zero-length clause, that is, a 
contradiction. 

• Set of support: Choose a resolution involving the 
negated goal or any clause derived from the 
negated goal. 

• We’re trying to produce a contradiction that follows from 
the negated goal, so these are “relevant” clauses. 

• If a contradiction exists, one can find one using the set-of-
support strategy. 

The set-of-support rule says you should involve the thing that you're trying to prove. 
It might be that you can derive conclusions all day long about the solutions to 
chess games and stuff from the axioms, but once you're trying to prove 
something about what way to run, it doesn't matter. So, to direct your “thought” 
processes toward deriving a contradiction, you should always involve a clause 
that came from the negated goal, or that was produced by the set of support rule. 
Adhering to the set-of-support rule will still make the resolution refutation 
process sound and complete. 
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Recitation Problems 

Using resolution refutation, prove the last sentence 
in each group from the rest of the sentences in the 
group. 

P → Q 
¬P → R 
¬Q →¬R 

(P → Q) ∨ (R → S) 
(P → S) ∨ (R → Q) 

¬(P ∧¬Q) ∨¬(¬S ∧¬T ) 
¬(T ∨ Q) 
U → (¬T → (¬S ∧ P)) 
¬U 

Use resolution refutation to do problem 6.5 from R&N. 

Please do at least two of these problems before going on, and do the rest before the 
next recitation. 
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First-Order Resolution 

OK, now what if we have variables? We're going to move to the first-order case. 
And there's going to be a resolution rule in the first-order case, and it's 
essentially the same inference rule, but the trick is what to do with the variables. 
And what to do with the variables is pretty hard and pretty complicated. We’ll 
spend the rest of this lecture understanding what to do with the variables. 
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∀ x. P(x) → Q(x) 

P(A) 

Q(A) 

First-Order Resolution 
uppercase letters: 
constants 

lowercase letters: 
variables 

Let’s try to get some intuition through an example. Imagine you knew “for all X, P 
of X implies Q of X.” And let's say you also knew P of A. What would you be 
able to conclude? 

Q of A, right? You ought to be able to conclude Q of A. 
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∀ x. P(x) → Q(x) 

P(A) 

Q(A) 

First-Order Resolution 

Syllogism: 
All men are mortal 
Socrates is a man 
Socrates is mortal 

uppercase letters: 
constants 

lowercase letters: 
variables 

This is actually Aristotle’s original syllogism: From “All men are mortal” and 
“Socrates is a man”, conclude “Socrates is a mortal”. 
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∀ x. P(x) → Q(x) 

P(A) 

Q(A) 

First-Order Resolution 

∀ x. ¬ P(x) v Q(x) 

P(A) 

Q(A) 

Equivalent by 
definition of 
implication 

Syllogism: 
All men are mortal 
Socrates is a man 
Socrates is mortal 

uppercase letters: 
constants 

lowercase letters: 
variables 

So, how can we justify this conclusion formally. Well, the first step would be to get 
rid of the implication. 
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∀ x. P(x) → Q(x) 

P(A) 

Q(A) 

First-Order Resolution 

∀ x. ¬ P(x) v Q(x) 

P(A) 

Q(A) 

¬ P(A) v Q(A) 

P(A) 

Q(A) 

Substitute A for 
x, still true 

then 

Propositional 
resolution 

Equivalent by 
definition of 
implication 

Syllogism: 
All men are mortal 
Socrates is a man 
Socrates is mortal 

uppercase letters: 
constants 

lowercase letters: 
variables 

Next, we could substitute the constant A in for the variable x in the universally 
quantified sentence. By the semantics of universal quantification, that’s 
allowed. And now, we can apply the propositional resolution rule. 
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∀ x. P(x) → Q(x) 

P(A) 

Q(A) 

First-Order Resolution 

∀ x. ¬ P(x) v Q(x) 

P(A) 

Q(A) 

¬ P(A) v Q(A) 

P(A) 

Q(A) 

Substitute A for 
x, still true 

then 

Propositional 
resolution 

Equivalent by 
definition of 
implication 

Syllogism: 
All men are mortal 
Socrates is a man 
Socrates is mortal 

The key is finding 
the correct 
substitutions for 
the variables. 

uppercase letters: 
constants 

lowercase letters: 
variables 

The hard part is figuring out how to instantiate the variables in the universal 
statements. In this problem, it was clear that A was the relevant individual. But 
it not necessarily clear at all how to do that automatically. 
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In order to derive an algorithmic way of finding the right instantiations for the 
universal variables, we need something called substitutions. 
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Substitutions 
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Substitutions 

P(x, F(y), B) : an atomic sentence 

Here’s an example of what we called an atomic sentence before, a predicate applied 
to some terms. There are two variables in here: x, and y. We can think about 
different ways that we can substitute terms into this expression, right? Those are 
called substitution instances of that expression. 
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Substitutions 

CommentSubstitution 
{v1 /t1,…, vn /tn} 

Substitution 
instances 

P(x, F(y), B) : an atomic sentence 

A substitution is a set of variable-term pairs, written this way. It says that whenever 
you see variable I, you should substitute in term I. There should not be more 
than one entry for a single variable. 
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Substitutions 

CommentSubstitution 
{v1 /t1,…, vn /tn} 

Substitution 
instances 

Alphabetic 
variant 

{x/z, y/w}P(z, F(w), B) 

P(x, F(y), B) : an atomic sentence 

So here's one substitution instance. P(z,F(w),B). It’s not particularly interesting. 
It’s called an alphabetic variant, because we’ve just substituted some different 
variables in for x and y. In particular, we’ve put z in for x and w in for y, as 
shown in the substitution. 
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Substitutions 

CommentSubstitution 
{v1 /t1,…, vn /tn} 

Substitution 
instances 

{y/A}P(x, F(A), B) 

Alphabetic 
variant 

{x/z, y/w}P(z, F(w), B) 

P(x, F(y), B) : an atomic sentence 

Here’s another substitution instance of our sentence: P(x, F(A), B), We’ve put the 
constant A in for the variable y. 
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Substitutions 

CommentSubstitution 
{v1 /t1,…, vn /tn} 

Substitution 
instances 

{x/G(z), y/A}P(G(z), F(A), B) 

{y/A}P(x, F(A), B) 

Alphabetic 
variant 

{x/z, y/w}P(z, F(w), B) 

P(x, F(y), B) : an atomic sentence 

To get P(G(z), F(A), B), we substitute the term G(z) in for x and the constant A for 
y. 
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Substitutions 

CommentSubstitution 
{v1 /t1,…, vn /tn} 

Substitution 
instances 

Ground instance{x/C, y/A}P(C, F(A), B) 

{x/G(z), y/A}P(G(z), F(A), B) 

{y/A}P(x, F(A), B) 

Alphabetic 
variant 

{x/z, y/w}P(z, F(w), B) 

P(x, F(y), B) : an atomic sentence 

Here’s one more -- P(C, F(A), B). It’s sort of interesting, because it doesn't have 
any variables in it. We'll call an atomic sentence with no variables a ground 
instance. Ground means it doesn't have any variables. 
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Substitutions 

CommentSubstitution 
{v1 /t1,…, vn /tn} 

Substitution 
instances 

Ground instance{x/C, y/A}P(C, F(A), B) 

{x/G(z), y/A}P(G(z), F(A), B) 

{y/A}P(x, F(A), B) 

Alphabetic 
variant 

{x/z, y/w}P(z, F(w), B) 

P(x, F(y), B) : an atomic sentence 

You can think about substitution instances, in general, as being more specific than 
the original sentence. A constant is more specific than a variable. There are 
fewer interpretations under which a sentence with a constant is true. And even 
F(x) is more specific than y, because the range of F might be smaller than U. 

You’re not allowed to substitute anything in for a constant, or for a compound term 
(the application of a function symbol to some terms). You are allowed to 
substitute for a variable inside a compound term, though, as we have done with 
F in this example. 
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Substitutions 

CommentSubstitution 
{v1 /t1,…, vn /tn} 

Substitution 
instances 

Ground instance{x/C, y/A}P(C, F(A), B) 

{x/G(z), y/A}P(G(z), F(A), B) 

{y/A}P(x, F(A), B) 

Alphabetic 
variant 

{x/z, y/w}P(z, F(w), B) 

P(x, F(y), B) : an atomic sentence 

Applying a substitution: 

subst({A/y},P(x, F(y), B)) = P(x, F(A), B) 

P(x, F(y), B) {A/y} = P(x,F(A),B) 

We’ll use the notation of an expression followed by a substitution to mean the 
expression that we get by applying the substitution to the expression. And the 
book uses a function subst, with two arguments, the substitution and the 
expression. 

To apply a substitution to an expression, we look to see if any of the variables in the 
expression have entries in the substitution. If they do, we substitute in the 
appropriate new expression for the variable, and continue to look for possible 
substitutions until no more opportunities exist. 
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Now we’ll look at the process of unification, which is finding a substitution that 
makes two expressions match each other exactly. 
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Unification 
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Unification 

• Expressions ω1 and ω2 are unifiable iff there exists a 
substitution s such that ω1 s = ω2 s 

So, expressions Omega 1 and Omega 2 are unifiable if there exists a substitution S 
such that (Omega-1 S) will be equal to (Omega-2 S). And that substitution S is 
called a unifier of omega1 and omega2. 
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Unification 

• Expressions ω1 and ω2 are unifiable iff there exists a 
substitution s such that ω1 s = ω2 s 

• Let ω1 = x and ω2 = y, the following are unifiers 

ω2 sω1 ss 

So, let’s look at some unifiers of the expressions x and y. Since x and y are both 
variables, there are lots of things you can do to make them match. 
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Unification 

• Expressions ω1 and ω2 are unifiable iff there exists a 
substitution s such that ω1 s = ω2 s 

• Let ω1 = x and ω2 = y, the following are unifiers 

xx{y/x} 

ω2 sω1 ss 

If you substitute x in for y, then both expressions come out to be x. 
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Unification 

• Expressions ω1 and ω2 are unifiable iff there exists a 
substitution s such that ω1 s = ω2 s 

• Let ω1 = x and ω2 = y, the following are unifiers 

yy{x/y} 

xx{y/x} 

ω2 sω1 ss 

If you put in y for x, then they both come out to be y. 
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Unification 

• Expressions ω1 and ω2 are unifiable iff there exists a 
substitution s such that ω1 s = ω2 s 

• Let ω1 = x and ω2 = y, the following are unifiers 

F(F(A))F(F(A)){x/F(F(A)), y/F(F(A))} 

yy{x/y} 

xx{y/x} 

ω2 sω1 ss 

But you could also substitute something else, like F(F(A)) for x and for y, and you’d 
get matching expressions. 
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Unification 

• Expressions ω1 and ω2 are unifiable iff there exists a 
substitution s such that ω1 s = ω2 s 

• Let ω1 = x and ω2 = y, the following are unifiers 

AA{x/A, y/A} 

F(F(A))F(F(A)){x/F(F(A)), y/F(F(A))} 

yy{x/y} 

xx{y/x} 

ω2 sω1 ss 

Or, you could substitute some constant, like A, in for both x and y. 
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Most General Unifier 

Of the unifiers we considered on the previous slide, some of them seem a bit 
arbitrary. Binding both x and y to A, or to F(F(A)) is a kind of over-
commitment. 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

So, in fact, what we’re really going to be looking for is not just any unifier of two 
expressions, but a most general unifier, or MGU. 

G is a most general unifier of omega1 and omega2 if and only if for all unifiers S, 
there exists an S-prime such that (omega-1 S) equals (omega-1 G S-prime), and 
(omega-2 S) equals (omega-2 G S-prime). 

A unifier is most general if every single one of the other unifiers can be expressed 
as an extra-substitution added onto the most general one. 

It’s a substitution that you can make that makes the fewest commitments, and can 
still make these two expressions equal. 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

{x/A}P(A)P(x) 

MGUω2ω1 

So, let's do a few more examples together, and then you can do some as recitation 
problems. So, what’s a most general unifier of P(x) and P(A)?  A for x. 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

{y/x} or {x/y}P(F(x), x, G(x))P(F(x), y, G(x)) 

{x/A}P(A)P(x) 

MGUω2ω1 

What about these two expressions?  We can make them match up either by 
substituting x for y, or y for x. It doesn’t matter which one we do. They’re both 
“most general”. 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

{y/x, z/x}P(F(x), z, G(x))P(F(x), y, G(y)) 

{y/x} or {x/y}P(F(x), x, G(x))P(F(x), y, G(x)) 

{x/A}P(A)P(x) 

MGUω2ω1 

Okay. What about this one?  It’s a bit tricky. You can kind of see that, ultimately, 
all of the variables are going to have to be the same. Matching the arguments to 
G forces y and x to be the same, And since z and y have to be the same as well 
(to make the middle argument match), they all have to be the same variable. 
Might as well make it x (though it could be any other variable). 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

{x/A, y/B, z/B}P(A, y, z)P(x, B, B) 

{y/x, z/x}P(F(x), z, G(x))P(F(x), y, G(y)) 

{y/x} or {x/y}P(F(x), x, G(x))P(F(x), y, G(x)) 

{x/A}P(A)P(x) 

MGUω2ω1 

What about P(x, B, B) and P(A, y, z)?  It seems pretty clear that we’re going to have 
to substitute A for x, B for y, and B for Z. 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

{x/A, y/B, z/B}P(A, y, z)P(x, B, B) 

{x/G(F(v)), u/F(v)}P(x, x)P(G(F(v)), G(u)) 

{y/x, z/x}P(F(x), z, G(x))P(F(x), y, G(y)) 

{y/x} or {x/y}P(F(x), x, G(x))P(F(x), y, G(x)) 

{x/A}P(A)P(x) 

MGUω2ω1 

Here’s a tricky one. It looks like x is going to have to simultaneously be G(F(v)) 
and G(u). How can we make that work? By substituting F(v) in for u. 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

{x/A, y/B, z/B}P(A, y, z)P(x, B, B) 

{x/G(F(v)), u/F(v)}P(x, x)P(G(F(v)), G(u)) 

{y/x, z/x}P(F(x), z, G(x))P(F(x), y, G(y)) 

No MGU!P(x, x)P(x, F(x)) 

{y/x} or {x/y}P(F(x), x, G(x))P(F(x), y, G(x)) 

{x/A}P(A)P(x) 

MGUω2ω1 

Now, let’s try unifying P(x, F(x)) with P(x,x). The temptation is to say x has to be 
F(x), but then that x has to be F(x), etc. The answer is that these expressions are 
not unifiable. 
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Most General Unifier 

g is a most general unifier of ω1 and ω2 iff for all 
unifiers s, there exists s0 such that ω1 s = (ω1 g) s0 
and ω2 s = (ω2 g) s0 

{x/A, y/B, z/B}P(A, y, z)P(x, B, B) 

{x/G(F(v)), u/F(v)}P(x, x)P(G(F(v)), G(u)) 

{y/x, z/x}P(F(x), z, G(x))P(F(x), y, G(y)) 

No MGU!P(x, x)P(x, F(x)) 

{y/x} or {x/y}P(F(x), x, G(x))P(F(x), y, G(x)) 

{x/A}P(A)P(x) 

MGUω2ω1 

The last time I explained this to a class, someone asked me what would happen if F 
were the identity function. Then, couldn’t we unify these two expressions? 
That’s a great question, and it illustrates a point I should have made before. In 
unification, we are interested in ways of making expressions equivalent, in 
every interpretation of the constant and function symbols. So, although it might 
be possible for the constants A and B to be equal because they both denote the 
same object in some interpretation, we can’t unify them, because they are not 
required to be the same in every interpretation. 
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An MGU can be computed recursively, given two expressions x, and y, to be 
unified, and a substitution that contains substitutions that must already be made.  
The argument s will be empty in a top-level call to unify two expressions. 
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Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
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Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
if s = fail, return fail 

The algorithm returns a substitution if x and y are unifiable in the context of s, and 
fail otherwise. If s is already a failure, we return s. 
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Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
if s = fail, return fail 
else if x = y, return s 

If x is equal to y, then we don’t have to do any work and we return fail. 
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Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
if s = fail, return fail 
else if x = y, return s 
else if x is a variable, return unify-var(x, y, s) 
else if y is a variable, return unify-var(y, x, s) 

If either x or y is a variable, then we go to a special subroutine that’s shown on the 
next slide. 
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Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
if s = fail, return fail 
else if x = y, return s 
else if x is a variable, return unify-var(x, y, s) 
else if y is a variable, return unify-var(y, x, s) 
else if x is a predicate or function application, 

If x is a predicate or a function application, then y must be one also, with the same 
predicate or function. 



73

Lecture 7 • 73 

Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
if s = fail, return fail 
else if x = y, return s 
else if x is a variable, return unify-var(x, y, s) 
else if y is a variable, return unify-var(y, x, s) 
else if x is a predicate or function application, 

if y has the same operator, 
return unify(args(x), args(y), s) 

If so, we’ll unify the lists of arguments from x and y in the context of s. 
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Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
if s = fail, return fail 
else if x = y, return s 
else if x is a variable, return unify-var(x, y, s) 
else if y is a variable, return unify-var(y, x, s) 
else if x is a predicate or function application, 

if y has the same operator, 
return unify(args(x), args(y), s) 

else return fail 

If not, that is, if x and y have different predicate or function symbols, we simply 
fail. 
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Unification Algorithm 

unify(Expr x, Expr y, Subst s){ 
if s = fail, return fail 
else if x = y, return s 
else if x is a variable, return unify-var(x, y, s) 
else if y is a variable, return unify-var(y, x, s) 
else if x is a predicate or function application, 

if y has the same operator, 
return unify(args(x), args(y), s) 

else return fail 
else ; x and y have to be lists 

return unify(rest(x), rest(y), 
unify(first(x), first(y), s)) 

} 

Finally, (if we get to this case, then x and y have to be lists, or something 
malformed), we go down the lists, unifying the first elements, then the second 
elements, and so on. Each time we unify a pair of elements, we get a new 
substitution that records the commitments we had to make to get that pair of 
expressions to unify. Each further unification must take place in the context of 
the commitments generated by the previous elements of the lists. 
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Unify-var subroutine 

Substitute in for var and x as long as possible, then add new 
binding 

unify-var(Variable var, Expr x, Subst s){ 

Given a variable var, an expression x, and a substitution s, we need to return a 
substitution that unifies var and x in the context of s. What makes this tricky is 
that we have to first keep applying the existing substitutions in s to var, and to x, 
if it is a variable, before we’re down to a new concrete problem to solve. 
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Unify-var subroutine 

Substitute in for var and x as long as possible, then add new 
binding 

unify-var(Variable var, Expr x, Subst s){ 
if var is bound to val in s, 

return unify(val, x, s) 

So, if var is bound to val in s, then we unify that value with x, in the context of s 
(because we’re already committed that val has to be substituted for var). 



78

Lecture 7 • 78 

Unify-var subroutine 

Substitute in for var and x as long as possible, then add new 
binding 

unify-var(Variable var, Expr x, Subst s){ 
if var is bound to val in s, 

return unify(val, x, s) 
else if x is bound to val in s, 

return unify-var(var, val, s) 

Similarly, if x is a variable, and it is bound to val in s, then we have to unify var 
with val in s. (We call unify-var directly, because we know that var is still a 
var). 
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Unify-var subroutine 

Substitute in for var and x as long as possible, then add new 
binding 

unify-var(Variable var, Expr x, Subst s){ 
if var is bound to val in s, 

return unify(val, x, s) 
else if x is bound to val in s, 

return unify-var(var, val, s) 
else if var occurs anywhere in x, return fail 

If var occurs anywhere in x, then fail.  This is the “occurs” check, which keeps us 
from circularities, like binding x to F(x). 
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Unify-var subroutine 

Substitute in for var and x as long as possible, then add new 
binding 

unify-var(Variable var, Expr x, Subst s){ 
if var is bound to val in s, 

return unify(val, x, s) 
else if x is bound to val in s, 

return unify-var(var, val, s) 
else if var occurs anywhere in x, return fail 
else return add({var/x}, s) 

} 

Finally, we know var is a variable that doesn’t already have a substitution, so we 
add the substitution of x for var to s, and return it. 
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Unify-var subroutine 

Substitute in for var and x as long as possible, then add new 
binding 

unify-var(Variable var, Expr x, Subst s){ 
if var is bound to val in s, 

return unify(val, x, s) 
else if x is bound to val in s, 

return unify-var(var, val, s) 
else if var occurs anywhere in x, return fail 
else return add({var/x}, s) 

} 

Note: last line incorrect in book! 

Be careful. The last line of this algorithm in the book is incorrect. 
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Unification Problems 

For each pair of sentences, give an MGU. 
Color(Tweety, Yellow) Color(x,y) 
Color(Tweety, Yellow) Color(x,x) 
Color(Hat(John), Blue) Color(Hat(y), x) 
R(F(x), B) R(y,z) 
R(F(y), x) R(x, F(B)) 
R(F(y), y, x) R(x, F(A), F(v)) 
Loves(x, y) Loves(y, x) 
F(G(w), H(w, J(x, y))) F(G(v), H(u, v)) 
F(G(w), H(w, J(x, u))) F(G(v), H(u, v)) 
F(x, F(u, x)) F(F(y, A), F(z, F(B,z))) 

Please do at least half of these problems before you go on to the next lecture, and all 
of them before the next recitation. 
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Inference using Unification 

∀ x. ¬ P(x) v Q(x) 

P(A) 

Q(A) 

For universally quantified variables, find MGU {x/A} and 
proceed as in propositional resolution. 

We’ll spend next time talking about the first-order resolution inference rule in great 
detail. But just so you can see what unification is good for, here’s an example 
inference rule. 

In propositional resolution, we looked for a variable and its negation to resolve. 
They had to match exactly. In first-order unification, we’ll look for two 
expressions to resolve. But now they don’t have to match exactly. They just 
have to unify. The details are to come. 


