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6.832 Underactuated Robotics	 Spring 2009 

Problem Set 1 Solutions 
by Rick Cory and John Roberts 

1 Definition of Underactuated 
a) Without loss of generality, assume there is no damping in the system and the mass and inertia are equal to one. 

The manipulator equations of the submarine are then: ⎡ ⎤ ⎡ ⎤ 
ẍ T1 ⎣	 ÿ ⎦ = B ⎣ T2 ⎦ (1)
¨ θ T3 

where [x y θ] are the generalized coordinates (θ is the angle of the submarine from horizontal), and Ti represents 
the thrust generated by thruster i. Since the thrust axes are 30 degrees away from each other, the total force vector 
acting on the submarine is given by: ⎡	 ⎤ 

π πT1 cos (θ + ) + T2 cos θ + T3 cos (θ − )6 6 
F = ⎣ π 

6 
π ⎦	 (2)T1 sin (θ + ) + T2 sin θ + T3 sin (θ − 6 

0 
) 

Since the forces act at the point of intersection of the three thrust axes, the torque about the center of mass (com) 
is given by: ⎡ 

2 cos θ 
⎤ ⎡ 

0 
⎤ 

τcom = ⎣ 2 sin θ 
0 

⎦ × F = ⎣ 0 
T1 − T3 

⎦ (3) 

Thus we can re-write equation 1 as: ⎡ ⎤ ⎡ ⎤⎡ ⎤ 
ẍ cos (θ + π π) cos θ cos (θ − ) T16 6 ⎣ ÿ ⎦ = ⎣ π π ⎦⎣ T2 ⎦ (4)sin (θ + sin (θ −

1 0 −1 T3 

) sin θ )6 6
¨ θ 

B 

πof 2 

where we used the identity sin (u − v) = sin u cos v − sin v cos u. When θ is a multiple of π or an odd multiple 
, the matrix B will not be full ranked. Hence in these states, the system is underactuated. 

b) Assuming unit mass/intertia and no damping, the manipulator equations for the robot are: ⎡ ⎤ 
ẍ � � ⎣ ÿ ⎦ = B 

F1 (5)
¨ F2θ 

Since B is a 3 × 2 matrix, then rank(B) ≤ 2 < dim(x), therefore the system is underactuated. 

c) All nonholonomic systems are underactuated because their constraints on velocity can be differentiated to obtain 
constraints on acceleration. For example, in part (b) above differentiating the velocity constraint gives us: 

d 
(ẏ cos θ − ẋ sin θ) = 0	 (6)

dt 

⇒ ÿ cos θ − ẍ sin θ = θ̇ ẏ2 + ẋ2 (7) 

Hence the orientation of the robot imposes a constraint on the instantaneous accelerations. 
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d) The telescope system is always fully actuated in φ and θ as they can be directly controlled by the input torques, 

2

as is clear in the equations of motion. In x and y, however, there is a kinematic singularity at φ = 0,which 
precludes the system from accelerating in any direction save that in which the telescope is currently pointing 
(i.e., ¨ x = tan θ). Therefore the system is underactuated for some configuration (φ = 0) when trying to y/¨

control x and y.


2 The Simple Pendulum 
a) For the case of b = u = 0 the basin of attraction has a single point; namely the fixed point at [0 0]T . The fixed 

l 
[ π 
6

point (closest to the origin) for the case b = 0.5, u = 0 is [0 0]T . The fixed point for the case b = 0.5, u = g is 
0]. The basins of attraction for the latter two cases are shown in Figure 1. 
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Figure 1: The basins of attraction (green) for the case of b = 0.5, u = 0 (left) and b = 0.5, u = g (right)2l 

b) The trajectories for the system with u = 0 and with u = bθ̇ are shown in Figure 2. Note that the feedback 
linearized system (u = bθ̇) creates a closed circuit (as would an undamped pendulum), with integration errors 
accounting for any small wobble seen in the trajectory. The system with no torque spirals in towards the fixed 
point, as would be expected given the damping. 

Figure 2: Trajectories for the system without torque (left) and the system feedback linearized to be without damping 
(right). 
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c) Doubling gravity will result in the phase plot of the now effectively undamped system “stretching” vertically, as 
higher speeds will be reached , but it will remain qualitatively the same. Torque as large as mgl is required to 
double gravity, while torque as large as 2mgl is required to invert it, as double gravity just requires the motor to 
create and “extra” gravity, while inverting requires first canceling gravity, then adding another negative gravity 
in. 

3 Optimal control of the double integrator 
a) The trajectory followed by the min-time policy is much sharper and reaches higher speeds than those achieved 

by the LQR. The LQR follows a much smoother path to the goal, and accelerates much less due to the cost put 
on actuation, while the min-time policy is constantly using as much of its actuator as it can. 

Figure 3: Trajectories for the system following the minimum time and the LQR policies. 

b) See part a. 

c) This solution assumes that the actuator cap experienced by the min-time policy is not in place for the LQR policy. 
If it is the LQR policy will never do as well as the min-time policy, and will not limit towards it either as once 
hard limits on actuation magnitude are in place LQR loses its optimality guarantees and can start performing 
very poorly. 

The LQR solution required 9.89 seconds to reach the goal using Q = .25I . The min-time policy required 4.43 
seconds to reach the goal. Using Q = 100I , however, resulted in a time of 4.04 seconds. This is due to the LQR 
policy not having bounds on actuation, and thus being able to outperform the min-time solution through the use 
of much larger actuator magnitudes than the min-time was permitted. 
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